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Abstract— The shortest path k-nearest neighbor classifier
(SkNN), that utilizes nonlinear manifold learning, is proposed for
analysis of hyperspectral data. In contrast to classifiers that deal
with the high dimensional feature space directly, this approach
uses the pairwise distance matrix over a nonlinear manifold to
classify novel observations. Because manifold learning preserves
the local pairwise distances and updates distances of a sample to
samples beyond the user-defined neighborhood along the shortest
path on the manifold, similar samples are moved into closer
proximity. High classification accuracies are achieved by using
the simple k-nearest neighbor (kNN) classifier. SkNN was applied
to hyperspectral data collected by the Hyperion sensor on the EO-
1 satellite over the Okavango Delta of Botswana. Classification
accuracies and generalization capability are compared to those
achieved by the best basis binary hierarchical classifier, the
hierarchical support vector machine classifier, and the k-nearest
neighbor classifier on both the original data and a subset of its
principal components.

I. INTRODUCTION

Achieving both high classification accuracy and good gener-
alization when sample sizes are small relative to the dimension
of the input space continues to be a challenging problem,
especially when the number of classes is also large. Previous
studies of supervised methods show that a complex classifier
tends to overtrain in such situations, while a weak classifier is
often inadequate [1].

As classifiers become more complex, the generalization er-
ror eventually increases because of over-training [2]. Ensemble
methods can alleviate this problem by reducing the model
variance. In particular, the random forest classifier, which
combines bagging and random subspace methods, achieves
both high classification accuracies and good generalization,
but is computationally costly due to the large (50-100) number
of classifiers required in the ensemble [3]. Complex classifiers
also do not typically perform well when characteristics of the
training/test data acquired over the study site evolve in a new
area. This is referred as the knowledge transfer problem [3].
It is an important problem in land cover classification because
it is often difficult to obtain labeled samples from a new area.
Seasonal changes, unknown land cover types or a different
mixture of classes can cause changes in spectral signatures.
It is important to develop a simple classifier that can adapt
to such changes, as well as maintain good classification
accuracies for the training/testing data.

Most supervised classification algorithms, such as maximum
likelihood, Fisher linear discriminant, or decision trees rely
heavily on feature selection or feature extraction to mitigate
the effect of high-dimensionality. Support vector machines
(SVM), which maximize margin instead of classification accu-
racies in the objective function, can handle high dimensional
data while not overfitting the training data [4]. These classifiers
build their models according to the behavior of labeled samples
in the reduced or original feature space.

In contrast, nonlinear manifold learning algorithms focus on
samples. These algorithms assume that the original high di-
mensional data actually lie on a low dimensional manifold de-
fined by local geometric differences between samples. Isomet-
ric feature mapping (Isomap) [5] and local linear embedding
(LLE) [6] are representatives of this approach. Although they
were developed to embrace the idea of nonlinear dimension
reduction and representation of high dimensional observations,
they also provide an alternative direction for classification of
hyperspectral data.

Manifold learning was recently applied to hyperspectral
data by Bachmann et al. [7]. Results indicated that Isomap
is more efficient than the maximum noise fraction (MNF)
transform [8] in data compression, but is computationally
intensive. Implementation via a tiling method reduced com-
putational time when manifold learning was applied to large-
scale images. In this paper, we apply Isomap to hyperspectral
data to evaluate the effects of nonlinear dimension reduction
on classification. A discussion of Isomap, that includes the
shortest path algorithm and multidimensional scaling (MDS),
is contained in Section II-A. The proposed shortest path k-
nearest neighbor classifier (SkNN), which is closely related
to the shortest path updating scheme, is also described. Re-
sults of dimension reduction for a test site in Botswana and
comparisons of classification accuracies achieved by SkNN
and other competitive classifiers are presented in Section III.
Conclusions and a discussion of future research directions are
contained in Section IV.

II. METHODOLOGY

A. Isometric Feature Mapping (Isomap)

Isomap nonlinear manifold learning is based on shortest
path network updating and multidimensional scaling (MDS).



The original input X ∈ �d×n, representing n samples and
d dimensions, is first used to calculate the pairwise distances
within a user-defined neighborhood. A shortest path algorithm
is applied to update those pairwise distances beyond the
neighborhood. The updated distance matrix is used by MDS
to evaluate the true dimension of the manifold.

1) Shortest Path Network: Isomap uses a user-defined
neighborhood and the shortest path algorithm to discover the
manifold. It first defines Ki, the set of neighborhood nodes of
node i, to create a distance matrix D′. If j ∈ Ki, d′ij = dij .
If j /∈ Ki, d′ij = ∞. Isomap then accumulates the distance
beyond the set Ki along the shortest path to obtain Dstp.

The shortest path network is constructed from a directed
graph G = (N,E), where N represents the nodes, and E
represents the edges of the graph. The value of dij represents
the length (cost) of Eij , while xij is the amount of flow from
Ni to Nj . The shortest path algorithm finds the paths from
a root node N1 to all other nodes to minimize the sum of
the individual path lengths. This problem is formulated as a
network flow programming problem:

min z =
n∑

i=1

n∑
j=1

dijxij

s.t.

n∑
j=2

x1j = n − 1 (1)

n∑
j=1

xij −
n∑

j=1

xji = −1, i = 2, ..., n (2)

xij ≥ 0, i �= j = 1, ..., n (3)

In this optimization problem, Eq. (1) is the supply of the
root node, (2) represents conservation of flow, and (3) is the
non-negativity constraint. Because this is a pure network flow
problem, it can be modeled as a linear programming problem
and solved either via the simplex method or an interior point
method, yielding an optimal integer solution, x∗ [9]. Isomap
solves the problem efficiently via a simple, computationally
efficient algorithm developed by Dijkstra [10] 1.

2) Multidimensional Scaling: Multidimensional scaling
(MDS) is a linear dimension reduction technique that places a
set of samples in a meaningful dimensional space that explains
the similarity between samples. Given a distance matrix D,
and assuming that a Y ∈ �l×n, l � d exists such that
δ2
ij = ||yi − yj ||2 ≈ d2

ij and Yi are orthogonal, it can be
shown that Y, calculated by classical MDS, is equivalent to a
vector of the first l principal components of X if the Euclidean
pairwise distance matrix is used [11]. Here, MDS is used to
evaluate the true dimension of Dstp.

Experiments in the [5] demonstrated that Dstp is able to
define the nonlinear manifold, and that it can be represented
globally by MDS in a lower dimensional space. For example,
if the pairwise distances between a set of 100 cities of
the US are represented by MDS, a three dimensional space
is required to preserve the pairwise relationships between

1For more details, please see http://www.cs.utexas.edu/users/EWD/

these cities globally. If the distance is updated locally and
nonlinearly so that only distances between a city and cities of
a defined neighborhood are considered, these cities lie on a
two dimensional map.

B. Shortest Path k-Nearest Neighbor Classifier

If high dimensional data can be preserved in a low dimen-
sional manifold, the updated distance matrix, which preserves
the local information on a graph while increasing the dis-
tances between non-neighbor samples, should be useful for
classification. A k-nearest neighbor classifier is applied to the
new distance features to investigate the advantage of manifold
learning.

In this study, Dstp is shown to be potentially useful for
land cover classification. Figs. 1 and Fig. 2 show that Isomap
moved similar samples closer to each other, while dissimilar
points are more separated. If a set of samples can be

Fig. 1. Two dimensional PCA plot, 8 Classes (exclude water), Hyperion
Data of Botswana

presented in a low dimensional space, the simple k-nearest
neighbor classifier is often the most competitive algorithm.
Given a novel observation, kNN classifies it according to the
class label of its k nearest neighbors, in the distance sense.
The kNN has several advantages. It is easy to implement,
its classification accuracy is very good on low dimensional
problems, and it provides nonlinear decision boundaries. It is
also straightforward to extend for multi-class problems that
are the norm in cover classification problems.

The shortest path k-nearest neighbor classifier (SkNN) is
proposed to utilize the information learned from the low
dimensional nonlinear manifold. Instead of using Euclidean
distance, SkNN approximates each spectral signature as a
probability distribution and uses

dij =
1
2

∑
∀x

(
fi(x) log

fi(x)
fj(x)

+ fj(x) log
fj(x)
fi(x)

)
(4)

the average Kullback-Leibler divergence [12] between the
spectral signatures of sample i and sample j. This KL-distance



Fig. 2. Two dimensional Isomap plot, 8 Classes (exclude water), Hyperion
Data of Botswana

matrix D is converted to Dstp as described in Section II-A.1.
The k-nearest neighbor algorithm then classifies the unlabeled
samples projected in the space of the new distance matrix Dstp

III. RESULTS

The benefits of applying nonlinear manifold learning to
hyperspectral data were evaluated in terms of reduction and
classification of the Hyperion data.

The NASA EO-1 satellite acquired a sequence of data over
the Okavango Delta, Botswana in 2001-2003. The Hyperion
sensor on EO-1 acquires data at 30m2 pixel resolution over a
7.7 km strip in 242 bands covering the 400-2500 nm portion of
the spectrum in 10 nm windows. Preprocessing of the data was
performed by the UT Center for Space Research to mitigate the
effects of bad detectors, inter-detector miscalibration, and in-
termittent anomalies. Uncalibrated and noisy bands that cover
water absorption features were removed, and the remaining
145 bands were included as candidate features: [10-55, 82-
97, 102-119, 134-164, 187-220]. The data analyzed in this
study, acquired May 31, 2001, consist of observations from
9 identified classes that include: water (158 total samples),
primary floodplain (228), riparian (237), firescar (178), island
interior (183), woodlands (199), savanna (162), short mopane
(124) and exposed soils (111). These classes represent the land
cover types in seasonal swamps, occasional swamps, and drier
woodlands located in the distal portion of the Delta.

A. Dimension Reduction

Although studies have shown that principal component
analysis (PCA) can reasonably discover the true structure
of the 150+ bands hyperspectral data on a linear subspace,
the original high dimensional data may lie on a nonlinear
manifold. To evaluate the true dimension of the manifold,

SStress: ss =
[∑ ∑

i<j(d
2
ij−δ2

ij)
2∑ ∑

i<j d4
ij

] 1
2

[13] is used by MDS

to evaluate the similarity of Dstp and ∆l, where l is the

TABLE I

BOTSWANA DATA: SSTRESS WITH l DIMENSIONS

l 1 2 3 4
SStress 0.167 0.046 0.042 0.046

dimension of Y. The value of SStress is always between 0
and 1. Any value less than 0.1 is considered to indicate good
representation in the given l dimensions. Values in Table I,
indicate that SStress became less than 0.1 when l ≥ 2. Thus,
Isomap found the embedding manifold of this Hyperion data
could be represented in a very low dimensional space with
little loss of information.

B. Classification

Ten randomly sampled partitions of the training data were
sub-sampled such that 75% of the original data were used for
training and 25% for testing. In order to investigate the impact
of the quantity of training data on classifier performance, these
training data were then sub-sampled to obtain ten samples
comprised of 50%, 30%, and 15% of the original training
data. All classifiers were evaluated using the ten test samples
composed of 25% of the original training data. Because the
training and test data are spatially collocated, a spatially
disjoint test set was also acquired and used to evaluate the
generalization of these classifiers to another area. Note that this
extended data may have substantially different characteristics
as it is collected from a geographically separate location. The
goal here is to investigate the capability of the various methods
for extending results obtained from one area to other areas
where data are not so spatially correlated with the original
training samples. Hereafter, these data are referred to as the
test and spatially disjoint (SD) test data, respectively.

Experiments were performed using the best basis binary
hierarchical classifier (BB-BHC) with weighted prior [14],
hierarchical SVM (HSVM) [15], k-nearest neighbor (kNN)
on the original space, and the proposed shortest path k-nearest
neighbor (SkNN). Here, k = 5 was chosen by a cross-validation
scheme. The cross-validation showed that SD test accuracies
increased slightly, but test accuracies decreased when k was
increased. Results were also obtained by kNN using 3 ∼ 5
PC bands, but the resulting accuracies were consistently lower
than what the kNN classifier applied to the original space had
achieved.

The average test data classification accuracies and their
corresponding standard deviations for the 10 experiments
conducted with each classifier are listed in Table II. The
overall trend shows that classification accuracies of the test

TABLE II

BOTSWANA TEST DATA: ACCURACY (STD. DEV.)

Training % BB-BHC HSVM kNN SkNN
15% 92.6(2.16) 96.5(0.95) 83.2(3.17) 94.2(1.19)
30% 95.5(1.68) 97.3(1.14) 91.3(1.74) 96.4(1.33)
50% 97.6(0.74) 97.9(0.51) 95.0(1.27) 97.1(1.24)
75% 98.1(0.60) 97.7(0.51) 96.1(1.24) 97.5(0.81)



TABLE III

BOTSWANA SPATIALLY DISJOINT (SD) TEST DATA: ACCURACY

(STD. DEV.)

Training % BB-BHC HSVM kNN SkNN
15% 84.1(2.70) 80.7(3.1) 77.3(2.22) 84.7(2.14)
30% 84.3(1.13) 84.1(1.57) 79.8(1.24) 86.1(2.60)
50% 84.5(1.24) 84.1(0.83) 81.3(0.86) 86.8(2.06)
75% 85.8(0.60) 84.6(0.61) 82.2(0.60) 87.5(1.06)

set increase as the size of training sample increases for all
four classifiers, while HSVM achieves both the highest overall
average accuracies, with the smallest standard deviations at
small sample sizes. Besides kNN, the other three classifiers
perform well at 15% sampling rate, which indicates that they
can all handle small samples of test data.

Classification accuracies on the spatially disjoint (SD) test
set are contained in Table III. HSVM performed consistently
well on the test set, but not on the SD test set. Because
the spectral characteristics of the train/test data are different
from that those of the SD test set, this supported the notion
that while SVM is a strong classifier, it might be robust to
changes in data characteristics. Although BB-BHC was shown
to be competitive to SkNN, as indicated by the relatively low
variance of accuracies obtained on the SD test set, the average
accuracy of the individual classes ranges from 70-100% for
the BB-BHC, and 80-100% for the SkNN, while ranges of
the standard deviations of the respective accuracies are 1.8-
5.6 and 2.8-10, respectively. SkNN achieves higher accuracies
accuracies but larger standard deviations because it is more
sensitive to samples. Since Dstp evolves as new samples are
included in the distance matrix, SkNN not only performed
well on the test set but also produced the highest accuracies
on the SD test set at all four sampling rates. Results from kNN
are included to demonstrate that the method does not produce
high accuracies using the original Euclidean pairwise distance
matrix, but not the shortest path algorithm. For a Botswana
experiment that has 790 samples, 9 classes and 145 feature
spaces, using a 3GHz Pentium 4 CPU machine, kNN finished
training and testing in 31 seconds, while HSVM required
40 seconds. BB-BHC required 65 seconds and the proposed
SkNN required 149 seconds of CPU time.

IV. CONCLUSION

In this paper, we explored the concept of nonlinear manifold
learning, which assumes that the original high dimensional
data can be represented on a low dimensional manifold defined
by pairwise distances between local samples. Evaluations of
dimension reduction and representation of high dimensional
observation by Isomap were conducted. This approach was
also extended to the classification of hyperspectral data. The
shortest path k-nearest neighbor classifier (SkNN), that utilizes
nonlinear manifold learning, was proposed and compared to
other competitive classifiers such as BB-BHC and HSVM.

Two conclusions were drawn from our experiments. First,
high classification accuracies were achieved by using two
simple algorithms collectively. Isomap found the nonlinear

manifold of the 150+ bands hyperspectral data and represented
it on a low dimensional space. Because of the availability
of the low dimensional manifold, SkNN was competitive, as
indicated by results shown in Fig. 2 and the two accuracy
tables. Second, because of the shortest path updating scheme,
SkNN evolved with changes of spectral characteristics from
the train/test set to a new area, thus providing the highest
overall average accuracies on the spatially disjoint test set.

Applying nonlinear manifold learning to hyperspectral data
provided promising initial results. Future studies will involve
investigation of alternative distance measures. Research is
also being conducted to further increase the speed of SkNN
when the number of samples is large. Additionally, ensemble
methods will be investigated to reduce the variance, and
approaches for incorporating neighborhood information will
be explored.
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