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ABSTRACT
Privacy-preserving data publishing addresses the problem
of disclosing sensitive data when mining for useful infor-
mation. Among the existing privacy models, ε-differential
privacy provides one of the strongest privacy guarantees
and has no assumptions about an adversary’s background
knowledge. Most of the existing solutions that ensure ε-
differential privacy are based on an interactive model, where
the data miner is only allowed to pose aggregate queries to
the database. In this paper, we propose the first anonymiza-
tion algorithm for the non-interactive setting based on the
generalization technique. The proposed solution first prob-
abilistically generalizes the raw data and then adds noise
to guarantee ε-differential privacy. As a sample application,
we show that the anonymized data can be used effectively
to build a decision tree induction classifier. Experimen-
tal results demonstrate that the proposed non-interactive
anonymization algorithm is scalable and performs better
than the existing solutions for classification analysis.

Categories and Subject Descriptors
H.2.7 [Database Administration]: [Security, integrity,
and protection]; H.2.8 [Database Applications]: [Data
mining]

General Terms
Algorithms, Performance, Security

Keywords
Differential privacy, anonymization, data mining

1. INTRODUCTION
Due to the rapid advancement in storing, processing, and

networking capabilities of computing devices, there has been
a tremendous growth in the collection of digital information
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about individuals. And the emergence of new computing
paradigms, such as cloud computing, increases the possibil-
ity of large-scale distributed data collection from multiple
sources. While the collected data offer tremendous oppor-
tunities for mining useful information, there is also a threat
to privacy because data in raw form often contain sensi-
tive information about individuals. Privacy-preserving data
publishing (PPDP) studies how to transform raw data into
a version that is immunized against privacy attacks but that
still supports effective data mining tasks. In this paper, we
present an anonymization algorithm to transform a raw data
table into a version that satisfies ε-differential privacy [7]
and supports effective classification analysis.

Defining privacy is a difficult task. One of the key chal-
lenges is how to model the background knowledge of an ad-
versary. Simply removing explicit identifiers (e.g., name)
does not preserve privacy, given that the adversary has some
background knowledge about the victim. Sweeney [37] illus-
trates that 87% of the U.S. population can be uniquely iden-
tified based on 5-digit zip code, gender, and date of birth.
These attributes are called quasi-identifier (QID) and the
adversary may know these values from publicly available
sources such as a voter list. An individual can be identified
from published data by simply joining the QID attributes
with an external data source.

To limit such disclosure, Samarati and Sweeney [36, 37]
propose the k-anonymity privacy model, which requires that
an individual should not be identifiable from a group of size
smaller than k based on the QID. However, Machanavajjhala
et al. [28] point out that with additional knowledge about the
victim, k-anonymous data is vulnerable against background
knowledge attacks. To prevent such attacks, �-diversity re-
quires that every QID group should contain at least � “well-
represented” values for the sensitive attribute. Similarly,
there are a number of other partition-based privacy models
such as (α, k)-anonymity [41], t-closeness [26], and (c, k)-
safety [29] that model the adversary differently and have
different assumptions about its background knowledge.

To transform a raw data table to satisfy a specified privacy
requirement, one of the most popular techniques is gener-
alization [36, 37]. Generalization replaces a specific value
with a more general value to make the information less pre-
cise while preserving the “truthfulness” of information. Let
Table 1.a be a raw data table (ignore the class attribute for
now). Generalization can be used to create a 4-anonymous
table, as shown in Table 1.b, according to the taxonomy
trees given in Figure 1. A large number of anonymization
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Table 1: A raw data table and its anonymized versions

(a) Raw data table

Job Age Class
Engineer 34 Y
Lawyer 50 N
Engineer 38 N
Lawyer 33 Y
Dancer 20 Y
Writer 37 N
Writer 32 Y
Dancer 25 N

(b) 4-anonymous table

Job Age
Professional [18-65)
Professional [18-65)
Professional [18-65)
Professional [18-65)

Artist [18-65)
Artist [18-65)
Artist [18-65)
Artist [18-65)

(c) Contingency table

Job Age Count
Engineer [18-40) 2
Engineer [40-65) 0
Lawyer [18-40) 1
Lawyer [40-65) 1
Dancer [18-40) 2
Dancer [40-65) 0
Writer [18-40) 2
Writer [40-65) 0

(d) Generalized contingency table

Job Age Count
Professional [18-40) 3
Professional [40-65) 1

Artist [18-40) 4
Artist [40-65) 0

algorithms [2, 13, 24, 23, 36], tailored for both general and
specific data mining tasks, have been proposed based on
generalization.

Recently, Wong et al. [39] and Zhang et al. [45] show that
these algorithms are vulnerable against minimality attack
and do not provide the claimed privacy guarantee. Al-
though several fixes against minimality attack have been
proposed [5, 19, 43], new attacks such as composition at-
tack [14], deFinetti attack [21], and foreground knowledge
attack [40] have emerged against these algorithms [2, 13, 24,
23, 36]. One way to handle these attacks is to revise the ex-
isting algorithms or propose new algorithms while keeping
the current privacy models and hoping no other attack will
be discovered. Another way is to choose a privacy model
that is robust enough to provide a provable privacy guar-
antee and that is, by definition, immune against all these
attacks. We adopt the latter approach in this paper.

Differential privacy [7] is a rigorous privacy model that
makes no assumption about an adversary’s background knowl-
edge. A differentially-private mechanism ensures that the
probability of any output (released data) is equally likely
from all nearly identical input data sets and thus guaran-
tees that all outputs are insensitive to any individual’s data.
In other words, an individual’s privacy is not at risk because
of her participation in the data set.

1.1 Motivation
Existing algorithms that provide differential privacy guar-

antee are based on two approaches: interactive and non-
interactive. In an interactive framework, a data miner can
pose aggregate queries through a private mechanism, and a
database owner answers these queries in response. Most of
the proposed methods for ensuring differential privacy are
based on an interactive framework [6, 9, 35, 11]. In a non-
interactive framework the database owner first anonymizes
the raw data and then releases the anonymized version for
public use. In this paper we adopt the non-interactive frame-
work and argue that this approach has a number of advan-
tages for data mining.

In an interactive framework privacy is ensured by adding
noise to each query response. To ensure privacy a database
owner can answer only a limited number of queries before
she has to increase the noise level to a point that the answer
is no longer useful. Thus, the database can only support a
fixed number of queries for a given privacy budget. This is
a big problem when there are a large number of data miners
because each user (data miner) can only ask a small num-
ber of queries. Even for a small number of users, it is not
possible to explore the data for testing various hypotheses.

Engineer

Any_Job

Professional Artist

Lawyer Dancer Writer

Job
[18-65)

[18-40) [40-65)

Age

Figure 1: Taxonomy tree of attributes

On the other hand, by releasing the data all data miners get
full access to the anonymized data. This gives researchers
greater flexibility in performing the required data analysis,
and they can fine-tune the data mining results for their re-
search purposes.

Current techniques that adopt the non-interactive approach
publish contingency tables or marginals of the raw data [9,
1, 44, 16] (see Section 2 for more discussion). The gen-
eral structure of these approaches is to first derive a fre-
quency matrix1 of the raw data over the database domain.
For example, Table 1.c shows the contingency table of Ta-
ble 1.a. After that, noise is added to each count to satisfy
the privacy requirement. Finally, the noisy frequency ma-
trix is published. However, this approach is not suitable for
high-dimensional data with a large domain because when
the added noise is relatively large compared to the count,
the utility of the data is significantly destroyed. We also
confirm this point in our experimental results (Section 5).

1.2 Contributions
In this paper, we propose a novel technique for privacy-

preserving data publishing that provides an ε-differential
privacy [7] guarantee. While protecting privacy is a crit-
ical element in data publishing, it is equally important to
preserve the utility of the published data because this is
the primary reason for data release. Taking the decision
tree induction classifier as an example, we show that our
anonymization algorithm can be effectively tailored for pre-
serving information for the data mining task. The contribu-
tions of this paper are summarized as follow:

1. We present the first generalization-based algorithm for
differentially private data release that preserves infor-
mation for classification analysis. Previous work [27]
suggests that generalization technique cannot be used
to achieve ε-differential privacy as it heavily depends
on the underlying data. Yet, we show that differen-
tially private data can be released by adding uncer-
tainty in the generalization procedure. The proposed

1For a contingency table, a frequency matrix is computed
over all the attributes, whereas a marginal is derived by
projecting some of the attributes.
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Table 2: Characteristics of PPDP algorithms

Algorithms
Dimension Attribute Domain Privacy Model

Single Multi Leaf Level Hierarchical Differential
Privacy

Partition-based
Privacy

Mondrian [23],
TDS [13], etc.

� � � �

Barak et al. [1] � � � �
Hay et al. [16] � � � �
Privelet [44] � � � �
Our proposal � � � � �

solution first probabilistically generates a generalized
contingency table and then adds noise to the counts.
For example, Table 1.d is a generalized contingency
table of Table 1.a. Thus the count of each partition is
typically much larger than the added noise.

2. The proposed algorithm can handle both categorical
and numerical attributes. Unlike existing methods
[44], it does not require the numerical attribute to be
pre-discretized. The algorithm adaptively determines
the split points for numerical attributes and partitions
the data based on the workload, while guaranteeing
ε-differential privacy. This is an essential requirement
for getting accurate classification, as we show in Sec-
tion 5. Moreover, the algorithm is very efficient and
scales for large data sets.

3. It is well acknowledged that ε-differential privacy pro-
vides strong privacy guarantee. However, the util-
ity aspect of the differentially-private algorithms has
received much less study. Does the interactive ap-
proach offer better data mining results than the non-
interactive approach? Does differentially private data
provide less utility than k-anonymous data? Experi-
mental results demonstrate that our algorithm outper-
forms the recently proposed differentially-private in-
teractive algorithm for building classifier [11] and the
top-down specialization (TDS) approach[13] that pub-
lishes k-anonymous data for classification analysis.

The rest of the paper is organized as follows. Section 2
reviews related literature. Section 3 overviews ε-differential
privacy and generalization techniques. Our anonymization
algorithm is explained in Section 4. Section 5 experimen-
tally evaluates the performance of our solution. Section 6
concludes the paper.

2. RELATED WORK
Partition-based approach divides a given data set into
disjoint groups and releases some general information about
the groups. The two most popular anonymization tech-
niques are generalization and bucketization. Generaliza-
tion [2, 24, 36] makes information less precise while pre-
serving the “truthfulness” of information. Unlike generaliza-
tion, bucketization [42, 29] does not modify the QID and the
sensitive attribute (SA) values but instead de-associates the
relationship between the two. However, it thus also disguises
the correlation between SA and other attributes and, there-
fore, hinders data analysis that depends on such correlation.

Many algorithms have been proposed to preserve privacy,
but only a few have considered the goal for classification [12].
Iyengar [18] presents the anonymity problem for classifica-
tion and proposes a genetic algorithmic solution. Bayardo

and Agrawal [2] also address the classification problem using
the same classification metric of [18]. Fung et al. [13] pro-
pose a top-down specialization (TDS) approach to generalize
a data table. Recently, LeFevre et. al. [24] propose an-
other anonymization technique for classification using mul-
tidimensional recoding [23]. All these algorithms adopt k-
anonymity [36, 37] or its extensions [28, 38] as the under-
lying privacy principle and, therefore, are vulnerable to the
recently discovered privacy attacks [39, 14, 21, 40]. More
discussion about the partition-based approach can be found
in a survey paper [12].

Differential privacy has received considerable attention
recently as a substitute for partition-based privacy models
for PPDP. However, most of the research on differential pri-
vacy so far concentrates on the interactive setting with the
goal of reducing the magnitude of added noise [6, 9, 35],
releasing certain data mining results [3, 11], or determin-
ing the feasibility and infeasibility results of differentially-
private mechanisms [4, 20]. A general overview of various
research works on differential privacy can be found in the re-
cent survey [8]. Below, we briefly review the results relevant
to this paper.

Barak et al. [1] address the problem of releasing a set of
consistent marginals of a contingency table. Their method
ensures that each count of the marginals is non-negative
and their sum is consistent for a set of marginals. Xiao et
al. [44] propose Privelet, a wavelet-transformation-based ap-
proach that lowers the magnitude of noise needed to ensure
differential privacy to publish a multidimensional frequency
matrix. Hay et al. [16] propose a method to publish differ-
entially private histograms for a one-dimensional data set.
Although Privelet and Hay et al.’s approach can achieve dif-
ferential privacy by adding polylogarithmic noise variance,
the latter is only limited to a one-dimensional data set.

Some works [15, 25] address how to compute the results of
a number of given queries while minimizing the added noise.
However, these methods require the set of queries to be given
first altogether to compute the results. In contrast, our
method complements the above works by determining how
to partition the data adaptively so that the released data can
be useful for a given data mining task. In addition, a number
of recent works propose differentially-private mechanisms for
different applications such as record linkage [17], and recom-
mender systems [31]. Though closely related, all these works
do not address the problem of privacy-preserving data pub-
lishing for classification analysis, the primary theme of this
paper. Table 2 summaries different characteristics of the
PPDP algorithms discussed above.

The most relevant work to this paper is DiffP-C4.5 [11],
an interactive algorithm for building a classifier while guar-
anteeing differential privacy. We have already discussed
the shortcomings of an interactive framework and will ex-
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perimentally compare our algorithm designed for the non-
interactive setting with DiffP-C4.5 in Section 5.

3. PRELIMINARIES
In this section, we first present an overview of ε-differential

privacy and the core mechanisms to achieve ε-differential
privacy. We then introduce the notion of generalization in
the context of microdata publishing, followed by a problem
statement.

3.1 Differential Privacy
Differential privacy is a recent privacy definition that pro-

vides a strong privacy guarantee. Partition-based privacy
models ensure privacy by imposing syntactic constraints on
the output. For example, the output is required to be indis-
tinguishable among k records, or the sensitive value to be
well represented in every equivalent group. Instead, differ-
ential privacy guarantees that an adversary learns nothing
more about an individual, regardless of whether her record
is present or absent in the data. Informally, a differentially
private output is insensitive to any particular record. There-
fore, from an individual’s point of view, the output is com-
puted as if from a data set that does not contain her record.

Definition 3.1 (ε-differential privacy). A randomized
algorithm Ag is differentially private if for all data setsD and
D′ where their symmetric difference contains at most one
record (i.e., |D�D′| ≤ 1), and for all possible anonymized

data sets D̂,

Pr[Ag(D) = D̂] ≤ eε × Pr[Ag(D′) = D̂], (1)

where the probabilities are over the randomness of the Ag.

The parameter ε > 0 is public and specified by a data
owner. Lower values of ε provide a stronger privacy guaran-
tee. Typically, the values of ε should be small, such as 0.01,
0.1, or in some cases ln 2, or ln 3 [8]. When ε is very small,
we have eε ≈ 1 + ε.

A standard mechanism to achieve differential privacy is to
add random noise to the true output of a function. The noise
is calibrated according to the sensitivity of the function. The
sensitivity of a function is the maximum difference of its
outputs from two data sets that differ only in one record.

Definition 3.2 (Sensitivity). For any function f : D →
R

d, the sensitivity of f is

Δf = max
D,D′ ||f(D) − f(D′)||1 (2)

for all D,D′ differing in at most one record.

Example 1. Consider the raw data set of Table 1.a. Let
f be a function that counts the number of records with Age
less than 40. Then, the Δf is 1 because f(D) can differ at
most 1 due to the addition or removal of a single record.

Laplace Mechanism. Dwork et al. [9] propose the Laplace
mechanism. The mechanism takes a data set D, a function
f , and the parameter λ that determines the magnitude of
noise as inputs. It first computes the true output f(D), and
then perturbs the output by adding noise. The noise is gen-
erated according to a Laplace distribution with probability
density function Pr(x|λ) = 1

2λ
exp(−|x|/λ); its variance is

2λ2 and mean is 0. The following theorem connects the sen-
sitivity to the magnitude of noise and guarantees that per-

turbed output ˆf(D) = f(D) + Lap(λ) satisfies ε-differential
privacy, where Lap(λ) is a random variable sampled from
the Laplace distribution.

Theorem 3.1. [9] For any function f : D → R
d, the

algorithm Ag that adds independently generated noise with
distribution Lap(Δf/ε) to each of the d outputs satisfies ε-
differential privacy.

Example 2. Continue from Example 1. The mechanism
first computes the true count f(D) and then outputs the

noisy answer ˆf(D) = f(D) + Lap(1/ε).

Exponential Mechanism. McSherry and Talwar [32] pro-
pose the exponential mechanism that can choose an output
t ∈ T that is close to the optimum with respect to a utility
function while preserving differential privacy. The exponen-
tial mechanism takes as inputs a data set D, output range T ,
privacy parameter ε, and a utility function u : (D×T )→ R

that assigns a real valued score to every output t ∈ T , where
a higher score means better utility.

The mechanism induces a probability distribution over
the range T and then samples an output t. Let Δu =
max∀t,D,D′ |u(D, t)− u(D′, t)| be the sensitivity of the util-
ity function. The probability associated with each output

is proportional to exp( εu(D,t)
2Δu

); that is, the output with a
higher score is exponentially more likely to be chosen.

Theorem 3.2. [32] For any function u : (D × T ) → R,
an algorithm Ag that chooses an output t with probability

proportional to exp( εu(D,t)
2Δu

) satisfies ε-differential privacy.

3.2 Generalization
Let D = {r1, . . . , rn} be a multiset of records, where each

record ri represents the information of an individual with d
attributesA = {A1, . . . , Ad}. We represent the data setD in
a tabular form and use the terms “data set” and“data table”
interchangeably. We assume that each attribute Ai has a
finite domain, denoted by Ω(Ai). The domain of D is defined
as Ω(D) = Ω(A1)×, . . . ,×Ω(Ad). To anonymize a data set
D, generalization replaces a value of an attribute with a
more general value. The exact general value is determined
according to the attribute partition.

Definition 3.3 (Attribute Partition). The partitions
P (Ai) of a numerical attribute are the intervals 〈I1, I2, . . . , Ik〉
in Ω(Ai) such that

⋃k
j=1 Ij = Ω(Ai). For categorical at-

tribute, partitions are defined by a set of nodes from the
taxonomy tree such that it covers the whole tree, and each
leaf node belongs to exactly one partition.

For example, Artist is the general value ofDancer accord-
ing to the taxonomy tree of Job in Figure 1. And, Age 23
can be represented by the interval [18 − 40). For numerical
attributes, these intervals are determined adaptively from
the data set.

Definition 3.4 (Generalization). Generalization is de-
fined by a function Φ = {φ1, φ2, . . . , φd}, where φi : v → p
maps each value v ∈ Ω(Ai) to a p ∈ P (Ai).
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Clearly, given a data set D over a set of attributes A =
{A1, . . . , Ad}, many alternative generalization functions are
feasible. Each generalization function partitions the attribute
domains differently. To satisfy the ε-differential privacy re-
quirement the algorithm must determine a generalization
function that is insensitive to the underlying data. More
formally, for any two data sets D and D′, where D�D′ = 1,
the algorithm must ensure that the ratio of Pr[Ag(D) = Φ]
and Pr[Ag(D′) = Φ] is bounded.

One naive solution that satisfies ε-differential privacy is
to have a fixed generalization function, irrespective of the
input database. However, a proper choice of generalization
function is very crucial since the data mining result varies
significantly for different choices of partitioning. In Section 4
we present an efficient algorithm for determining an adaptive
partitioning technique for classification analysis that guar-
antees ε-differential privacy.

3.3 Problem Statement
Suppose a data owner wants to release a data tableD(Apr

1 ,
. . . , Apr

d , Acls) to the public for classification analysis. The
attributes in D are classified into three categories: (1) An
explicit identifier Ai attribute that explicitly identifies an
individual, such as SSN, and Name. These attributes are
removed before releasing the data. (2) A class attribute
Acls that contains the class value, and the goal of the data
miner is to build a classifier to accurately predict the value
of this attribute. (3) A set of d predictor attributes Apr =
{Apr

1 , . . . , Apr
d }, whose values are used to predict the class

attribute.
We require the class attribute to be categorical, and the

predictor attribute can be either numerical or categorical.
Further, we assume that for each categorical-predictor at-
tribute Apr

i , a taxonomy tree is provided. The taxonomy
tree of an attribute Apr

i specifies the hierarchy among the
values in Ω(Apr

i ). Next, we give our problem statement.
Given a data table D and the privacy parameter ε, our

objective is to generate an anonymized data table D̂ such
that (1) D̂ satisfies ε-differential privacy, and (2) preserves
as much information as possible for classification analysis.

4. THE ALGORITHM
In this section, we first present an overview of ourDiff erent-

ially-private anonymization algorithm based on Generaliza-
tion (DiffGen). We then elaborate the key steps, and prove
that the algorithm is ε-differential private. Finally, we present
the implementation details and analyze the complexity of
the algorithm.

4.1 Overview
Algorithm 1 first generalizes the predictor attributes Apr

and thus divides the raw data into several equivalence groups,
where all the records within a group have the same attribute
values. Then the algorithm publishes the noisy counts of the
groups. The general idea is to anonymize the raw data by a
sequence of specializations, starting from the topmost gen-
eral state as shown in Figure 2. A specialization, written
v → child(v), where child(v) denotes the set of child values
of v, replaces the parent value v with a child value. The
specialization process can be viewed as pushing the “cut”
of each taxonomy tree downwards. A cut of the taxonomy
tree for an attribute Apr

i , denoted by Cuti, contains exactly
one value on each root-to-leaf path. Figure 1 shows a so-

Algorithm 1 DiffGen

Input: Raw data set D, privacy budget ε, and number of
specializations h.
Output: Generalized data set D̂

1: Initialize every value in D to the topmost value;
2: Initialize Cuti to include the topmost value;
3: ε′ ← ε

2(|Apr
n |+2h)

;

4: Determine the split value for each vn ∈ ∪Cuti with prob-

ability ∝ exp( ε′
2Δu

u(D, vn));
5: Compute the score for ∀v ∈ ∪Cuti;
6: for i = 1 to h do
7: Select v ∈ ∪Cuti with probability ∝ exp( ε′

2Δu
u(D, v));

8: Specialize v on D and update ∪Cuti;
9: Determine the split value for each new vn ∈ ∪Cuti

with probability ∝ exp( ε′
2Δu

u(D, vn));
10: Update score for v ∈ ∪Cuti;
11: end for
12: return each group with count (C + Lap(2/ε))

lution cut indicated by the dashed curve representing the
anonymous Table 1.d.

The specialization starts from the topmost cut and pushes
down the cut iteratively by specializing some value in the
current cut. Initially, all values in Apr are generalized to the
topmost value in their taxonomy trees (Line 1), and Cuti
contains the topmost value for each attribute Apr

i (Line 2).
At each iteration DiffGen probabilistically selects a candi-
date v ∈ ∪Cuti for specialization (Line 7). Candidates are
selected based on their score values, and different heuris-
tics (e.g., information gain) can be used to determine the
score of the candidates. Then, the algorithm specializes v
and updates ∪Cuti (Line 8). Finally, it updates the score of
the affected candidates due to the specialization (Line 10).
DiffGen terminates after a given number of specializations.
The proposed algorithm can also be used to publish a contin-
gency table by allowing the specialization to continue until
it reaches the leaf level of the attribute domains.

Example 3. Consider the raw data set of Table 1.a. Ini-
tially the algorithm creates one root partition containing
all the records that are generalized to 〈Any Job, [18-65)〉.
∪Cuti includes {Any Job, [18-65)}. Let the first specializa-
tion be Any Job → {Professional, Artist}. The algorithm
creates two new partitions under the root, as shown in Fig-
ure 2, and splits data records between them. ∪Cuti is up-
dated to {Professional, Artist, [18-65)}. Suppose that the
next specialization is [18-65) → {[18-40),[40-65)}, which
creates further specialized partitions. Finally, the algorithm
outputs the equivalence groups of each leaf partition along
with their noisy counts.

4.2 Privacy Analysis
We next elaborate the key steps of the algorithm: (1) se-

lecting a candidate for specialization, (2) determining the
split value, and (3) publishing the noisy counts. We show
that each of these steps preserves privacy, and then we use
the composition properties of differential privacy to guaran-
tee that DiffGen is ε-differentially private.

(1) Candidate Selection. We use an exponential mechanism
(see Section 3) to select a candidate for specialization in each
round. We define two utility functions to calculate the score
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Job Age Class
Any_Job [18-65) 4Y4N

Any_Job {Professional, Artist}

8
Count

4Professional [18-65) 2Y2N

[18-65)       {[18-40), [40-65)}

4Artist [18-65) 2Y2N

3Professional [18-40) 2Y1N 1Professional [40-65) 0Y1N 0Artist [40-65) 0Y0N4Artist [18-40) 2Y2N

Linkprofessional Link[40-65)

1-1=0Professional [18-40) N

2+1=3Professional [18-40) Y 0+0=0Professional [40-65) Y

1+2=3Professional [40-65) N

Noisy count

2+1=3Artist [18-40) N
2-2=0Artist [18-40) Y 0+2=2Artist [40-65) Y

0+0=0Artist [40-65) N

Figure 2: Tree for partitioning records

of each candidate v ∈ ∪Cuti. The first utility function is
information gain. Let Dv denote the set of records in D
generalized to the value v. Let |Dcls

v | denote the number of
records in Dv having the class value cls ∈ Ω(Acls). Note
that |Dv | =

∑
c |Dc|, where c ∈ child(v). Then, we get

InfoGain(D, v) = Hv(D)−Hv|c(D), (3)

where Hv(D) = −
∑

cls
|Dcls

v |
|Dv| × log2

|Dcls
v |

|Dv| is the entropy of

candidate v with respect to the class attribute Acls and

Hv|c(D) =
∑

c
|Dc|
|Dv|Hc(D) is the conditional entropy given the

candidate is specialized. The sensitivity of InfoGain(D, v)
is log2 |Ω(Acls)|, where |Ω(Acls)| is the domain size of the
class attribute Acls. It is because the value of the entropy
Hv(D) must be between 0 and log2 |Ω(Acls)|. And, the value
of the conditional entropy Hv|c(D) lies between 0 and Hv(D).
Therefore, the maximum change of InfoGain(D, v) due to
the addition or removal of a record is bounded by log2 |Ω(Acls)|.

The second utility function is:

Max(D, v) =
∑

c∈child(v)

(max
cls

(|Dcls
c |)). (4)

Max(D, v) is the summation of the highest class frequencies
over all child values and the sensitivity of this function is 1
because the value of Max(D, v) can vary at most 1 due to the
change of a record.

Given the scores of all the candidates, exponential mech-
anism selects a candidate vi with the following probability,

exp( ε′
2Δu

u(D, vi))∑
v∈∪Cuti

exp( ε′
2Δu

u(D, v))
, (5)

where the u(D, v) is either InfoGain(D, v) or Max(D, v)
and the sensitivity of the function Δu is log2 |Ω(Acls)| and
1, respectively. Thus, from Theorem 3.2, Line 7 of Algo-
rithm 1 satisfies ε′-differential privacy. The beauty of the
exponential mechanism is that while it ensures privacy, it
also exponentially favors a candidate with a high score.

(2) Split Value. Once a candidate is determined, DiffGen
splits the records into child partitions. The split value of a
categorical attribute is determined according to the taxon-
omy tree of the attribute. Since the taxonomy tree is fixed,
the sensitivity of the split value is 0. Therefore, splitting
the records according to the taxonomy tree does not violate
differential privacy.

For numerical attributes, a split value cannot be directly
chosen from the attribute values that appear in the data
set D, because the probability of selecting the same split
value from a different data set D′ not containing this value
is 0. We again use an exponential mechanism to determine
the split value. We first partition the domain into intervals
I1, . . . , Ik such that all values within an interval have the
same score. Then, the exponential mechanism is used to

select an interval Ii with the following probability,

exp( ε′
2Δu

u(D, vi))× |Ω(Ii)|
∑k

j=1(exp(
ε′

2Δu
u(D, vj))× |Ω(Ij)|)

, (6)

where vi ∈ Ω(Ii), and |Ω(Ii)| is the length of the interval.
After selecting the interval, the split value is determined by
sampling a value uniformly from the interval. Thus, the
probability of selecting a value vi ∈ Ω(Ai) is

exp( ε′
2Δu

u(D, vi))∫
v∈Ω(Ai)

exp( ε′
2Δu

u(D, v)) dv
(7)

This satisfies ε′-differential privacy because the probabil-

ity of choosing any value is proportional to exp( ε
′u(D,vi)
2Δu

).

(3) Noisy Counts. Each leaf partition contains |Ω(Acls)|
equivalence groups. Publishing the exact counts of these
groups does not satisfy differential privacy since for a differ-
ent data set D′, the counts may change. This change can
be easily offset by adding noise to the count of each group
according to the Laplace mechanism (See Theorem 3.1). As
discussed earlier, the sensitivity of count query is 1; there-
fore, to satisfy ε

2
-differential privacy, DiffGen adds Lap(2/ε)

noise to each true count C of the groups (Line 12). We
post-process the noisy counts by rounding each count to the
nearest non-negative integer. Note that post-processing does
not violate the differential privacy [22].

Next, we use composition properties of differential pri-
vacy to guarantee that the proposed algorithm satisfies ε-
differential privacy as a whole.

Lemma 4.1 (Sequential composition [30]). Let each Agi
provide εi-differential privacy. A sequence of Agi(D) over
the data set D provides (

∑
i εi)-differential privacy.

Lemma 4.2 (Parallel composition [30]). Let each Agi
provide ε-differential privacy. A sequence of Agi(Di) over a
set of disjoint data sets Di provides ε-differential privacy.

Any sequence of computations that each provides differ-
ential privacy in isolation also provides differential privacy
in sequence, which is known as sequential composition. How-
ever, if the sequence of computations is conducted on disjoint
data sets, the privacy cost does not accumulate but depends
only on the worst guarantee of all computations. This is
known as parallel composition.

Theorem 4.1. DiffGen is ε-differentially private.

Proof. (Sketch) The algorithm first determines the split
value for each numerical attribute using the exponential
mechanism (Line 4). Since the cost of each exponential
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mechanism is ε′, Line 4 of the algorithm preserves ε′|Apr
n |-

differential privacy, where |Apr
n | is the number of numerical

attributes.
In Line 7, the algorithm selects a candidate for specializa-

tion. This step uses the exponential mechanism and thus,
candidate selection step guarantees ε′-differential privacy for
each iteration. In Line 9, the algorithm determines the split
value for each new numerical candidate vn ∈ ∪Cuti. All
records in the same partition have the same generalized val-
ues on Apr; therefore, each partition can only contain at
most one candidate value vn. Thus, determining the split
value for the new candidates requires at most ε′ privacy
budget for each iteration due to the parallel composition
property. Note that this step does not take place in every
iteration.

Finally, the algorithm outputs the noisy count of each
group (Line 12) using the Laplace mechanism and guaran-
tees ε

2
-differential privacy. Therefore, for ε′ = ε

2(|Apr
n |+2h)

,

DiffGen is ε-differentially private.

4.3 Implementation
A simple implementation of DiffGen is to scan all data

records to compute scores for all candidates in ∪Cuti. Then
scan all the records again to perform the specialization. A
key contribution of this work is an efficient implementation
of the proposed algorithm that computes scores based on
some information maintained for candidates in ∪Cuti and
provides direct access to the records to be specialized, in-
stead of scanning all data records. We briefly explain the
efficient implementation of the algorithm as follows.

Initial Steps (Lines 1-5). Initially, we determine split
points for all numerical candidates (Line 4). First, the data
is sorted with respect to the split attribute, which requires
O(|D| log |D|). Then the data is scanned once to determine
the score for all attribute values that appear in the data
set D. An interval is represented by two successive different
attribute values. Finally, the exponential mechanism is used
to determine the split point. We also compute the scores for
all candidates v ∈ ∪Cuti (Line 5). This can be done by
scanning the data set once. However, for each subsequent
iteration, information needed to calculate scores comes from
the update of the previous iteration (Line 10). Thus the
worst-case runtime of this step is O(|Apr | × |D| log |D|).

Perform Specialization (Line 8). To perform a spe-
cialization v → child(v), we need to retrieve Dv, the set of
data records generalized to v. To facilitate this operation
we organize the records in a tree structure, with each root-
to-leaf path representing a generalized record over Apr, as
shown in Figure 2. Each leaf partition (node) stores the set
of data records having the same generalized record for Apr

attributes. For each v in ∪Cuti, Pv denotes a leaf partition
whose generalized record contains v, and Linkv provides di-
rect access to all Pv partitions generalized to v.

Initially, the tree has only one leaf partition containing all
data records, generalized to the topmost value on every at-
tribute in Apr. In each iteration we perform a specialization
v by refining the leaf partitions on Linkv . For each value
c ∈ child(v), a new partition Pc is created from Pv, and
data records in Pv are split among the new partitions. This
is the only operation in the whole algorithm that requires
scanning data records. In the same scan, we also collect
the following information for each c: |Dc|, |Dg |, |Dcls

c | and
|Dcls

g |, where g ∈ child(c) and cls is a class label. These

pieces of information are used in Line 10 to update scores.
Thus, the total runtime of this step is O(|D|).

Determine the Split Value (Line 9). If a numeri-
cal candidate vn is selected in Line 7, then we need to de-
termine the split points for two new numerical candidates
cn ∈ child(vn). This step takes time O(|D| log |D|).

Update Score (Line 10). Both InfoGain and Max scores
of the other candidates x ∈ ∪Cuti are not affected by v →
child(v), except that we need to compute the scores of each
newly added value c ∈ child(v). The scores of the new can-
didates are computed using the information collected in Line
8. Thus, this step can be done in constant O(1) time.

Exponential Mechanism (Lines 4, 7 and 9). The
cost of the exponential mechanism is proportional to the
number of discrete alternatives from which it chooses a can-
didate. For Line 7, the cost is O(| ∪ Cuti|), and for Lines 4
and 9 the cost is O(|I|), where |I| is the number of intervals.
Usually both | ∪ Cuti| and |I| are much smaller than |D|.

In summary, the cost of the initial steps and Lines 7-10
are O(|Apr|×|D| log |D|) andO(h×|D| log |D|), respectively.
Hence, for a fixed number of attributes the total runtime of
DiffGen is O(h× |D| log |D|).

5. EXPERIMENTAL EVALUATION
In this section our objectives are to study the impact of

enforcing differential privacy on the data quality in terms
of classification accuracy, and to evaluate the scalability of
the proposed algorithm for handling large data sets. We
also compare DiffGen with DiffP-C4.5 [11], a differentially-
private interactive algorithm for building a classifier, and
with the top-down specialization (TDS) approach [13] that
publishes k-anonymous data for classification analysis.

We employ the publicly available Adult [10] data set, a
real-life census data set that has been used for testing many
anonymization algorithms [2, 13, 18, 28, 38, 33]. Adult has
45, 222 census records with 6 numerical attributes, 8 cate-
gorical attributes, and a binary class column representing
two income levels, ≤50K or >50K. See [13] for the descrip-
tion of attributes. All experiments were conducted on an
Intel Core i7 2.7GHz PC with 12GB RAM.

Data Quality. To evaluate the impact on classification
quality we divide the data into training and testing sets.
First, we apply our algorithm to anonymize the training set
and to determine the ∪Cuti. Then, the same ∪Cuti is ap-
plied to the testing set to produce a generalized testing set.
Next, we build a classifier on the anonymized training set
and measure the classification accuracy (CA) on the gener-
alized records of the testing set. For classification models we
use the well-known C4.5 classifier [34]. To better visualize
the cost and benefit of our approach we provide additional
measures: Baseline Accuracy (BA) is the classification ac-
curacy measured on the raw data without anonymization.
BA−CA represents the cost in terms of classification qual-
ity for achieving a given ε-differential privacy requirement.
On the other extreme, we measure Lower bound Accuracy
(LA), which is the accuracy on the raw data with all at-
tributes (except for the class attribute) removed. CA−LA
represents the benefit of our method over the naive non-
disclosure approach.

Figure 3.a depicts the classification accuracy CA for the
utility function Max, where the privacy budget ε = 0.1, 0.25,
0.5, 1, and the number of specializations 4 ≤ h ≤ 16. The
BA and LA are 85.3% and 75.5%, respectively, as shown in
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Figure 3: Classification accuracy of DiffGen

the figure by the dotted lines. We use 2/3 of the records to
build the classifier and measure the accuracy on the remain-
ing 1/3 of the records. For each experiment we executed 10
runs and averaged the results over the runs. For ε = 1 and
h = 10, BA−CA is around 3% and CA−LA is 6.74%. For
ε = 0.5, BA−CA spans from 3.57% to 4.8%, and CA−LA
spans from 5% to 6.23%. However, as ε decreases to 0.1,
CA quickly decreases to about 78% (highest point), the cost
increases to about 7%, and the benefit decreases to about
3%. These results suggest that for an acceptable privacy
budget such as 1, the cost for achieving ε-differential pri-
vacy is small, while the benefit of our method over the naive
method is large. Figure 3.b depicts the classification accu-
racy CA for the utility function InfoGain. The performance
of the InfoGain is not as good as Max because the difference
between the scores of a good and a bad attribute is much
smaller for InfoGain as compared to Max. Therefore, expo-
nential mechanism does not work effectively in the case of
InfoGain as it does for Max.

We observe two general trends from the experiments. First,
the privacy budget has a direct impact on the classification
accuracy. A higher budget results in better accuracy since it
ensures better attribute partitioning and lowers the magni-
tude of noise that is added to the count of each equivalence
group. Second, the classification accuracy initially increases
with the increase of the number of specializations. How-
ever, after a certain threshold the accuracy decreases with
the increase of the number of specializations. This is an
interesting observation. The number of equivalence groups
increases quite rapidly with an increase in the number of
specializations, resulting in a smaller count per group. Up
to a certain threshold it has a positive impact due to more
precise values; however, the influence of the Laplace noise
gets stronger as the number of specializations grows. Note
that if the noise is as big as the count, then the data is
useless. This confirms that listing all the possible combina-
tion of values (i.e., contingency table) and then adding noise
to their counts is not a good approach for high-dimensional
data since the noise will be as big as the count.

Since this is a non-interactive approach, the data owner
can try different values of h to find the threshold and then
release the anonymized data. Determining a good value of
h adaptively, given the data set and the privacy budget, is
an interesting future work.

Comparison. Figure 4 shows the classification accuracy
CA of DiffGen, DiffP-C4.5, and TDS. For DiffGen, we use
utility function Max and fix the number of specializations
h = 15. DiffP-C4.5 also uses Adult data set and all the
results of theDiffP-C4.5 are taken from their paper [11]. For
TDS we fixed the anonymity threshold k = 5 and conducted
the experiment ourselves. Following the same setting of [11],
we executed 10 runs of 10-fold cross-validation to measure
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the CA. 10-fold cross-validation yields higher CA since more
training records are available.

The accuracy of DiffGen is clearly better than DiffP-C4.5
for privacy budget ε ≤ 2. Note that the privacy budget
should be typically smaller than 1 [11, 7, 8]. Even for a
higher budget, the accuracy of DiffGen is comparable to
DiffP-C4.5. The major advantage of our algorithm is that
we publish data and the data miner has much better flexi-
bility to perform the required data analysis. On the other
hand, in DiffP-C4.5 the classifier is built through interac-
tive queries; therefore, the database has to be permanently
shut down to satisfy the privacy requirement after generat-
ing only one classifier.

The experimental result also shows that DiffGen performs
better than TDS. For a higher anonymity threshold k, the
accuracy of TDS will be lower. One advantage of DiffGen
is that, unlike TDS, it does not need to ensure that every
equivalence group contains k records; therefore, DiffGen is
able to provide more detailed information than TDS. This
result demonstrates for the first time that, if designed prop-
erly, a differentially private algorithm can provide better
utility than a partition-based approach.

Scalability. All the previous experiments can finish the
anonymization process within 30 seconds. We further study
the scalability of our algorithm over large data sets. We gen-
erate different data sets of different sizes by randomly adding
records to the Adult data set. For each original record r, we
create α − 1 variations of the record by replacing some of
the attribute values randomly from the same domain. Here
α is the blowup scale and thus the total number of records
is α× 45, 222 after adding random records. Figure 5 depicts
the runtime from 200,000 to 1 million records for h = 15
and ε = 1.

6. CONCLUSIONS
This paper presents a new anonymization algorithm that

achieves differential privacy and supports effective classifica-
tion analysis. The proposed solution connects the classical
generalization technique with output perturbation to effec-
tively anonymize raw data. Experimental results suggest
that the proposed solution provides better utility than the
interactive approach and the k-anonymous data, and that it
is more effective than publishing a contingency table.
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