
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. X, XXX XXXX 1

Frequency Sensitive Competitive Learning for
Balanced Clustering on High-dimensional

Hyperspheres
Arindam Banerjee and Joydeep Ghosh, Senior Member, IEEE,

Abstract— Competitive learning mechanisms for clustering in
general suffer from poor performance for very high dimensional
( ��������� ) data because of “curse of dimensionality” effects. In
applications such as document clustering, it is customary to
normalize the high dimensional input vectors to unit length, and
it is sometimes also desirable to obtain balanced clusters, i.e.,
clusters of comparable sizes. The spherical kmeans (spkmeans)
algorithm, which normalizes the cluster centers as well as
the inputs, has been successfully used to cluster normalized
text documents in 2000+ dimensional space. Unfortunately, like
regular kmeans and its soft EM based version, spkmeans tends
to generate extremely imbalanced clusters in high dimensional
spaces when the desired number of clusters is large (tens
or more). In this paper, we first show that the spkmeans
algorithm can be derived from a certain maximum likelihood
formulation using a mixture of von Mises-Fisher distributions
as the generative model and in fact it can be considered as a
batch mode version of (normalized) competitive learning. The
proposed generative model is then adapted in a principled way
to yield three frequency sensitive competitive learning variants
that are applicable to static data and produced high quality and
well balanced clusters for high-dimensional data. Like kmeans,
each iteration is linear in the number of data points and in
the number of clusters for all the three algorithms. We also
propose a frequency sensitive algorithm to cluster streaming1

data. Experimental results on clustering of high-dimensional text
data sets are provided to show the effectiveness and applicability
of the proposed techniques.

Index Terms— high-dimensional clustering, normalized data,
balanced clustering, frequency sensitive competitive learning
(FSCL), expectation maximization (EM), kmeans, streaming
data, text clustering, scalable clustering.

I. INTRODUCTION

Clustering or segmentation of data is a fundamental data
analysis step that has been widely studied across multiple
disciplines for over 40 years [1]. But several large datasets
that are being acquired recently from scientific domains as
well as the world wide web, have a variety of complex
characteristics that severely challenge traditional methods for
clustering, and also pose new requirements for evaluation,
scalability, visualization and actionability of results [2]. This
article is concerned with the clustering of objects represented
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1We use the term “streaming” rather than “on-line” since not only have the
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by very high (hundreds or more) dimensional feature vectors
of unit length into a fairly large (tens or more) number of
groups of comparable sizes. Such situations are relevant for
applications such as clustering of text documents, wherein it is
advantageous to normalize the feature vectors (i.e., scale them
to unit length) before applying a clustering algorithm.

One can broadly categorize clustering approaches into gen-
erative and discriminative ones. In a generative approach
[3], [4], [5], [6], the data is modeled as being generated
by an underlying parametric, probabilistic generation process.
Reasonable values for the parameters are obtained from the
input data, and the properties of the clusters are then inferred
from these parameters. Discriminative approaches [7], [8], [9],
on the other hand, make no assumptions whatsoever about
the data points were generated. Instead, they assume that the
data points belong to a metric space and the metric is known,
or, to a Hilbert space where the inner-product is known. In
other words, it is assumed that a well defined distance or
similarity measure exists between any pair of objects, and
the clustering process is essentially an attempt to partition
the objects such that objects within the same cluster tend to
have less dissimilarities (distances) as compared to objects in
different clusters. The performance of an approach (and of a
specific method within that approach) is quite data dependent;
there is no clustering method that works the best across all
types of data distributions. Generative models, however often
provide better insight into the nature of the clusters. From
an application point of view, a lot of domain knowledge can
be incorporated into the generative models so that clustering
of data brings out specific desirable patterns that one is
looking for. It is for this reason that the generative (parametric)
approach is referred to as the method of particular inference
in statistical learning theory [7].

For the specific scenario of clustering high-dimensional,�	�
normalized data, we first propose that a generative model

consisting of a mixture of von Mises-Fisher distributions, is a
suitable approach. The model is then modified in a principled
manner by techniques inspired by “conscience” mechanisms
developed in the competitive learning literature, to yield clus-
tering algorithms that produce high quality, balanced solutions
for both static and streaming data. In this section, we briefly
motivate the problem setting outlined above and also provide
a brief background on competitive learning.
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A. Motivation

In some applications, the data points to be clustered reside
in a high-dimensional feature space even after suitable pre-
processing steps, including feature selection, have been carried
out. For example, in the popular vector space representation
of text documents, the dimensionality of the feature space
is the size of the vocabulary [10]. Even after stemming is
carried out and both very rare as well as very common terms
have been discarded, the residual vocabulary often contains
thousands of terms. In market basket analysis of large retail
data, the number of significant products, each represented by
one feature, may run in the thousands [11]. Both text and
market basket data also have other properties in common: the
data matrix is typically very sparse and only contains non-
negative entries, and the underlying clusters are highly non-
Gaussian in nature.

In general, sparsity and other issues due to the “curse
of dimensionality” [12] make the clustering of highly non-
Gaussian, high-dimensional data a very difficult problem to
solve using density based approaches. Partitional methods
such as 
 -means and its variants also fail miserably since the
underlying assumption that the data can be well modeled by a
mixture of 
 Gaussians (value of 
 being pre-specified) with
identical covariance matrices, is violated. The way out is to
exploit domain knowledge about the properties of the data
and of the desired clusters. For example, if it is known that
the data actually resides in a manifold that is of much lower
dimensions than the embedding space, solving for a mixture
of principal surfaces can help [13], [14].

This paper is aimed at applications for which the domain
knowledge indicates that data is directional [15]. For such
scenarios, the curse of dimensionality is somewhat alleviated
by normalizing the data to unit

���
norm, since only the

direction of a data vector is relevant. For example, many works
on document clustering normalize the document vectors to
unit length after all other preprocessing and normalizations
such as TF-IDF have been carried out. The cosine of the
angle between two such normalized vectors then serves as
the default similarity measure between the two documents
that they represent. Normalization prevents larger documents
from dominating the clustering results, and can be viewed as
an application of domain-specific characteristics and require-
ments to alleviate the “curse of dimensionality” problems.
A noteworthy algorithm for clustering normalized document
vectors is spherical kmeans (spkmeans) [16], [17], in which
the cluster representatives are also constrained to be of unit
length, allocation of data points to their nearest representatives
is based on cosine similarity, and, after a full pass through
the data, the updated locations of the representatives are
based on minimizing the average cosine between the cluster
“center” and all the points assigned to that cluster. Note that,
like kmeans, spkmeans is also a batch-iterative procedure.
This algorithm has been successfully used to cluster text
documents in 2000+ dimensional space, providing superior
cluster definitions in the process [16], [17]. We shall show
in Section 2 that spkmeans is really a batch version of a
competitive learning algorithm.

Normalization of high-dimensional vectors before clustering
is also fruitful for some other applications. In fact, it is
meaningful for market basket data analysis if one is interested
in, say, grouping customers based on the similarities between
the percentages of their money spent on the various products.

Having shown the need for clustering high dimensional
data residing on hyperspheres by drawing examples from
document clustering and market basket analysis, we use the
same two domains to motivate the desirability of obtaining
balanced clusters, i.e., clusters of comparable sizes [18], [19].
In general, the natural clusters in the data may be of widely
varying sizes, this variation may not be known beforehand and
balanced solutions may not be important. However, several
real life applications demand comparably sized segmentations
of the data. For example, a direct marketing campaign often
starts with segmenting customers into groups of roughly equal
size or equal estimated revenue generation, (say, based on
market basket analysis, or purchasing behavior at a web site),
so that the same number of sales teams, marketing dollars
etc., can be allocated to each segment. In large retail chains,
one often desires product categories/groupings of comparable
importance, since subsequent decisions such as shelf/floor
space allocation and product placement are influenced by the
objective of allocating resources proportional to revenue or
gross margins associated with the product groups [11]. Simi-
larly, in clustering of a large corpus of documents to generate
topic hierarchies, balancing greatly facilitates navigation by
avoiding the generation of hierarchies that are highly skewed,
with uneven depth in different parts of the hierarchy “tree” or
having widely varying number of documents at the leaf nodes.

In addition to application requirements, balanced clustering
is sometimes also helpful because it tends to decrease sensitiv-
ity to initialization and to avoid outlier clusters (highly under-
utilized representatives) from forming, and thus has a benefi-
cial regularizing effect even in situations where balancing is
not a requirement. This will be evident from our experimental
results in section VI.

Unfortunately, kmeans type algorithms (including the EM
approach) as well as the basic on-line competitive learning
mechanisms for clustering are increasingly prone to yielding
imbalanced solutions as the input dimensionality increases.
This problem is exacerbated when a large (tens or more)
number of clusters are needed, and it is well known that both
hard and soft kmeans invariably result in some near-empty
clusters in such scenarios.

B. Competitive Learning

Competitive learning techniques employ winner-take-all
mechanisms to determine the most responsive cell to a given
input [20], [21], [22]. If this cell or exemplar then adjusts
its afferent weights to respond even more strongly to the
given input, the resultant system can be shown to perform
unsupervised clustering. For example, the non-normalized
competitive learning version of Rumelhart and Zipser [21],
essentially yields an on-line analogue of the popular k-means
clustering algorithm. There are also soft competitive learning
methods with multiple winners per input [23], that can be
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viewed as on-line analogues of soft batch-iterative cluster-
ing algorithms such as fuzzy c-means [24] as well as the
expectation-maximization (EM)-based approach to clustering
data modeled as a mixture of Gaussians [4].

To address the problem of obtaining clusters of widely
varying sizes, a “conscience” mechanism was proposed for
competitive learning in 1988 [25], that made frequently win-
ning representatives less likely to win in the future because
of their heavier conscience. This work was followed by
the notable frequency sensitive competitive learning(FSCL)
method [26]. FSCL was originally formulated to remedy
the problem of under-utilization of parts of a codebook in
Vector Quantization. Motivated by earlier work of Grossberg
[20], the conscience mechanism used in FSCL multiplicatively
scaled the distortion (distance of the exemplar or codebook
vector from the input) by the number of times that exemplar
was the winner in the past. Thus highly winning exemplars
were discouraged from attracting new inputs. However, this
mechanism was not derived from first principles or applied to
high-dimensional, normalized clustering.

C. Outline

In this paper, we first show that the spkmeans algorithm
can be derived from a certain maximum likelihood formu-
lation using a mixture of von Mises-Fisher distributions as
the generative model. This generative model is particularly
suitable for describing directional data. Then, in section III,
we propose a variant in which the dispersion of a mixture
component decreases if more data points are attributed to
it, thus introducing a conscience mechanism. This results in
three batch-mode frequency sensitive competitive algorithms
for normalized data. A fully on-line version of this algorithm
applicable to streaming data is then suggested in section V.
Experimental results on high-dimensional text clustering prob-
lems are presented in section VI.

A word about the notation: bold faced variables, e.g., ���� ,
etc., represent vectors, ����� denotes the

���
norm, and sets

are represented by calligraphic upper-case alphabets, e.g.,� �� ,etc.. Probability density functions are denoted by lower
case alphabets, e.g., ����� � .

II. CLUSTERING ON A HYPERSPHERE

The classical kmeans clustering algorithm gives the (local)
maximum likelihood estimates of the means of 
 Gaus-
sians [27] under certain assumptions [28], [29] by using
the Expectation Maximization (EM) algorithm [30]. The EM
algorithm is guaranteed to give a local optimum for these
maximum likelihood estimates. We use a similar approach for
deriving the spkmeans algorithm for clustering points on
the surface of a hypersphere. Recall that the von Mises-Fisher
(vMF) distribution is an analogue of the Gaussian distribution
on a hypersphere [15], [31], [32] in that it is the maximum
entropy distribution on the hypersphere when the first moment
is fixed [33] under the constraint that the points are on a unit
hypersphere. The density of a � -dimensional vMF distribution
is given by ������� �!#"$�&% '(&) �*"+��,.-0/ 1 "2��34�65� (1)

where � , with
� �

norm �7�8�9% '
, represents the mean

direction vector and " is the dispersion around the mean,
analogous to the mean and covariance for the multivariate
Gaussian distribution. The normalizing coefficient is(&) �*"+�	%��*:<;4� )�= �.> )�= �.?A@ �B"$� CD" )�= �7?�@  (2)

where
>.E �GFH� is the modified Bessel function of the first

kind and order I [34]. Assume that there are J data points� %LK�� @ .���.�����M+N on the surface of a unit hypersphere and
there are 
 vMF distributions �POQ R9% ' .���.�A#
S such that
each point has been generated following exactly one of these
distributions. We want to estimate the parameters of the 

vMF distributions so that the likelihood of the observed data
is maximized. Like the Euclidean kmeans case, we initially
assume " to be a constant for all the 
 distributions. Let �T%K�U @ .���.���U M N be the so-called hidden random variable overK ' .���.�S 
+N corresponding to the generation of the point �WV so
that U�V4%XR if ��V was generated following � O and 0 otherwise.
Assuming the data points have been drawn independently, the
log-likelihood of the observed data is given byY �[Z]\ � �^% M_ Va` @�bdc ����� V ���fehgh�% M_ Va` @ �B"H� 3V �fehgWi bdc � (	) �B"$������ (3)

where �fehg is the mean of the vMF distribution that generated� V . Since " is a constant, maximizing this log-likelihood with
respect to the � O  Rj% ' ��.���A 
 , is same as maximizingk % M_ Vd` @ � 3V �fehg (4)

under the constraint that ��l O �!% ' nm�R . Since the parametersl O as well as the distributions of the random variables U<V are
not known, we can use the EM algorithm to do maximum
likelihood estimation under incomplete information. If the
parameters are set to random values in a primal M-step, the
E-step of the algorithm involves assigning the data points to
the most likely vMF distribution to have generated it. More
precisely, we compute RAo so that2R o %qpDr sutvp -O bdc ������V���� O �&%wpDr sutvp -O ��3V � OHx (5)

Then, the M-step involves computing the l O #Ry% ' .�.���S 
 ,
using the current assignments of the data. The parameters
are computed by maximizing the expected log-likelihood,
the expectation being over the distribution of the U<V s. Note
that unlike many other applications of the M-step, the max-
imization in this case is a constrained maximization with
the constraints �7l4O+�z% ' nm�R and hence is done by using
the Lagrange multiplier method. Let {SO be the Lagrange
multiplier corresponding to the constraint � 3 O � O % '

.3 Then

2One can also formulate a soft assignment, but soft clustering is outside
the scope of this paper. See [32] for details

3There is a subtle difference between the constraints |h}W~�|���� and}A�~ }�~v�X� . Since this difference is not important in the present analysis,
we choose to ignore it for simplicity.
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the Lagrangian is given by� �*� @ .���.�A��6�0#{ @ .���.�A#{ � � � �% M_ Va` @ � 3V � O�� �_O ` @ { O �*� 3 O � O i ' �% �_O ` @ _� gB�P�+� � 3V � O � �_O ` @ { O �G� 3 O � O i ' ��
where

� O is a set such that if the current U�VW%XR , then �4V�� � O .
In other words,

� O the set of points assigned to the currentR -th cluster. Now, taking derivatives of the Lagrangian with
respect to � O and { O and setting it to zero, for R�% ' .���.�A#
 ,
we get the following equations:� O % ':P{ O _� g �P� � � V  (6)� 3 O � O % ' x (7)

Substituting Eqn. 6 into Eqn. 7, we get{$O�% ': � _� g �P� � � V � x (8)

Now, replacing {SO in Eqn. 6 with Eqn. 8, we get the final
M-step as � O % � � g �P� � � V� � � g[�P� � ��V � x (9)

Repeating the steps given in Eqns.5 and 9 results in a gradient
ascent scheme that, being an EM algorithm, is guaranteed
to give a local maxima of the likelihood function in Eqn. 3
and hence also Eqn. 4 after convergence. This scheme was
introduced as the spherical kmeans (spkmeans) algorithm
by Dhillon et. al. [16] since the data points lie on the
surface of the unit hypersphere. We have now provided a
derivation of the same from maximum likelihood principles.
In fact, we have obtained a batch mode version of normalized
competitive learning [21]. Note that while the performance of
this algorithm can be evaluated using Eqn. 3, the following
objective function obtained by adding constant additive and
multiplicative factors, is simpler and more interpretable:�k % 'J �_O ` @ _� g �P� � � 3V � OHx (10)�k

can be interpreted as the average cosine similarity (cosine of
the angle) between any vector � V and its cluster representative��ehg . It serves as an intrinsic measure of cluster quality and
will be called the spkmeans objective function.

III. FREQUENCY SENSITIVE ASSIGNMENTS

From empirical studies [16], [35], [32] in clustering,
spkmeans has been shown to be clearly superior to regular
kmeans for directional data [32]. However, like its Euclidean
space counterpart, it quite often gets stuck in poor local solu-
tions resulting in empty clusters or clusters having very few
points, for moderately large values of 
 . Both the formulations
do not have any explicit way to guard against such a scenario.
A similar problem had been reported in the signal processing

community for the problem of vector quantization where some
parts of the codebook were under-utilized as a result of poor
local solutions to the optimization problem for codebook gen-
eration [21]. The problem was empirically addressed by using
frequency sensitive competitive learning(FSCL) [26], [36].
FSCL is a conscience type competitive learning approach that
overcomes the problems associated with simple competitive
learning [26] and Kohonen’s self-organizing feature maps in
vector quantization applications. In the FSCL, the competitive
computing units are penalized in proportion to the frequency
of their winning, so that eventually all units participate in
the quantization of the data space. Convergence properties
of the FSCL algorithm to a local minima have been studied
by approximating the final phase of the FSCL by a diffusion
process described by a Fokker-Plank equation [37].

As mentioned previously, the kmeans algorithm can be
viewed as an EM algorithm on a mixture of identity variance
Gaussians assuming the cluster assignment hidden variables
are distributed such that they take one value in K ' ��.�.�A#
+N
(for hard assignments) [29]. A frequency sensitive learning
mechanism can be derived from this mixture of Gaussians
framework by making each of the Gaussians shrink in pro-
portion to the number of points that have been assigned to it.
More precisely, if JWO points have been assigned to the R -th
cluster, the covariance of its representative Gaussian is set to� O�% @M �2� where � is the identity matrix. Note that if JWO is
large for a particular R , then that Gaussian shrinks more in
the sense that the density gets more peaked around the mean.
The log-likelihood of a particular point � with respect to this
Gaussian is given byY �Gl4OH J4O$\ �4�% bdc '� �B:<;4� ) \ � O$\ ,7-Q/ ��i ': ����i�l4OP��3 � ?�@O ����i�l4OP���%Ti J O: �7��i�l O � � i � : bdc J O i � : bdc :<;�
where � is the dimensionality of the data. Since data points
are assigned to the most likely Gaussian to have generated it,
the point � will be assigned to the cluster R�o whereR o % pur�sPt]p -O Y �Gl4OH�J4O$\ �4�% pur�sPt�� cO � J O ����i�l O � � � � bdc J O$� x (11)

Thus, the higher J O is, the lower is the chances of a point
getting assigned to that cluster. This is exactly what any FSCL
tries to achieve. Interestingly, the empirically proposed FSCL
method [26] only considers JWO+����i�l4O+� � . Our formal treatment
of the idea results in an extra second term, namely � bdc J�O .

Using the same basic idea, we propose a change in the
formulation of spherical kmeans in order to prevent poor local
solutions. Rather than keeping " constant, we propose to make
it inversely proportional to the number of points assigned to
the corresponding distribution. Thus, if J O is the number of
points assigned to �uO , then we set "+O�� ' C J4O . Intuitively, this
is akin to using shrinking Gaussians in the Euclidean space
in the sense that as more points are assigned to a particular
cluster, the “width” of its representative Gaussian reduces. As
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a result, effective distance of points from this cluster increases,
or, in the spherical case, the similarity of points from this
cluster decreases. Thus, if a point � is such that � 3 � @ %¡� 3 � �
but J4O<¢�£yJ4O�¤ , then � has a higher likelihood of having been
generated from �uO<¢ than �uO�¤ in the frequency sensitive setting.
Hence, the likelihood of points going to clusters having less
number of points is higher and this implicitly discourages poor
local solutions having empty clusters or clusters having very
small number of points.

Formally, let "+O¥� ' C<J4OX¦ "$O¥%¨§�C J4O , where § is a
suitable proportionality constant. Then, the log-likelihood of
data-point �4V having been generated from � O is given bybd© s!���G��V�� � O  " O �% §J O � 3V � O i bd© s (	)�ª §J O4«¬ §J O ��3V � O i bd© s$� > )�= �7?�@ �*§�C J4OP����i� �: i ' � bd© s&J4O2
where ®��BR$� ¬ ¯ �*R+� means that pur�sPt]p - O ®��*R+�°%pDr sutvp - O ¯ �*R+� . For simplifying the expression further, we
choose §±%²J�� � CD:P
 . Then, noting that JWOq%´³]��JWCD
2� and� is a large number so that J�� � CD:P
0J4O�µ²� , using the fact that> M����S�	¶· ¸0Cu¹ :<;A� for fixed J and ��µ²J [34], we getbd© s > )�= �.?A@ �*§�C J O �º% ba© s > )�= �7?�@ ª JWCu
J4O � � �:v«¶ JWCD
J O � � �: i ': bd© s+�*:D; JWCD
J O � � �: �¬ JWCD
J O � � �: � ': bd© s	J4O x
Hence,ba© s»����� V ��� O #"$O��¬ JWCu
J4O � � �: � 3V � O i JWCD
J4O � � �: i ': ba© s&J O i¡� � : i ' � ba© s&J O% JWCu
J O � � �: 1 � 3V � O¼� ' 5�i �½i ': bd© s	J O¶ � :¡¾ �GJWCD
H���J O 1 � 3V � O � � 3 O � O 56i bd© s	J O ¿¬ �GJWCD
H���J4O �G��V � � O � 3 � O i bd© s	J O x
Hence, the most likely distribution to have generated the point� V is given byR o %�pDr sutvp -O À �GJWCD
H���J4O �G��V � � O � 3 � O i bd© s	J OAÁ (12)%�pDr sutvp -O 'J O À � 3V � O�� ' i J4O�GJWCD
H��� bd© s&J O�Á x (13)

Note, from Eqn. 13, that the spherical kmeans assignment
function (Eqn. 5) now gets a multiplicative and an additive
term, both of which penalize larger clusters. Further note
that this particular form of the likelihood function is due to
our choice of the proportionality constant and other values
of the constant will give slightly different forms for this
likelihood function. However, this particular choice helps us
use an asymptotic behavior of the modified Bessel function of

the first kind thereby making the formulation computationally
tractable.

In the next few sections, we shall present algorithms for
clustering data based on the frequency sensitive assignment
rules as derived above (Eqn. 13). We focus on two types
of problems – (a) in which the data points is static and the
algorithm can read the data as many times as required, and
(b) in which the data points is streaming so that algorithm can
read every data point exactly once. In section IV, we present
three algorithms for clustering static data – fs-spkmeans is
a direct extension of spkmeans using the frequency sensitive
assignments from Eqn. 13; pifs-spkmeans is a partially
incremental version of fs-spkmeans where the effective
number of points per cluster are updated incrementally after
processing every point and the mean of every cluster is
updated in batch once in every iteration (after processing
all the points); and fifs-spkmeans is a fully incremental
version of fs-spkmeans where both the effective number
of points per cluster and the cluster means are updated after
processing every point. Note that all these algorithms need
to know the number of points to be processed up-front and
hence are applicable to static data only. In section V, we
present sfs-spkmeans, an algorithm for frequency sensitive
clustering of streaming data.

IV. ALGORITHMS FOR STATIC DATA

Based on the analysis presented in section III and the
frequency sensitive assignments according to Eqn. 13, we first
present the algorithm fs-spkmeans (frequency sensitive
spkmeans) that is an extension of spkmeans and is appli-
cable to static data that can be read as many times as necessary.

Algorithm fs-spkmeans

1. Set iteration count Â�Ã²Ä . Choose 
 points (unit vectors)

as the cluster means ��ÅaÆ ÇO , set J�ÅÈÆ ÇO Ã M � , RÉ% ' ��.���A 
 .
2. Repeat until convergence

2a. Assign each data-point � to the cluster ��ÅÈÊ�ÇO<Ë whereR+o�%wpDr sutvp - O @M�ÌÎÍÐÏ�ÒÑ � 3 � O�� ' i M �Å M = � Ç ) bd© s	J�ÅaÊ�ÇOqÓ
2b. J�ÅÈÊ�Ô @ ÇO ÃÕ\ÎK���ÖD���»�WÅÈÊ�ÇO N0\
2c. � ÅÈÊ�Ô @ ÇO Ã×� � � �PØ ÌÙÍdÏ� �4� CH� � � �PØ ÌÙÍdÏ� �	�
2d. Â�Ã×�GÂ � ' �

Though the algorithm fs-spkmeans is motivated by
the FSCL, it does not have the incremental flavor of
FSCL. To study the effect of the incremental behavior of
fs-spkmeans, we present and empirically evaluate two
variants of this algorithm. The first, called pifs-spkmeans
(partially incremental fs-spkmeans), basically incorpo-
rates step 2b of fs-spkmeans into step 2a. In other words,
in each iteration Â , as soon as a point gets assigned to the R -th
cluster, the value of J ÅÈÊ�ÇO is updated. The algorithm is presented
below.

Algorithm pifs-spkmeans

1. Set iteration count Â�ÃÚÄ . Choose 
 points (unit vectors)

as the cluster means � ÅÈÆ ÇO , set J ÅÈÆ#ÇO Ã M � , RÉ% ' .�.���A 
 .
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2. Repeat until convergence
2a. For Û�% '

to J ,

(i) Assign the data-point �4V to the cluster ��ÅÈÊ�ÇO Ë whereRSo�%wpDr sutvp - O @M ÌÙÍdÏ� Ñ � 3 � O � ' i M �Å M = � Ç ) ba© s&J�ÅÈÊ�ÇO Ó
(ii) J�ÅaÊ�ÇO<Ë ÃÜJ�ÅaÊ�ÇO<Ë � '

; J�ÅaÊ�ÇO ÃÜJ�ÅaÊ�ÇO i @� Sm�R
2b. �!ÅaÊ�Ô @ ÇO Ã×� � ¸ �PØ ÌÎÍÐÏ� �+��C2� � ¸ �PØ ÌÎÍÐÏ� ���
2c. J�ÅÈÊ�Ô @ ÇO ÃÜJ�ÅaÊ�ÇO  R�% ' .���.�A#
SÝÂ�ÃÞ��Â � ' �

The second variant is called fifs-spkmeans (fully in-
cremental fs-spkmeans), and has the full flavor of com-
petitive learning. In this scheme, in a particular epoch, i.e.,
a run through all the data points, as soon as a point gets
assigned to the R -th cluster, both J�O and � O are updated. Thus,
in this scheme, we have shrinking as well as moving vMF
distributions trying to model the data. The basic algorithm is
presented below.

Algorithm fifs-spkmeans

1. Choose 
 points (unit vectors) as the cluster means � O ,
set J O Ã M � #R�% ' .�.���A 
 .

2. Repeat until convergence
2a. For Û�% '

to J
(i) Assign the data-point � V to the cluster �uO Ë whereRSo�% arg tvp -O @M � Ñ � 3 � O � ' i M �Å M = � Ç ) ba© s&J4O Ó
(ii) J O Ë�ÃÜJ O Ë � '

; J O ÃÜJ O i @� +m�R
(iii) � O Ã×�*� O � @M � �G�$V�iß� O ����C2�7� O � @M � �G�$V4i�� O �.�

Note that in both the incremental algorithms, after each
point is assigned to a cluster and its count incremented, a
constant

' CD
 is subtracted from each J O . This ensures that at
any point of time, the total number of points in all the clusters
add up to J .

V. ALGORITHM FOR STREAMING DATA

The algorithms presented in section IV necessarily need
to know the number of data points to be processed from
beforehand. They also need to make multiple read accesses
over all the data points. Note that neither of these conditions is
satisfied when the application demands clustering of streaming
data. Streaming data is often typical of non-stationary environ-
ments requiring continuous on-line adaptation [38]. The need
for clustering streaming, normalized data is encountered, for
example, for real-time incremental grouping of news stories
or message alerts that are received on-line. In classical pattern
recognition, streaming data are often encountered in the form
of non-linear time series [39]. It is not surprising that much
work on analyzing streaming data has been done in the neural
network, signal processing and applied physics communities,
starting from the early days of ADALINE [40], [41], [42],
[43]. More recently, some machine learning researchers have
also got interested in this problem [44], [45]. But to date, there
has been little work on clustering of such data [46], [47], and
there is a lack of benchmark data sets for the same.

An algorithm working on streaming data gets to read the
data only once. Thus none of the algorithms presented in

section IV can be applied to streaming data. In this section,
we present sfs-spkmeans (streaming fs-spkmeans, a
variant of fs-spkmeans that can be applied to streaming
data since it does not need to know the number of points to
be processed and reads every data-point exactly once. Note
that the online version may actually be more applicable in
certain real life scenarios, e.g., when data is being collected
incrementally over time, or, when the clustering has to be done
by making a single pass over the data kept in a database.

For constructing the online variant, we first note that a non-
normalized mean l ÅÈÊ�Ô @ Ç of ��Â � ' � data points can be written
as a recursion in terms of l ÅaÊ�Ç [48] as follows:l ÅÈÊ�Ô @ Ç %ql ÅÈÊ�Ç � 'Â � ' ��� Ê�Ô @ i�l ÅaÊ�Ç � x (14)

If the data is obtained from a stationary process, i.e., the
parameters of the underlying generative model does not change
with time, then l ÅÈÊ�Ç , as computed by the above recursion will
converge, and do not need updating after sufficiently large Â .
However, typical streaming data is non-stationary. There are
two popular approaches taken in such cases: (i) if the data
characteristics change abruptly, then such breakpoints can be
detected, and a model is fitted for each segment (regime)
between two successive breakpoints, assuming stationarity
within such segments. Piecewise autoregressive modeling is
an example of such an approach. (ii) If the data characteristics
vary slowly over time, the problem may be addressed by
discounting the past – an approximation recursion can be
used that keeps an exponentially decaying window over the
history of observations and maintains the effective count § Ê�Ô @
of the history rather than the exact ��Â � ' � . More precisely, the
approximate recursion for the mean [48] is given by:àl ÅÈÊ�Ô @ Ç % àl ÅÈÊ�Ç�� '§ Ê�Ô @���� Ê�Ô @ i àl ÅÈÊ�Ç �7
where § Ê�Ô @ %á� ' i ' C � ��§ Ê � '

and
�

is a large number [48],
[49], [50]. Note that this exponential decay factor of � ' i ' C � �
ensures that § Ê�Ô @

converges from below to
�

. Thus, after the
“cold start” period is over, the history maintained in the com-
putation has an effective length

�
. The choice of

�
depends

on the degree of non-stationarity, and a fundamental tradeoff
between resolution and memory depth is encountered [51].
We take a similar approach for approximating the normalized
mean. The normalized mean of ��Â � ' � data points can be
written as a normalized recursion as follows:� ÅaÊ�Ô @ Ç % � ÅÈÊ�Ç � @â Ídã ¢ � � Ê�Ô @ i¡� � Ê�Ô @ i � Ê �6� ÅÈÊ�Ç ��7� ÅÈÊ�Ç � @â ÍÐã ¢ � � Ê�Ô @ iy� � Ê�Ô @ i � Ê ��� ÅaÊ�Ç ���  (15)

where
� Ê %T� � ÊVa` @ � V � . Again, using

� Ê in this recursion re-
sults in similar issues as outlined above for the non-normalized
case. Using the same exponential decay approximation, we
haveà� Ê�Ô @ %T� ' i ' C � � à� Ê � �7� Ê�Ô @ �6%T� ' i ' C � � à� Ê � '  (16)

since �7� Ê�Ô @ �ä% '
, and

à� Æ %ÜÄ . It can be easily seen thatb �atÊGå�æ � Ê % �
. A direct calculation using the recursion above

shows that à� Ê�Ô @ i à� Ê %�� ' i ' C � � Ê x (17)
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Now, for a large
�

and Âç �
, from Eqn. 17 we haveà� Ê�Ô @ i à� Ê ¶ '

. Using this and the approximations of Eqn. 16,
following Eqn. 15, the approximate normalized recursion for� ÅaÊ�Ç is given byà� ÅÈÊ�Ô @ Ç % à� ÅÈÊ�Ç � @èâ ÍÐã ¢ ��� Ê�Ô @ i à� ÅÈÊ�Ç �� à� ÅÈÊ�Ç � @èâ ÍÐã ¢ ��� Ê�Ô @ i à� ÅÈÊ�Ç �.�  (18)

where
à� Ê�Ô @

is given by Eqn. 16.
To make the frequency sensitive version of spherical kmeans

applicable to streaming data, as before, we want to make "AO½�' C J4O . However, the number of points to be processed, J�O
is unknown and may be unbounded. Therefore, we use the
same exponential decay recursion for J�O so that

àJ ÅaÊ�Ô @ ÇO %� ' i ' C � � àJ�ÅÈÊ�ÇO � '
and

àJ�ÅÈÆ#ÇO %éÄ . Note that the recursion and
the base case for

àJ�ÅÈÊ�ÇO and
à� Ê are exactly the same so that, for

notation we can use only one of them. We choose to use
àJ ÅÈÊ�ÇO .

Then, if � Ê�Ô @
is assigned to cluster R , from Eqn. 18, we haveà� ÅÈÊ�Ô @ ÇO % à��ÅaÊ�ÇO � @èMPÌÙÍdã ¢ Ï� ��� Ê�Ô @ i à�!ÅÈÊ�ÇO �� à� ÅaÊ�ÇO � @èMPÌÙÍdã ¢ Ï� ��� Ê�Ô @ i à� ÅÈÊ�ÇO �.�  (19)

Now, in the limit, all the clusters will have a perfect balancing
with effectively

�
points per cluster and hence

�
plays the role

of JWCu
 in the static case. Thus, following the static case, the
proportionality constant in

à"4ÅÈÊ�ÇO � ' C àJ�ÅaÊ�ÇO is set to
� � � Cu: . Since� � � CD:DJ O µ²� , following the previous argument and replacingJWCD
 with

�
, the most likely distribution to have generated a

particular point �4V is given byR o % arg tvp -O 'àJ ÅÈÊ�ÇOëê � 3V à�!ÅÈÊ�ÇO � ' i àJ ÅÈÊ�ÇO� � ba© s àJ�ÅÈÊ�ÇOéì x (20)

Using the above equation, we present sfs-spkmeans, the
variant of frequency sensitive spherical kmeans applicable to
streaming data.

Algorithm sfs-spkmeans

1. Set data count Â�ÃÚÄ . Choose 
 points (unit vectors) as

the cluster means
à��ÅaÆ ÇO , set

àJ�ÅÈÆ ÇO Ã²Ä , Rj% ' .�.���A 
 .
2. For the next data-point � Ê�Ô @
2a. Assign � Ê�Ô @

to the cluster ��ÅÈÊ�ÇO Ë whereRSo�% arg tvp -O @èM�ÌÎÍÐÏ� À � 3Ê�Ô @ à�!ÅÈÊ�ÇO � ' i èMPÌÎÍÐÏ�â ) bd© s àJ�ÅÈÊ�ÇO Á
2b.

àJ ÅÈÊ�Ô @ ÇO Ë Ã×� ' i ' C � � àJ ÅÈÊ�ÇO Ë � '
2c.

à��ÅaÊ�Ô @ ÇO Ë Ã Å èí ÌÙÍdÏ� Ë Ô ¢îï ÌÙÍdã ¢ Ï� Ë Å � ÍÐã ¢ ? èí ÌÎÍÐÏ� Ë Ç�Çð èí ÌÙÍdÏ� Ë Ô ¢îï ÌÙÍdã ¢ Ï� Ë Å � ÍÐã ¢ ? èí ÌÎÍÐÏ� Ë Ç ð
2d. For R�ñ%qR o , àJ ÅÈÊ�Ô @ ÇO Ã àJ ÅÈÊ�ÇO ,

à� ÅÈÊ�Ô @ ÇO Ã à� ÅÈÊ�ÇO
2d. Â&Ã×�GÂ � ' �

Computational Requirements: Finally, a word on the com-
plexity of the proposed approaches. Since all of the proposed
approaches follow the basic infrastructure of kmeans, each
iteration is linear in the number of data-points and the number
of clusters. For the static algorithms, under realistic assump-
tions [32], the algorithms converge within a finite number of

iterations. Note that, if need be, the approximations can be
totally avoided with some extra computational effort [32]. For
the streaming data, since the data points are processed one
at a time, the algorithm is of course linear in the number of
data points, but in a rather different sense. Further, for each
data point, the streaming algorithm is linear in the number of
clusters. Hence, all the proposed approaches are very scalable
and can be employed in large scale clustering tasks.

VI. EXPERIMENTAL RESULTS

In this section, experimental results on the proposed ideas
are described. We present results on three high-dimensional
text datasets - the Classic3 dataset4, the News 20 dataset5 and
the Yahoo news dataset6(K1) for the empirical performance
analysis. In spite of being high-dimensional, sparse datasets,
they have quite different properties that are quite useful in
demonstrating the biases of the proposed algorithms.

The Classic3 dataset contains 3893 files, among which
1400 Cranfield documents are from aeronautical system pa-
pers, 1033 Medline documents are from medical journals,
and 1460 Cisi documents are from information retrieval pa-
pers. The toolkit MC [17] was used for creating the high-
dimensional vector space model for the text documents and
a total of 6061 words were used. Thus, each document,
after normalization, is represented as a unit vector in a 6061
dimensional space. This is a relatively simple dataset in the
sense that the documents in the 3 clusters are on completely
different topics. Also, the natural clusters 7 are quite balanced.
The News20 dataset is a collection of 19,997 messages,
collected from 20 different usenet newsgroups, with approxi-
mately 1000 messages per newsgroup. chosen at random and
partitioned by newsgroup name. The headers for each of the
messages were removed so that they do not bias the results.
Using the toolkit MC, the high-dimensional model had a
total of 26099 words. This is a typical dataset that one may
encounter in real life — it is very high-dimensional, sparse and
there is significant overlaps between the newsgroups. In fact,
some cross-posted articles appear multiple times in the dataset
– once under every group in which it was posted. Another
feature of this dataset is that the natural clusters are perfectly
balanced.
The Yahoo20 dataset (K-series) is a collection of 2340
Yahoo news articles belonging one of 20 different Yahoo
categories. The K1 set actually gives the high-dimensional
vector space model having 21839 words. After normalization,
the data points reside on the surface of a 21839 dimensional
hypersphere. The salient feature of this dataset is that the
natural clusters are not at all balanced, with cluster sizes
ranging from 9 to 494. This is where it significantly differs
from the two previous datasets. This dataset helps in studying

4http://www.cs.utexas.edu/users/yguan/datamining/project/project.html
5http://www.ai.mit.edu/people/jrennie/20Newsgroups/
6ftp://ftp.cs.umn.edu/users/boley/PDDPdata/
7All three data sets used have class labels. We call the clustering indicated

by the class labels as the “natural clustering” of the dataset. Extrinsically
evaluating clustering quality by comparing cluster labels with class labels
is quite common, but such results should be presented with a caveat, since
some classes can be multi-modal, and classes may overlap as well, as is quite
evident in the News20 dataset.
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the effect of the balancing bias of the proposed algorithms on
the cluster quality if the natural clusters are highly unbalanced.

A. Performance Measures

We study four performance measures to get a comparative
understanding of the proposed algorithms – two of them
measure cluster quality whereas the other two measure cluster
balancing.

Cluster Quality is evaluated by an extrinsic and an intrinsic
measure. Extrinsic measures such as purity and entropy of
clusters [52] can be used if external information such as class
labels for all data points can be obtained [2]. An increas-
ingly popular extrinsic measure is the mutual information
between the cluster assignments and a pre-existing labeling
of the dataset. Formally, if ò is a random variable for the
cluster assignments and ó is a random variable for the pre-
existing labels on the same data, then the mutual information> �Gò±��ó½�%õô�öf÷ ø�ù bacÜú Å öf÷ ø Çú Å ö Ç ú Å ø Ç#û is the amount of statistical
information shared by ò and ó [53]. If üäO.ý is the number
of documents in the R -th cluster, R��þK ' .���.�A 
SN , that has
class label ÿ �²K ' ��.�.�A § N , then the empirical estimate of
the probability of the joint event K�ò % R4�ó % ÿnN is
computed as � ��ò % R4�ó % ÿ*�á% ü O�ý C<J , where J is
the total number of documents. The mutual information is
computed using the empirical estimates for the joint events
and the corresponding empirical marginals. We shall use a
normalized mutual information (NMI) measure so that the
numbers are in the range ù ÄH ' û . The normalization is done
using the arithmetic mean of the maximum possible entropies
of the empirical marginals, i.e., NMI( òä�ó ) % � Å öf÷ ø ÇÅ � ��� � Ô � ����� Ç =�� .
The NMI [11] measures the amount of statistical similarity
between the cluster assignments and the pre-existing labels
under an appropriate (constant) scaling. This measure is better
than certain other commonly used extrinsic measures such
as entropy or purity [52], in the sense that NMI does not
necessarily increase with increase in the number of clusters 
 ,
whereas both entropy and purity do.

As a second point of reference, an intrinsic measure of
cluster quality, as indicated by the spkmeans objective
function (SOF) value (Eqn. 10), is used. Note that using
this measure favors spkmeans which only addresses this
measure, while all the proposed methods attempt to optimize
modified versions of this objective that also weave in balancing
constraints.

Cluster Balancing is also evaluated by two measures. One
measure is the standard deviation in cluster sizes (SDCS) for
a given number of clusters requested from the algorithm. As
mentioned earlier, obtaining balanced clusters, i.e., clusters
with approximately equal sized clusters, is often an application
requirement, or a desirable regularization property. SDCS
is one measure that helps in understanding the balancing
behavior of a clustering algorithm. Thus, if K�J @ .���.�A�J � N are
the sizes of the 
 clusters generated by an algorithm, then
SDCS = K @� ?A@ � �O ` @ �GJ O i M � � � N @�= � .

In addition, it is also useful to know whether an algorithm
is returning empty or extremely small clusters. To quantify
this behavior, the second measure we use is the ratio of

the minimum cluster size generated by an algorithm to the
expected cluster size under perfect balancing. We shall refer
to this measure as ratio of minimum to expected (RME). By
definition, RME = ��t]� c K�J @ ��.���A�J � N<��CQ�GJWCD
H� .
B. Experiments with Static Algorithms

In this section, we present results on the perfor-
mance of the proposed static algorithms – fs-spkmeans,
pifs-spkmeans and fifs-spkmeans – and compare
them with that of the basic spkmeans algorithm8. We study
the algorithms over a reasonable (depending on the dataset
under consideration) range of values for the number of clusters
to get a better understanding of their properties. All the results
presented are averaged over 10 runs. The initial 
 means of
the spherical kmeans were generated by computing the mean
of the entire data and making 
 small random perturbations to
this mean [17]. For stability and repeatability, the frequency
sensitive algorithms were initialized at points of local minima
of the spkmeans objective function.

1) The Classic3 dataset: On the Classic3 dataset, all the
algorithms perform quite similarly in terms of the two clus-
ter quality measures. All the four algorithms achieve their
individual highest values of NMI at 
þ%
	 , which is the
number of natural clusters in the data (Fig. 1(a)). Even for
other values of 
 , they perform quite similarly in terms of
NMI, though pifs-spkmeans seems to be perform a little
differently from the rest of the group. The SOF values for all
the algorithms are almost the same (Fig. 1(b)).

A difference in their performance is observed while study-
ing the cluster balancing measures. The pifs-spkmeans
algorithm gives a much lower SDCS as compared to the other
algorithms (Fig. 1(c)). Also, it gives a much higher RME
as compared to the other algorithms (Fig. 1(d)). This points
out to the fact that pifs-spkmeans has high bias towards
balancing.

2) The News20 dataset: The News20 dataset demonstrates
the basic nature of the four algorithms quite well. In all
the experiments, and in terms of all the performance mea-
sures, fs-spkmeans and fifs-spkmeans show very
similar behavior. As seen before in the Classic3 dataset,
pifs-spkmeans has a high bias towards balancing, whereas
spkmeans has no explicit mechanism for balancing.

All the algorithms achieve their individual highest values
of the NMI at 
Ò% :DÄ , which is the correct number of
clusters (Fig. 2(a)). At 
Õ% :DÄ , fifs-spkmeans and
fs-spkmeans perform better than the other two in terms of
the NMI, and also show good balancing. For lower values of 
 ,
pifs-spkmeans performs worse than the other three which
have quite similar behavior. For much higher values of 
 ,
spkmeans has significantly higher values of NMI compared
to the three proposed approaches, since it starts generating
zero-sized clusters (Fig. 2(d)) in order to maintain the NMI
and objective at a reasonable value. On the other hand, since
none of the proposed algorithms generate zero sized clusters,
their performance in terms of NMI suffers. As seen from

8We do not compare with kmeans or equivalent algorithms since they
perform miserably on high dimensional text data [52]
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Fig. 1. Comparison between the static algorithms on the Classic3 data:
(a) the normalized mutual information values, (b) the spkmeans objective
function values, (c) the standard deviation in cluster sizes, and (e) the ratio of
the minimum to expected cluster size values, averaged over 10 runs of each
algorithm.

Figs. 2(c),(d), pifs-spkmeans has the most bias towards
balancing thereby achieving the lowest SDCS and the highest
RME values for the entire range of 
 over which experiments
were performed. It is interesting to note that fs-spkmeans
and fifs-spkmeans seems to follow a middle ground in
terms of its cluster balancing and quality biases. It is also to
be noted that the SOF values for the proposed algorithms are
equal or greater than those achieved by spkmeans.

3) The Yahoo20 dataset: As mentioned earlier, the Yahoo20
dataset is highly unbalanced according to the labelling it
has. Hence, results on this dataset show how the proposed
algorithms handle the data when their balancing bias is not
going to help.

It is interesting to see that the performance of the algo-
rithms in terms of the NMI is quite similar to what was
observed for the News20 dataset. As before fs-spkmeans
and fifs-spkmeans perform very similarly and the NMI
values they achieve deteriorate for values of 
 greater than 20,
the correct number of clusters (Fig. 3(a)). pifs-spkmeans
performs poorly in terms on the NMI because of its high bias
towards balancing that does not help in this particular dataset.
It also performs slightly worse than the other algorithms in
terms of the SOF values (Fig. 3(b)). However, as before, it
consistently gives the lowest SDCS (Fig. 3(c)) and highest
RME values (Fig. 3(d)). spkmeans maintains a reasonable
value of the NMI even for large values of 
 by generating
empty clusters. It is interesting to note that due to fact that
the natural clusters are not at all balanced, fs-spkmeans
and fifs-spkmeans give quite low values of RME, but
never actually give a zero-sized cluster in the range of 

over which experiments were performed. Again, these two
algorithms seem to have a good balance between the biases
and can respond quite well to the underlying nature of the
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Fig. 2. Comparison between the static algorithms on the News20 data:
(a) the normalized mutual information values, (b) the spkmeans objective
function values, (c) the standard deviation in cluster sizes, and (e) the ratio of
the minimum to expected cluster size values, averaged over 10 runs of each
algorithm.

dataset.

Summary of Results

Both fs-spkmeans and fifs-spkmeans perform ad-
mirably when the value of 
 chosen is in the neighborhood
of the number of classes in the data. They are comparable
to or superior than spkmeans in terms of cluster quality,
and superior in terms of balancing. This result is particularly
remarkable for the Yahoo20 dataset where the underlying
classes have widely varying priors. This is indicative of the
beneficial effect of the regularization provided by the soft
balancing constraint. However, if 
 is chosen to be much
larger than the number of natural clusters, spkmeans has
an advantage since it starts generating zero-sized clusters,
while the others are now hampered by their proclivity to
balance cluster sizes. On the other hand, if balancing is
very critical, then pifs-spkmeans is the best choice, but
it has to compromise to some extent on cluster quality in
order to achieve its superior balancing. So the choice of
algorithm clearly depends on the nature of the dataset and
the clustering goals, but in general, both fs-spkmeans and
fifs-spkmeans are attractive even when balancing is not
an objective.

C. Experiments with the Streaming Algorithm

The primary problem in experimenting with the streaming
algorithm is that there is no well-known benchmark for
clustering of high-dimensional, normalized streaming data. So,
the experiments with the streaming algorithms were done by
artificially “streaming” the public domain static datasets. The
data points are presented sequentially to the sfs-spkmeans
algorithm, repeating the process as many times as necessary
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Fig. 3. Comparison between the static algorithms on the Yahoo20 data:
(a) the normalized mutual information values, (b) the spkmeans objective
function values, (c) standard deviation in cluster sizes, and (e) the ratio of
the minimum to expected cluster size values, averaged over 10 runs of each
algorithm.

in order to simulate streaming data. We call the sequence of
showing every document in the selected dataset once as an
epoch and the algorithm is run over multiple epochs until it
converges or some preset maxEpoch value is reached. Note
that the resulting scheme is very similar to fifs-spkmeans
but there are subtle differences. In order to understand the
effect of the choice of

�
, the number to which the norm and

the effective cluster sizes of sfs-spkmeans converges, we
present results corresponding to two choices of

�
: 100 and

1000, and the corresponding algorithms will be referred to
as sfs100-spkmeans and sfs1000-spkmeans respec-
tively. Note that both these values of

�
are less than the data

set sizes. This means that sfs-spkmeans has less effective
memory than the static algorithms. In fact, such a low effective
memory handicaps the streaming algorithm as compared to the
static ones which use all the data to update their parameters.
As we shall see, the streaming algorithm actually performs
reasonably well even with this handicap.

There are three aspects to be considered when evaluating
a streaming algorithm [54]: (i) how quickly does it ramp
up to a solution, (ii) the quality of the solution, and (iii) if
the data characteristics change, how quickly does the system
respond to such changes. Since in this paper, the streaming
data sets are obtained by reproducing a fixed data set end-
to-end, all the solutions show an asymptotic behavior. So we
shall first address aspect (ii) and compare these asymptotic
solutions with those obtained by the static algorithms. Then,
in the next subsection, we address aspect (i) and look at the
learning curves.

1) Asymptotic Results: The streaming algorithm ramps up
to a “steady state” solution in a few epochs and after that there
are only minor perturbations to this solution. In this section,
such steady state solutions are averaged over 10 runs and then
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Fig. 4. Comparison between streaming and static algorithms on the Classic3
data: (a) the normalized mutual information values, (b) the spkmeans
objective function values, (c) the standard deviation in cluster sizes, and (d)
the ratio of minimum to the expected cluster size values, averaged over 10
runs of each algorithm.

compared with spkmeans and fs-spkmeans.
The Classic3 dataset: For the Classic3 dataset, all the algo-
rithms achieve their highest individual values of NMI at 
v%�	 ,
the actual number of clusters in the dataset. The streaming
algorithms achieve higher NMI at 
v%�	 compared to the batch
algorithms (Fig. 4(a)). All the four algorithms perform very
similarly in terms of the NMI for all other values of 
 . The
SOF values achieved by the static algorithms are consistently
higher that by the streaming algorithms (Fig. 4(b)). There is no
significant difference between the behavior of the algorithms
in terms of the two cluster balancing measures (Figs. 4(c),(d)).
The News20 dataset: In the 20 News dataset, the streaming
algorithms perform significantly better than the static ones in
terms of the NMI (Fig. 5(a)). The primary reason for this is that
since the natural clusters in the data are perfectly balanced and
the streaming algorithms are biased towards balanced cluster-
ing, they get the correct structure in the data due to their bias.
Among the streaming algorithms, infs100-spkmeans per-
forms marginally better than infs1000-spkmeans though
the differences are not always significant. The SOF values
for the static algorithms are significantly better than those
achieved by the streaming algorithms (Fig. 5(b)). There is
no significant difference in the SDCS for the various algo-
rithms (Fig. 5(c)). The frequency sensitive algorithms perform
better than spkmeans in terms of the RME values, and
the streaming algorithms give higher values of RME than
fs-spkmeans(Fig. 5(d)).
The Yahoo20 dataset: In the Yahoo dataset, the static al-
gorithms seem to achieve higher values of NMI than the
streaming ones (Fig. 6(a)). In the trade-off between balancing
and cluster quality, the streaming algorithms seem to give
more importance to the balancing aspect whereas the static
ones seems to give higher priority to the cluster quality.
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Fig. 5. Comparison between streaming and static algorithms on the News20
data: (a) the normalized mutual information values, (b) the spkmeans
objective function values, (c) the standard deviation in cluster sizes, and (d)
the ratio of the minimum to the expected cluster size values, averaged over
10 runs of each algorithm.

The streaming algorithms being biased towards the balancing
criterion, performs poorly in terms of the NMI in this dataset
that has highly unbalanced natural clusters. Due to this bias,
they give significantly better RME values as compared to the
static algorithms (Fig. 6(d)). Like the other two datasets, the
SOF values achieved by the static algorithms are significantly
better than those by the streaming ones (Fig. 6(b)). Also, just
like the other datasets, there is not much difference in the
SDCS across all the algorithms (Fig. 6(c)).

2) Learning Curves: To get a better understanding of how
quickly sfs-spkmeans reaches a steady state solution, we
study it closely on three randomly chosen runs on the three
datasets for different number of clusters. Note that we do
not average over multiple runs since then the corresponding
epochs of the same run will be lost. The results are presented
for both sfs100-spkmeans. and sfs1000-spkmeans
in Figs. 7 and 8 respectively.

Consider Fig. 7 first. In the Classic3 dataset, the NMI for
�%	 , the correct number of clusters, shoots up in the 2nd
epoch itself and stays at that level from that point onwards
till convergence (Fig. 7(a)). This shows that the data set has
a very simple structure and a single epoch was sufficient to
capture it. For 
»% : and 
»%�� , the algorithm does not get
any structure in the data as shown by the NMI plots. In the
News20 dataset, there is an initial increase in NMI for 
ß%' ÄH#:DÄ2�	uÄ (Fig. 7(d)). However, the plot for 
»%�	uÄ plateaus
at a much lower value of NMI than that for 
�% ' ÄH :uÄ . It is
interesting to note that although the NMI values for 
v% ' ÄH :uÄ
are quite similar in the first few epochs, the algorithm for
ß% :DÄ eventually finds a better structure in the data – this
fact is reflected in the plots as the NMI values for 
z% :uÄ
crosses that for 
T% ' Ä before convergence. The behavior
in the Yahoo dataset is quite similar to that observed for the
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Fig. 6. Comparison between streaming and static algorithms on the Yahoo20
data: (a) the normalized mutual information values, (b) the spkmeans
objective function values, (c) the standard deviation in cluster sizes, and (d)
the ratio of minimum to the expected cluster size values, averaged over 10
runs of each algorithm.

News20 dataset in terms of the NMI.
In the Classic3 dataset, the SDCS values for 
�%�	H�� are

significantly better than that for 
�%�: (Fig. 7(b)). A similar
pattern is observed for the other two datasets. Note that we
are showing results for three values of 
 for all the datasets
– one value 
 is less than the number of natural clusters in
the data, one value 
$o is (approximately) equal to that, and
the third value 
 is greater than that. The general pattern we
observe is that the algorithm performs well in terms of the
NMI for 
�%é
 #
2o , and performs well in terms of the SDCS
for 
v%w
$o< 
 . Thus, the values at or around 
+o are always in
the group that performs well for these measures, whereas the
performance for the other values of 
 suffer in one measure
or the other. Also, the RME values for 
w%Ü
+o are higher
or at least as good as that for 
�% 
  
 . Thus, we note that
the algorithm performs the best for the performance measures
under consideration at values close to the natural number of
clusters, or, in other words, gets the structure in the data quite
well. This is a very desirable quality for a clustering algorithm.

A similar behavior is observed for all the datasets
while studying the learning curves generated by
infs1000-spkmeans in Fig.8. The number of epochs
required to converge is normally higher than that for the� % ' ÄuÄ case since the effective learning rate, being inversely
proportional to

�
, is much lower in this case. The NMI

values for 
2o after convergence is higher than the others for
the Classic3 and News20 datasets (Figs. 8(a),(d)). For the
Yahoo dataset, because of its complicated structure, the preset
maxEpoch value of 100 is reached before the algorithms
converges – the NMI values for 
 and 
+o are still increasing
asymptotically and the value for 
 is slightly higher when
the epochs are terminated (Fig. 8(g)). As before, the SDCS
values for 
$oD 
 are better than that for 
 across all datasets.
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Fig. 7. Comparison of NMI and SDCS values over epochs
(infs100-spkmeans) on particular runs for the Classic3 and Yahoo20
datasets.

Also, the RME values for 
$o<#
 are better than that for 
 .
Thus, we once again see that the algorithm tends to have the
best balance across all the performance metrics for values of
 close to the natural number of clusters.

VII. CONCLUDING REMARKS

Obtaining a balanced solution is an explicit goal in certain
clustering applications irrespective of the underlying structure
of the data. More commonly, obtaining clusters of comparable
sizes is not a stated objective, but some amount of balancing
helps in countering poor initializations in iterative clustering
algorithms that converge to only a local optimum. The problem
of poor initialization is exacerbated when both the input
dimensionality as well as the number of clusters sought are
high, thereby vastly expanding the solution space. In addi-
tion to incorporating a conscience mechanism to competitive
learning, a variety of other approaches have been proposed
over the years [55] to overcome poor initializations in iterative
clustering algorithms that are otherwise attractive because of
simplicity, low computational complexity, etc.

In this paper, we focused on applications where the data is
normalized to lie on the surface of a hypersphere. For such
datasets, the clustering problem was posed as a maximum
likelihood estimation of 
 vMF distributions that are assumed
to have generated the observed data. This generative model can
be adapted, if need be, to provide various degrees of balanc-
ing. In the process, we derived certain existing, heuristically
proposed algorithms (spkmeans, FSCL) from first principles.
The empirical results were also encouraging in that they were
are both superior (using extrinsic as well as intrinsic criteria)
as well as significantly better balanced. This was true even for
the highly imbalanced Yahoo20 dataset.

This paper assumes that the vMF distribution is a good
model for clustering directional data, and the number of
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Fig. 8. Comparison of NMI and SDCS values over epochs
(infs1000-spkmeans) on particular runs for the News20 and Yahoo20
datasets.

clusters 
 is known apriori. In general, there may be clustering
problems where these assumptions may not hold good. Model
selection techniques for choosing an appropriate family as the
generative model and choosing the right number of clusters
has been extensively studied in the literature. The techniques
range from information theoretic criteria[56], [57] for model
comparison to purely Bayesian approaches such as reversible
jump MCMC [58]. In this paper, we work with the vMF
distribution and show empirical justifications for the choice.
A possible future work can be a more extensive study of
spherical distributions [15] for choosing an appropriate family
using model selection methods. Determining a suitable value
for 
 when the desired number of clusters is not known
beforehand is a long studied problem with no universally ac-
cepted solution [1]. One approach is to incrementally increase
the number of clusters as more data is examined. Several
competitive learning variants already exist to do this for non-
normalized data (see [23] and references cited therein). It
may be worthwhile to derive an incremental 
 algorithm for
normalized data as well. Alternatively, one can first obtain
solutions for different values of 
 and then select a suitable
one based on an appropriate model selection criterion. Finally,
from a practical viewpoint, a third alternative for reaching a
suitable 
 is to partition the data using a conservatively high
value of 
 , and then do a few steps of agglomerative clustering,
as is done, for example, in the classic ISODATA algorithm [1].
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