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ABSTRACT
Combining correlated information from multiple contexts
can significantly improve predictive accuracy in recommender
problems. Such information from multiple contexts is often
available in the form of several incomplete matrices span-
ning a set of entities like users, items, features, and so on.
Existing methods simultaneously factorize these matrices by
sharing a single set of factors for entities across all contexts.
We show that such a strategy may introduce significant bias
in estimates and propose a new model that ameliorates this
issue by positing local, context-specific factors for entities.
To avoid over-fitting in contexts with sparse data, the local
factors are connected through a shared global model. This
sharing of parameters allows information to flow across con-
texts through multivariate regressions among local factors,
instead of enforcing exactly the same factors for an entity,
everywhere. Model fitting is done in an EM framework, we
show that the E-step can be fitted through a fast multi-
resolution Kalman filter algorithm that ensures scalability.
Experiments on benchmark and real-world Yahoo! datasets
clearly illustrate the usefulness of our approach. Our model
significantly improves predictive accuracy, especially in cold-
start scenarios.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering; G.3 [Mathematics of Computing]: Probability
and Statistics

General Terms
Algorithms, Design, Experimentation

1. INTRODUCTION
Amalgamating information from multiple related contexts

to improve predictive accuracy is important in several large
scale recommender problems, especially those where severe
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data sparsity is typical. For instance, user affinity to dif-
ferent kinds of news categories inferred from prior visits to
Yahoo! News may help in improving article recommendation
when users visit the Yahoo! Front Page and vice-versa. User
activity on different Yahoo! verticals like Sports, MyYahoo!,
Finance, and others can potentially be combined to improve
content recommendation on every single page that the user
visits on Yahoo! . A content module on the Yahoo! Front
Page maybe syndicated and displayed in other contexts like
MyYahoo! Yahoo! Mail — interchanging the role of users
and items, one can potentially leverage enormous amounts of
feedback received on Front Page module articles to improve
performance of the same module on MyYahoo! which is a
significantly lower volume site with a different user popula-
tion. Similar issues arise in other recommender applications
like movie recommendation, advertising, and so on.

Abstractly, multi-context data in recommender problems
consists of the following: (1) user-item interaction matrices
in different contexts (e.g. Yahoo! Front Page, Yahoo! News)
measuring some response (clicks, ratings, etc), where the re-
sponse is typically available only for a small subset of all
possible user-item pairs; (2) user-feature and item-feature
matrices in different contexts, some features are declared
(e.g. user age, movie genre, zip code, etc) while others are
inferred (user affinity to news type). For the inferred fea-
tures, associating different weights to capture uncertainty is
important. It is routine to see matrices with different de-
grees of data sparsity and different user (item) populations
across contexts. Users (items) that have no or little data
(cold-start) in the prediction context of interest may have
data in other contexts that could be leveraged to improve
performance.

Loosely speaking, predicting user-item response in a con-
text of interest could improve if information available from
other contexts are used as predictors (especially in cold-start
and small sample size scenarios.) While true, constructing
such predictors is a challenging task in recommender prob-
lems due to several reasons. Interaction and feature matri-
ces are often noisy and highly incomplete. Entries are often
not missing at random since occurrence distribution of items
served in a recommender systems tends to be heavy-tailed;
hence, imputation is difficult. The amount of overlap in user
(item) population for different contexts may vary, and the
amount of data in different contexts can have large varia-
tion. If predictors are not constructed and used appropri-
ately, there is a danger of high volume contexts having ex-
cessive influence and even deteriorating predictions in sparse
contexts.
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For the sake of concreteness, consider a scenario with data
from three contexts: (1) user-item response matrix from a
module on Yahoo! Front Page, (2) user-item response ma-
trix on Yahoo! News, and (3) user-category inferred feature
matrix based on articles read by users in the past. There is
no overlap in the items for these contexts; the only overlap
that exists is for users. A natural approach to deal with
missing entries and noise in such scenarios is to extract suf-
ficient statistics that capture user-item interactions in each
context. Matrix factorization is a popular approach whereby
the incomplete matrix Yk in context k is approximated as
f(ZkB′

k), where Zk and Bk are dense user and item factors
respectively, and f is some function (linear or non-linear) de-
pending on the response type. Given user factors in all three
contexts, one can build regression models to predict factors
in each context by using the estimated factors in the other
two contexts as predictors (or features) for the common user
population. For example, Z1 may be predicted by using Z2

and Z3 as predictors. If such a regression relationship (or
correlation) is strong among contexts, we can obtain a better
estimate of Z1 by exploiting the information in Z2 and Z3,
especially when the response matrix in context 1 is sparse,
because the data in contexts 2 and 3 is implicitly used to
smooth the estimate of Z1. This is the main idea of our lo-
calized matrix factorization (LMF) approach — we produce
local factors in each context that are smoothed by borrowing
strength from factor estimates in other contexts. However,
regressions to share factor information across contexts can-
not be learnt using point estimates of factors since these are
subject to different degrees of uncertainty; this may lead to
biased regression estimates due to measurement error in the
predictors [12]. To see this, consider a simple linear regres-
sion y = a+bx+error, where x = z+error. When predictor
x is subject to error, performing a linear regression of y on
a noisy version of the true predictor z leads to downward
bias in the estimate of b. It is easy to visualize this geomet-
rically, a relatively tight straight line of y on z incurs more
scatter when z is measured with error through x and the
slope shrinks towards zero. Incorporating the measurement
error in z through a model reduces this bias in estimating b.
Figure 1 shows an illustration. Further, the set of users in
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Figure 1: Attenuation bias in estimating regression

line with measurement error in predictor. Data sim-

ulated using y = 2.0 + 1.0x + error, left panel is regres-

sion fit from exact predictor, right panel has error in

the predictor.

different contexts have different degrees of overlaps. A naive
regression approach using estimated factors may not be suit-

able for combining information, especially when the number
of contexts is large. Hence we borrow information across
contexts through a multi-level hierarchical model where the
observed response matrix in a context is generated from a
distribution centered around a context-specific local factor-
ization, and the latent context-specific local factors are as-
sumed to be drawn from a common prior distribution. Such
sharing of local factors induces factor correlations that are
estimated from the data, which facilitates information shar-
ing that depends on the strength of inter-context correla-
tions. Other than reducing bias due to measurement error
in the factors, joint modeling also helps in utilizing overlaps
across multiple contexts in a principled way to improve the
estimates of all local factors. For instance, assume there are
users in context 1 that overlap with users in context 2 but
not with the users in context 3. Then estimation of Z1 can
naturally benefit from data in context 2 because of the over-
lap. Furthermore, if users in context 2 overlap with some
users in context 3, the estimation of Z1 can also benefit from
data in context 3, even if there is no direct overlap between
contexts 1 and 3. Such transitivity becomes important in
the presence of many contexts that are correlated; naive re-
gressions on estimated factors do not have the flexibility to
fully utilize such information.

Existing approaches in the literature do not posit local
factors; instead, they are too constrained and assume same
factors per user (item) across contexts. We shall refer to
this as collective matrix factorization (CMF) as in [40]. In
our example, this approach assumes a common global user
factor matrix Z for all contexts, which gets estimated by
optimizing the joint multi-context likelihood (with suitably
regularized factors). Since the likelihood of contexts with
large amounts of data would have more influence on global
factor estimates, such an approach may introduce significant
bias for sparse and skewed contexts. To mitigate this issue,
a weighted geometric mean of the likelihoods that balance
the information entering in estimating the common global
factors is used. Such an approach requires careful tweaking
of the geometric weights that gets difficult and formidable
with a large number of contexts. Also, separate tweakings
of weights may have to be done for each prediction task.
This makes it an unattractive approach compared to our
LMF mode that provides a relaxation of factors locally and
eliminates the need to tweak influence of information from
different contexts.

Although LMF provides additional flexibility through fac-
tor localization, scalable model-fitting is an important con-
sideration. As typical with most multi-level hierarchical
models, fitting can be done through an EM algorithm. In our
case, we show the E-step can be computed through a fast
multi-resolution Kalman filter [23, 13, 22] algorithm, this
makes the fitting procedure scalable to large applications.

Our contributions are as follows. We propose a novel
method LMF to enhance predictions in multi-context rec-
ommender problems through a localized latent factor model.
Our method posits local user (item) factors in each con-
text, and then borrows strength across contexts by positing
a second stage prior which assumes local factors are cen-
tered around a global factor with some variance. In fact, our
second stage prior can be interpreted as performing a mul-
tivariate regression for all local factors through a reduced-
rank model; one could also interpret this as estimating lo-
cal factor covariances parametrized through outer products
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of low-rank matrices. Our LMF approach removes several
deficiencies of existing approaches that learn from different
contexts by using the same factors for each entity. We illus-
trate the deficiencies of CMF and the flexibility of LMF on
benchmark data sets and a new Yahoo! multi-context data
set from Yahoo! Front Page and Yahoo! News.

2. MODEL
We provide modeling details for the localized matrix fac-

torization model (LMF). Although the model is general and
can combine information for both items and users that are
common across contexts, we make some simplifying assump-
tions for ease of exposition and to avoid notational clutter.
We assume only user-ids have possible overlaps across con-
texts, item populations are distinct with no overlaps. Hence,
we only describe the joint learning of user factors, joint learn-
ing of both user and/or item factors follow a straightforward
generalization. We begin with notations.

Notations: We consider K different contexts, each of which
may represent a recommendation application or a collection
of features. Let I denote the set of all users from the union
of all contexts. We use yijk to denote the rating that user
i gives to item j in context k, or user i’s feature value on
feature j in context k. Since features play the same role as
ratings in the model, to simplify notations and terms, we
call a feature an item, and call a rating and a feature value
the response. As stated before, we assume each context has
a different set of items for simplicity. Let Ki denote the set
of contexts that include data of user i. Let J ik denote the
set of items in context k with response from user i. Note
that some users do not have any observed response in some
contexts. Our goal is to simultaneously impute the missing
response values for all (or some selected) contexts of interest.

Localized matrix factorization model (LMF): We as-
sume that the response yijk of a (user i, item j) pair in
context k is generated according to a local latent profile vec-
tor zik. (Recall that we use the term “response” to refer to
both user’s ratings and features.) Then, the distribution of
response conditional on latent factors is denoted by

p(yijk|f(zik)),

where f(.) is a known function, and p is a generic symbol
used to denote probability distributions. For computational
ease, we assume f(.) is a linear function of latent factor zik.
We consider two response distributions — normal distribu-
tion for continuous response and Bernoulli distribution for
binary response. Hence we have the following two response
distributions conditional on latent factors.

yijk | zik ∼ N(β′
jkzik + αjk, σ2

y,kwijk), or

yijk | zik ∼ Bernoulli((1 + exp{−(β′
jkzik + αjk)})−1)

Note that:

• βjk and αjk are the regression weight vector and the bias
term for item j in context k, respectively.

• wijk is a known weight attached to response yijk, in many
scenarios wijk = 1 for each response. One can also set
wijk based on the known uncertainty associated with each
response.

• σ2
y,k is the variance of the response in context k, which

will be estimated from data.

To transfer knowledge cross different contexts, we assume
the local profiles of user i are generated according to a global

latent profile vector ui, which captures a user’s deeper taste
across multiple contexts. The conditional distribution cap-
turing this is denoted by

p(zik|g(ui)),

where g(.) is a known function. Again, for computational
ease, we assume g(.) is a linear function of ui and the con-
ditional distribution of local factors zik is normal. Further-
more, we assume standard normal distribution for the global
latent user profile ui. The complete specification of the gen-
erative model for latent user profiles is given as

zik |ui ∼ N(Akui, σ2
z,kI)

ui ∼ N(0, I).

Note that:

• Ak is a linear transformation matrix that transform the
global profile to the local profile in context k. Ak will be
learnt from data.

• σ2
z,k is the variance that determines the strength of corre-

lation between local and global factors for context k. σ2
z,k

will also be estimated from data.

For ease of exposition, we use the following notations:

• y = {yijk}∀i∈I ,k∈Ki,j∈J ik
denotes all observed response.

• z = {zik}∀i∈I ,k∈Ki
denotes all local profile vectors.

• u = {ui} denotes all global profile vectors.

• yk and zk denote response and factors for context k.

• Bk denotes the matrix created by stacking the βjks to-
gether for items in application k.

• Let Θ = (α, β,A, σ2), where α = {αjk}, β = {βjk},
A = {Ak}, and σ2 = {σ2

·,k} denote all the model param-
eters that needs to be estimated from data.

Our goal is to obtain E[yijk |y], for (i, j, k) triples such that
k /∈ Ki or j /∈ J ik.

Discussion: Our multi-level hierarchical model LMF pro-
vides a number of advantages over existing methods. To
simplify discussion, assume two contexts, i.e., K = 2. Exist-
ing methods assume zi1 = zi2 = zi for each i. We note that
this is a special case of our LMF that arises by assuming
A1 = A2 = I and σ2

z,k = 0. To see this, consider a Gaus-
sian response, then negative log-likelihood of y is (ignoring
regularization terms)

|y1 − B1Z|2/σ2
y,1 + |y2 − B2Z|2/σ2

y,2 + const (1)

The common user factor matrix Z is obtained by minimizing
the loss function in Equation 1 (after adding L2 regularizers
for B1, B2, Z). This is referred to as collective matrix factor-
ization in the literature [40], we shall call this CMF. How-
ever in CMF, the weighting attached to loss functions in dif-
ferent contexts are assumed known and in general obtained
through cross-validation, in our case the weights σ2

y,ks are
obtained through an EM algorithm. This is attractive and
necessary for large K where it gets unwieldy to determine
a large number of such parameters through cross-validation.
One of the datasets on Epinions we analyze in section 4.4
has 10 contexts, automatic estimation of weights attached to
likelihood of different contexts is essential in such scenarios.
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However, estimating such weighting parameters automat-
ically when common factors are shared across contexts may
cause problems. For instance, if the first context is a sparse
response matrix that needs to be predicted and the second
context is a dense matrix represents user feature vectors, the
sparse response matrix will force the common user factors
to be influenced more by features and may result in inferior
performance. By assuming Z1 6= Z2 in LMF but rather cor-
related, we avoid this problem inherent in CMF. In fact,
it is easy to see that a-priori, the covariance matrix Σ12 of
(zi1, zi2) is given by

Σ12 =

„

A1A
′
1 + σ2

z,1I A1A
′
2

A2A
′
1 A2A

′
2 + σ2

z,2I

«

Thus, LMF provides more flexibility by assuming local fac-
tors per context but avoids over-fitting by connecting the
parameters through a joint multivariate normal distribution
with covariance estimated through a reduced rank struc-
ture. For Gaussian response, the posterior distribution is
also Gaussian and hence the local factors across contexts
are smoothed through cross-context global covariance. If a
user is new in context 1 but have been seen in context 2, one
could predict the local factor z1 through the conditional pos-
terior of z1|z2. This is how LMF transfers information from
one context to the other without getting overly influenced
by contexts merely due to large sample size. The simpler
approach of performing factorization separately in each con-
text and then using the estimated factors as features does
not account for the uncertainty in estimated factors. By ob-
taining a joint posterior, our LMF provides a principled way
of learning across contexts.

To provide further intuition on how LMF learns across
contexts, consider the Gaussian model and our two-context
example. Then, the predicted rating for a new user-item
pair (i, j) in context k is given as β′

jkẑik, where ẑik is the
estimated posterior mean. For two contexts, the poste-
rior mean estimate is obtained from the joint posterior as
Ezi2

[E(zi1|zi2)], i.e., we average out the conditional expec-
tation of zi1|zi2 w.r.t. the marginal distribution of zi2. This
is referred to as Rao-Blackwellization in the literature [7]
and is known to reduce variance in estimators. Hence our
LMF can also be thought of as a Rao-Blackwellization pro-
cedure to obtain low-variance estimates by leveraging data
across contexts.

3. FITTING ALGORITHM
We take an empirical bayes approach to model fitting by

treating Θ = (α,β,A, σ2) as model parameters, and u and
z as hidden variables. Our goal is to first obtain the maxi-
mum likelihood estimate of Θ; i.e.,

Θ̂ = arg max
Θ

Pr[y |Θ] = arg max
Θ

Z

Pr[y,u, z |Θ] du dz,

and then obtain the posterior distribution of the hidden vari-
ables. Because all the distributions are normal, the marginal
distribution is available in closed form, but quite compli-
cated. In the following, we provide the details for the Gaus-
sian model. For the Logistic model, we use variational ap-
proximation [25]. This approximation converts the logistic
into a weighted Gaussian by obtaining a quadratic approxi-
mation to the logistic loss.

EM algorithm: Iteratively, we can solve the problem us-

ing the EM algorithm [19]. Let qk and r denote the lengths
of vectors zik and ui respectively. Let n denote the total
number of users. The complete data (including the hidden
variables) log likelihood is L(Θ,u, z;y), given in Table 1.

Let Θ̂t denote the current estimated value of Θ at the be-
ginning of the tth iteration. In the tth iteration, the EM
algorithm update Θ to get a new estimate

Θ̂t+1 = arg max
Θ

E(u,z | y,Θ̂t)
[L(Θ,u, z;y)], (2)

where Θ̂t is constant; Θ is the variable to optimize; u and
z are the random variables to take expectation over; and
the expectation is taken over the posterior distribution of
(u,v |y, Θ̂t), which is Gaussian; and E(u,z |y,Θ̂t)

[L(Θ,u, z;y)]
is given in Table 1. Note that, in the rest of this section,
we consider the computation in a single EM iteration, thus
dropping subscript t in the following notations: Let ûi =
E[ui |y, Θ̂t], ẑik = E[zik |y, Θ̂t], V̂ [ui] = Var[ui |y, Θ̂t],

V̂ [zik] = Var[zi |y, Θ̂t] and V̂ [zik, ui] = Cov[zik, ui |y, Θ̂t].
Let Ak,ℓ denote the ℓth row of Ak.

3.1 E-step
In the E-step, we compute ûi, ẑik, V̂ [ui], V̂ [zik] and

V̂ [zik, ui] using the multi-resolution Kalman filter algorithm.
It is safe to skip this section without loss of continuity but it
is crucial to understand the implementation of fitting algo-
rithm. The Kalman filter algorithm provides an essentially
linear time algorithm (for small number of latent factors) to
obtain state estimates that are connected linearly in a hier-
archical fashion (see [23, 13] for more discussion). As such, it
is important to scale our fitting to large datasets. At a high-
level, the algorithm consists of two steps: (1) Bottom-up
filtering where information is transmitted from observed
data to local factors zik, and from local factors zik to the
global factors ui. (2) Top-down smoothing which trans-
mits information from global factors to the local factors and
facilitates cross-context learning. Detailed derivation of for-
mulas for a general hierarchical linear state-space model is
provided in [23]; we provide the details in the context of
our model. For ease of exposition, if a1, ..., an are n col-
umn vectors, each has length m, then [a1, ..., an] denotes a
m× n matrix that binds them together. We use (HC Eq n)
to denote Equation n in [23], and the following notation.

d
′
ik = [(yijk − αjk) : ∀j ∈ J ik]

C′
ik = [βjk : ∀j ∈ J ik]

Dik = diag([σ2
y,kwijk : ∀j ∈ J ik])

Σik = Var[zik] = σ2
uAkA′

k + σ2
z,kI (independent of i)

Eik = CikΣikC′
ik + Dik

Fik = Σ−1
ik + C′

ikD−1
ik Cik

Hik = σ2
uA′

kΣ−1
ik

Rik = σ2
uI − σ4

uA′
kΣ−1

ik Ak

Note that with this notation, we have

dik | zik ∼ N(Cikzik, Dik)

Marginally, dik ∼ N(0, Eik) (they are not iid)

E−1
ik = D−1

ik − D−1
ik CikF−1

ik C′
ikD−1

ik

ui = Hikzik + ξik, ξik ∼ N(0, Rik)

Filtering: By (HC Eq 1.4) and (HC Eq 1.5), we obtain
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Complete data log-likelihood: L(Θ, u, z;y) = Pr[u, z,y |Θ] = some constant
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Note that Ak,ℓ denotes the ℓth rows of Ak; â and V̂ [a] denote the posterior mean and variance of variable a.

Table 1: Log likelihood formulas

ẑik|ik = E[zik |dik] = γikΣikC′
ikE−1

ik dik

= γik(ΣikC′
ikD−1

ik dik − ΣikC′
ikD−1

ik CikF−1
ik C′

ikD−1
ik dik),

Γik|ik = Var[zik |dik] = Σik − γikΣikC′
ikE−1

ik CikΣik

= Σik − γik(ΣikC′
ikD−1

ik CikΣik

− ΣikC′
ikD−1

ik CikF−1
ik C′

ikD−1
ik CikΣik),

where γik = 1 if k ∈ Ki; otherwise, γik = 0. Here, ẑik|ik

and Γik|ik are the posterior mean and covariances of zik for
user i using data only in context k. Letting di = {dik}∀k,
by (HC Eq 1.8) and (HC Eq 1.9), we obtain

ûi = E[ui | di] = V̂ [ui]
P

k Γ−1
i|ikHikẑik|ik

V̂ [ui] = Var[ui |di] =
“

I/σ2
u +

P

k
(Γ−1

i|ik − I/σ2
u)

”−1

Γi|ik = V̂ [ui|zik] = HikΓik|ikH ′
ik + Rik

Here, the global factors are estimated by combining informa-
tion across all contexts through local factors, the weighting
depends crucially on Γi|ik, posterior covariance of global fac-
tor when one uses information only from context k. Note
the summation

P

k
in the above formulas. We consider two

options: (1)
P

k∈Ki
; (2)

P

k∈ all applications (as Huang and

Cressie suggest).

Smoothing: Finally, by (HC Eq 1.13) and (HC Eq 1.14),
we obtain

ẑik = E[zik |di]

= ẑik|ik + Γik|ikH ′
ikΓ−1

i|ik(ûi − Hikẑik|ik)

V̂ [zik] = Var[zik |di]

= Γik|ik + Γik|ikH ′
ikΓ−1

i|ik(V̂ [ui] − Γi|ik)Γ−1
i|ikHikΓik|ik

V̂ [zik, ui] = Cov[zik, ui |di] = Γik|ikH ′
ikΓ−1

i|ikV̂ [ui]

Notice how information collected by the global factors from
all contexts are now being transmitted to each individual lo-
cal factors to facilitate cross-context learning. Such learning
depends crucially on the matrices Hik that are functions of
the global correlation model parameters Aks.

3.2 M-step
In the M-step, we compute Θ̂t+1. In fact, we solve two

instances of the following optimization problem:

Let loss(η; o, s, V, v, w, c, I)

=
P

i∈I

(oi−η′si)
2+η′Viη−2η′vi+ci

wi

=η′
“

P

i

Vi+sis′

i

wi

”

η − 2
“

P

i

sioi+vi

wi

”

η +
P

i

o2

i +ci

wi

η̂ =arg min
η

loss(η; o, s, V, v, w, c, I)

=
“

P

i

Vi+sis′

i

wi

”−1 “

P

i

sioi+vi

wi

”

,

Estimating Ak and σ2
z,k: For each context k and each row

ℓ of Ak, solve the regression problem by letting η′ = Ak,ℓ,

si = ûi, oi = ẑik,ℓ, Vi = V̂ [ui], vi = V̂ [zik,ℓ, ui], wi = 1,

ci = V̂ [zik,ℓ] and I = {i : k ∈ Ki}. Let lossk,ℓ denote the
corresponding loss. Then, for each k,

σ̂z,k =
P

ℓ lossk,ℓ

qk·|{i : k∈Ki}|
.

Estimating αjk, βjk and σ2
y,k: For each context k and

each item j, solve the regression problem by letting η′ =
[αjk, βjk], s′

i = [1, ẑ′
ik], oi = yijk, Vi = I0(V̂ [zik]), vi = 0,

wi = wijk, ci = 0 and I = {i : k ∈ Ki and j ∈ J ik}. Note
that I0(X) is a function that adds a row and a column of
all zeros to matrix X; the added row and column are the
first row and first column of I0(X). Let lossj,k denote the
corresponding loss. Then, for each k,

σ̂y,k =
P

j lossj,k
P

j |{i : k∈Ki and j∈J ik}|
.

4. EXPERIMENTS
We begin with an example that shows how LMF can be

used to perform linear/logistic regression when features have
missing values for a large fraction of records. Although not
directly related to recommender problems, it is interesting
to note that this is a special case of LMF. It also provides
an interesting benchmark dataset for future research in this
area.

4.1 UCI Ad data
To illustrate the use of LMF for correcting the effects of

missing feature values in regression, we use the Ad data
available from the UCI repository. This dataset represents
a set of possible advertisements on Internet pages. The fea-
tures encode the geometry of the image (if available) as well
as phrases occuring in the URL, the image’s URL and alt

613



text, the anchor text, and words occuring near the anchor
text. The task is to predict whether an image is an adver-
tisement (”ad”) or not (”nonad”). Previous approach to this
problem using C4.5 achieved more than 97% accuracy [29],
so this is a relatively simple classification problem. There
are 3279 instances, of which 458 are ads. We build a lo-
gistic regression by using only 3 continuous attributes —
height, width and aspect ratio. There are about 28% miss-
ing attribute values, so a correction for missing attribute
values may lead to good results. In addition to 3 attributes,
we also include 3 second order interactions among the vari-
ables. The vanilla logistic regression is run by encoding
missing values for an attribute as a separate binary indica-
tor (missing or not), we fit LMF by assuming the response
matrix has one item and each record is a user. In other
words, yi1 ∼ logistic(β

′

zi) and features xij ∼ N(Bzi, σ
2
x),

j = 1, · · · , 6. Since this is a regression problem, it makes
sense to assume a common factor for both feature and re-
sponse.Thus, zi ∼ MV N(0, σ2

zI). We fit this model with 6
factors, note that factorization on the feature matrix is pos-
sible with missing values. To compare the performance of
LMF with vanilla logistic regression, we report area under
the ROC curve (AUC) based on leave-one-out model fitting.
This involves fitting LMF 3279 times, which is fast due to
our Kalman filtering based model fitting procedure. The
AUC for vanilla logistic regression is 82% but LMF obtains
an AUC of 99%. This is remarkable since we are able to
achieve such high accuracy by using only 3 features through
corrections on missing attribute values.

Next, we illustrate the difference between CMF and LMF
in the presence of additional feature information in recom-
mender problems. In particular, we show that using the
same user factors both for the response and feature matrices
can lead to biased estimates, relaxing the factors to be local
and using feature information through multivariate regres-
sion in the latent space leads to better performance. In fact,
the flexibility provided by locality prevents the user factors
from being overwhelmed by information in other contexts
when response information is sparse.

4.2 Movielens Data
We experiment with the benchmark Movielens dataset,

Netflix was not considered since it did not have user fea-
tures. Our goal here is to compare the behavior of CMF
and LMF on response (movie rating) prediction in the pres-
ence of different amounts of feature information. In this
experiment, we study the impact on predictive performance
for different models in the presence of weak and noisy fea-
tures. To facilitate such a comparison, we consider the top
100 out of approximately 5k movies. The pruned dataset
has 6040 users and approximately 182k ratings. We do a
75:25 split sorted by event timestamp into training and test
sets respectively. The test set has approximately 900 new
users (not seen in the training set), roughly 25% of test set
ratings belong to these new users. We construct a feature
matrix for users using their gender, age-groups, occupation
and first two digits of zipcode. Each level of these categor-
ical variables are considered as separate binary predictors,
this gives us a total of 129 distinct binary features.

We fit both CMF and LMF by varying the amount of
feature information available during the training period. In
fact, we randomly sample features of f% users where f varies
from 0 (no feature) to 1 (consider all user features). Since
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Figure 2: Performance of CMF and LMF with vary-
ing amount of feature information. A t-statistics > 3
is highly significant.

the model performance depends on initial parameter values,
we perform 100 replications of our model fitting procedure
for each value of f . Note that both CMF and LMF are fitted
on a simulated dataset for a given f in each replication. In
Figure 2(a), we show the mean value of test RMSE across
different replications for each value of f ; we also plotted
the two-sample t-test statistic between CMF and LMF for
each f using 100 replications(see Figure 2(b)). Both figures
clearly show the performance of CMF deteriorates with in-
crease in number of sampled users with feature information.
However, after a certain threshold (approximately .75) there
is an interesting point of inflexion where the deterioration
gets smaller. Further inspection revealed that this happens
due to the presence of a large number of cold-start users,
obtaining feature information for these users through a fac-
torization slightly improves performance. However, perfor-
mance of LMF does not deteriorate with addition of features,
in fact it improves slightly. For this application, the feature
information is noisy and does not help much in improving
predictive performance, but CMF gets impacted by noise
while LMF is able to learn the weak correlation of features
with response and avoids getting affected.

4.3 Yahoo! Warm Start Data
We now illustrate the bias problem of CMF on a pro-

prietary Yahoo! data. We study the impact on predictive
performance when one of the contexts has sparse response
while others have relatively large amounts of data. This
dataset also illustrates the use of our model on binary re-
sponse through variational approximation.

The task is to predict click-rates (CTR) on two content
modules: (1) The today module on Yahoo! Front Page [2]
and (2) the top stories module that display links to articles
on the top-right when a user is reading some news article on
Yahoo! News. The goal of the Top stories module is to pro-
long the stay of a user on Yahoo! News and increase engage-
ment. For instance, a user may click on a news link about
“Egyptian revolution” somewhere outside Yahoo! News and
get routed to the main article page of the topic on Yahoo!
News. The Top stories module on this article page may show
an article about Obama which the user may click and end up
reading another news story. We collected click event stream
for a subset of heavy users on Today module and Top stories
for a period of 6 weeks. Overall there were 10k users in the
dataset we used for this experiment, there was 55% overlap

614



in the News and Front Page user population. In addition,
we constructed profile features for users in News by using
all the News pages they read during the time period under
study. Each news article was classified into a topic category
and a user topic profile is defined as affinity to different cat-
egories. Our data had 460 news categories, the procedure
for estimating user-category affinity is described below.

Profile construction: Let nij denote the number of arti-
cles read by user i in category j (i = 1, · · · , N ,j = 1, · · · , M).
Let p+j denote the overall probability of reading articles in
category j in the heavy user population in News, we es-
timate this as p̂+j = n+j/n++, the “pluses” in the suffix
denote marginalization over the corresponding dimension.
Then user affinity λij is estimated from the following model

nij ∼ Poisson(ni+p̂+jλij) (3)

λij ∼ Gamma(mean = 1, var = 1/a)

The parameter a can be interpreted as additional psuedo
clicks added to the cells. For this Gamma-Poisson model
one could obtain a method-of-moments estimator of a given
as

â = (ēij/(X 2 − 1))

where eij = ni+p̂+j is the expected number of reads under
baseline model of no affinity and

X 2 = mean(nij − eij)
2/eij .

Higher values of X 2 indicates more deviation from base-
line (and stronger affinity signal), when X 2 < 1 we assume
â = inf and hence there is no affinity in the data. For our
data, we obtained â = 0.22 which indicates high variation
in data. Given â, the posterior of λij ∼ Gamma(mean =

λ̂ij = (nij + â)/(eij + â), var = λ̂ij/(eij + â)). To work
with a Guassian predictor in our framework we consider
ℓλij = log(λij) with approximate mean and variance given

by given by ˆℓλij = log(λij) and wij = 1/(eij + â) re-
spectively(from second order Taylor series expansion). To
reduce noise we only retain observations with z-statistic
(| ˆℓλij |/√wij) exceeding the threshold of 1.

Prediction task: For both today module and top stories
clickstream our prediction task is based on splitting the data
at the item level. In fact we sort the events for each item
by timestamp and perform a training-test split. Although
this is not exactly the scenario in our actual system where
the set of articles in the content pool change over time, it
is a realistic setting to study the predictive power of differ-
ent methods that play an important role in determining the
quality of our recommendations. We consider the task of
predicting test set response for both today module and top
stories by utilizing user feature information available from
pages read by users on News. We performed a 25:75 and
and 75:25 training-test split on today module and top sto-
ries clickstream respectively. For today module this gave us
a training set with 171K events, the test set had 514k events.
For top stories the training data consisted of 2.16M events
while the test set contained 719K events. The feature ma-
trix in News contained 1.47M feature values for roughly 9.6K
users. Our goal here is to study the impact CMF has on pre-
dictions in today module in the presence of large amounts
of data on top stories compared to today module. Such
asymmetric data distributions are common in context spe-
cific learning for recommender problems, large amounts of

Method News Today

CMF
(Feature) .757 .614

CMF
(No Feature) .708 .662

LMF
(Feature) .753 .661

LMF
(No Feature) .709 .664

SMF
(No Feature) .703 .666

Table 2: AUC on different model variations for Ya-
hoo! warm start data.

additional data from different contexts should not bias pre-
dictions for response in a smaller context.

Table 2 shows the area under the ROC curves (AUC) for
three different methods:

• CMF (Feature, No Feature) shares same user factors for
all three matrices (for the Feature case) or two matrices
(for the No Feature case).

• SMF (separate matrix factorization) fits two models, one
for today module and the other for News, separately.

• LMF (Feature, No Feauture) fits localized factors for all
three or two matrices jointly.

Since there is little cold-start in this data, matrix factoriza-
tion done separately has comparable performance to LMF
on the today module. On the top stories module, adding
feature matrix improves performance significantly for both
CMF and LMF, this is because the category affinity of users
are strongly correlated to click-rates on top stories arti-
cles. However, using CMF deteriorates performance on to-
day module significantly due to the bias induced on user
factors. Since the amount of data available on top stories is
significantly larger, the user factors are swamped by it and
this leads to inferior performance on today module. On the
other hand, LMF does not suffer from this problem due to
the flexibility of having local user factors in each applica-
tion, it is able to exploit information from all three sources
to obtain good performance on both today module and top
stories. Further scrutiny on both lift due to category fea-
tures and deterioration in today module performance was
done by splitting the user population in test according to the
total clicks in the training period. Both improvement and
deterioration was uniform across all user populations. This
clearly shows the ability of LMF to exploit large amounts of
additional data from other contexts to improve performance
everywhere, even in contexts that are sparse where CMF
suffers.

4.4 Epinions Data
We now use the Epinions dataset [34] to show the supe-

rior performance of LMF over CMF and the baseline method
SMF (separate matrix factorization). This dataset consists
of ratings that users of epinions.com gave to reviews in sev-
eral different verticals on the site. We take the top 10 verti-
cals (each of which contains more than 0.5M ratings) as 10
contexts. Here we consider a user recommendation problem
— we want to recommend review authors for users to fol-
low. Thus each (vertical, author) pair is an item. We only
consider items that received at least 100 ratings and users
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Figure 3: Accuracy of different models on the Epin-
ions dataset with different levels of sparseness

who rated at least 30 items. We compare different meth-
ods using R2 as the accuracy measure; a higher R2 number
means better performance. Five-fold cross validation is used
to compute the R2 of each method. In particular, we use
one fold to select the best number of user factors for each
method and report the R2 numbers of the other four folds.
The selected numbers of factors are 3 for LMF, 3 for CMF,
and 1 for SMF. Instead of averaging the R2 numbers for each
method, we show a boxplot. To understand how different
methods perform in cold start, when we compute the R2

numbers, we only consider the test-set (user,context) pairs,
each of which receives ≤ N ratings in the training set. We
show R2 of different methods for N = 0, 5, 20 in Figure 3.
As expected, all the methods perform better in warm start
(N = 20) than in cold start (N = 0). In all three scenarios
(N = 0, 5, 20) LMF is significantly better than CMF which
is significantly better than SMF. Notice that no boxes over-
lap in any boxplot. The difference between LMF and CMF
shrinks as N goes up. Interestingly the R2of LMF for N = 0
is still comparable to that of CMF for N = 20. This shows
the strong performance of LMF over CMF.

5. RELATED WORK
In this section, we discuss related work and describe how

LMF is different from prior work.

Matrix factorization: One major motivation for LMF is
to perform collaborative filtering in multiple contexts. In re-
cent years, matrix factorization (MF) has gained great pop-
ularity since it usually outperforms more traditional meth-
ods [21, 42] It has achieved the state-of-the-art performance
particularly on large scale recommendation tasks [28]. How-
ever, most MF approaches focus on learning latent factors
from a single rating matrix. A few recent work extends MF
to jointly modeling multiple matrices [1, 41, 40]. Specifically,
in [1, 41], user and item feature matrices are used to improve
the factorization of the rating matrix. The major difference
between [1, 41] and LMF is that the former assumes the
features are all known withouth any uncertainty, while LMF
allows the feature values to be uncertain or missing. Col-
lective matrix factorization (CMF) [40] jointly factorizes the
rating matrix and other feature matrices by assuming user
factors are the same in both the rating and feature matri-
ces. The main advantage of LMF over CMF is that LMF
defines a different user factor vectors for each matrix and
then connects these factors through a regression prior.

Multi-task learning: Multi-context recommendation is

closely related to the field of multi-task learning [37], which
learns multiple related tasks simultaneously to take advan-
tage of knowledge transfer cross the tasks. Multi-task learn-
ing can be broadly summarized into four classes. First class
of multi-task learning approaches aims to uncover the com-
mon (latent) features that can benefit each individual task
[9, 38, 33, 14, 3, 4, 5, 31, 40]. Those methods are most re-
lated to our approaches; however they have again follow the
spirit of collective matrix factorization where some shared
factors are assumed to be the same across different tasks.
The second class of of multi-task learning approaches are
based on parameter-sharing [39, 30, 20, 11, 44, 45], which
assumes that the source tasks and the target tasks share
some parameters or priors of their models. Of those meth-
ods, hierarchial Bayesian approaches, such as [44], are close
to our LMF approach in the sense of multi-level structure,
however they do not learn low-dimensional local and global
latent factors, which are critical for multi-context recom-
mendation. The third and fourth classes of multi-task learn-
ing based on instance re-weighting [6, 26, 15, 32, 8, 24, 17,
43, 16] and relational knowledge transfer [36, 18, 35], indi-
vidually. Those two classes of approaches are not as relevant
as first two class of approaches to our approach.

Multi-view learning: Another related field is multiple
view learning introduced by [10] and [27] in the semi-supervised
setting. They propose the co-training approach to train a
classifier from two representations with both labeled and un-
labeled instances. The idea of the co-training approach is
to train one learner on each view of the labeled instances
and then to iteratively let each learner label the unlabeled
instances it predicts with the highest confidence. Given in-
dependence between the learners, newly labeled examples
from one learner may give the other learner new information
to improve its model. In our approach, we assume depen-
dence among different contexts, that is crucial for learning
across contexts.

6. CONCLUSION
Learning from multiple contexts is an effective strategy

to ameliorate cold-start problems in recommender systems.
In this paper, we presented a new methodology called LMF
that provides a flexible modeling framework to estimate cross-
context correlations and use them to enhance local factor es-
timates across all contexts. We clearly illustrated the pitfalls
of using the current practice of sharing exactly the same fac-
tors across contexts for each entity. On a large benchmark
dataset we clearly showed the superior performance of LMF,
especially for cold-start scenarios.

Our LMF assumes local factors are linear functions of
a global factor a-priori, this is equivalent to assuming a
low-rank covariance matrix for local factors. Relaxing this
assumption to incorporate richer class of covariance func-
tions is an interesting research direction. Moving away from
the low rank structure would require new computational fit-
ting algorithms that are scalable since the multi-resolution
Kalman filter fails to work in the absence of linearity.
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