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ABSTRACT
While the vast majority of clustering algorithms are partitional,
many real world datasets have inherently overlapping clusters. Sev-
eral approaches to finding overlapping clusters have come from
work on analysis of biological datasets. In this paper, we inter-
pret an overlapping clustering model proposed by Segal et al. [23]
as a generalization of Gaussian mixture models, and we extend it
to an overlapping clustering model based on mixtures of any regu-
lar exponential family distribution and the corresponding Bregman
divergence. We provide the necessary algorithm modifications for
this extension, and present results on synthetic data as well as sub-
sets of 20-Newsgroups and EachMovie datasets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications - Data Min-
ing; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

Keywords
Overlapping clustering, exponential model, Bregman divergences,
high-dimensional clustering, graphical model.

1. INTRODUCTION
Most clustering methods partition the data into non-overlapping

regions, where each point belongs to only one cluster. In a variety
of important applications, though, overlapping clustering, wherein
some items are allowed to be members of two or more discov-
ered clusters, is more appropriate. For example, in biology, genes
often simultaneously participate in multiple processes; therefore,
when clustering micro-array gene expression data, it is appropri-
ate to assign genes to multiple, overlapping clusters [23, 4]. Simi-
larly, when clustering documents into topic categories, documents
may contain multiple relevant topics and an overlapping cluster-
ing might be more relevant [22]. In the 20-Newsgroups benchmark
dataset, articles with multiple topics are cross posted to multiple
newsgroups. Ideally, a clustering algorithm applied to this data
would allow articles to be assigned to multiple topic labels and
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would rediscover the original cross-posted articles. In the Each-
Movie dataset used to test recommender systems, many movies be-
long to more than one genre, such as “Aliens”, which is listed in
the action, horror and science fiction genres. An overlapping clus-
tering algorithm applied to this data should automatically discover
such multi-genre movies.

In this paper, we generalize an approach to overlapping clus-
tering introduced by Segal et al. [23], hereafter referred to as the
SBK model. The original method was presented as a specialization
of a Probabilistic Relational Model (PRM) [14] and was specifi-
cally designed for clustering gene expression data. We present an
alternative view of their basic approach as a generalization of stan-
dard mixture models. While the original model maximized like-
lihood over constant variance Gaussians, we generalize it to work
with any regular exponential family distribution, and correspond-
ing Bregman divergences, thereby making the model applicable
for a wide variety of clustering distance functions [2]. This gen-
eralization is critical to the effective application of the approach to
high-dimensional sparse data, such as typically those encountered
in text mining and recommender systems, where Gaussian models
and Euclidean distance are known to perform poorly. Further, we
propose a novel algorithm dynamicM that assigns instances to mul-
tiple clusters for the general model. We also outline an alternating
minimization algorithm that monotonically improves the objective
function for overlapping models for any regular exponential family
distribution.

In order to demonstrate the generality and effectiveness of our
approach, we present experiments in which we produced and eval-
uated overlapping clusterings for subsets of the 20-Newsgroups and
EachMovie data sets mentioned above. An alternative “straw man”
algorithm for overlapping clustering is to produce a standard proba-
bilistic “soft” clustering by mixture modeling and then make a hard
assignment of each item to one or more clusters using a thresh-
old on the cluster membership probability. The ability of thresh-
olded soft clustering to produce good overlapping clusterings is an
open question. Consequently, we experimentally compare our ap-
proach to an appropriate thresholded soft clustering and show that
the proposed overlapping clustering model produces groupings that
are more similar to the original overlapping categories in the 20-
Newsgroups and EachMovie data.

A brief word on notation: uppercase letters such as X signify
a matrix, whose ith row vector is represented as Xi, jth column
vector is represented as X j , and whose entry in row i and column j
is represented as X j

i as well as Xi j .

2. BACKGROUND
In this section, we give a brief introduction to the PRM-based



SBK model. Probabilistic Relational Models (PRMs) [14] extend
the basic concepts of Bayesian networks into a framework for rep-
resenting and reasoning with probabilistic relationships between
entities in a relational structure. The SBK model is an instantia-
tion of a PRM for capturing the relationships between genes, pro-
cesses, and measured expression values on DNA microarrays. The
structure of the instantiated model succinctly captures the underly-
ing biological understanding of the mechanism generating the ob-
served microarray values — namely, that genes participate in pro-
cesses, experimental conditions cause the invocation of processes
at varying levels, and the observed expression value in any particu-
lar microarray spot is due to the combined contributions of several
different processes. The SBK model places no constraints on the
number of processes in which any gene might participate, and thus
gene membership in multiple processes, i.e., overlapping cluster-
ing, naturally follows.

The SBK model works with three matrices: the observed real
expression matrix X (genes × experiments), a hidden binary mem-
bership matrix M (genes × processes) containing the membership
of each gene in each process, and a hidden real activity matrix A
(processes × conditions) containing the activity of each process
for each experimental condition. The SBK modeling assumes that
the expression value X j

i corresponding to gene i in experiment j
has a Gaussian distribution with constant variance. The mean of
the distribution is equal to the sum of the activity levels A j

h of
the processes h in which gene i participates so that p(X j

i |Mi,A) =
1√
2πσ

exp(− 1
2σ2 (X j

i −MiA j)2). The SBK model further assumes
that M and A are independent so that p(M,A) = p(M)p(A) and
that X j

i ’s are conditionally independent given Mi and A j . M and A
are assumed to be component-wise independent as well. Assum-
ing that elements of A are uniformly distributed, considering the
log-likelihood of the joint distribution, we have

max
M,A

log p(X ,M,A)≡min
M,A

[
1

2σ2 ‖X −MA‖2− log p(M)

]
.

To find the value of the hidden variables M and A, the SBK model
uses an EM approach [12]. The E step involves finding the best
estimates of the binary genes-process memberships M. The M step
involves computing the prior probability of gene membership in
each process p(M) and the process-condition activations A.

The core parameter estimation problem is much easier to under-
stand if we recast it as a matrix decomposition problem, initially
ignoring the priors. With the knowledge that there are k relevant
processes in the observations, we want to find a decomposition
of the observed expression matrix X ∈ � n×d into a binary mem-
bership matrix M ∈ {0,1}n×k and a real valued activation matrix
A ∈ � k×d such that ||X−MA||2 is minimized. Hence, the problem
is one of matrix factorization, and the difficulty arises from the fact
that M is a binary matrix.

3. THE MODEL
In this section, we first outline a simplistic way of getting over-

laps from soft-clustering based on mixture models. Then, we pro-
pose our model for overlapping clustering, hereafter referred to as
MOC, as a generalization of the SBK model.

3.1 Overlapping Clustering with Mixture Model
Given a set of n data points {Xi}n

i=1 in
� d , represented by a

n× d matrix X , fitting a mixture model to X is equivalent to as-
suming that each data point Xi is drawn independently from a prob-
ability density p(Xi|Θ) = ∑k

h=1 αh ph(Xi|θh), where Θ = {θh}k
h=1,

k is the number of mixture components, ph is the probability den-
sity function of the hth mixture component with parameters θh, and

αh are the component mixing coefficients such that αh ≥ 0 and
∑k

h=1 αh = 1. In mixture model estimation, each point Xi is as-
sumed to be generated from only one underlying mixture compo-
nent. Let Z be a n× k boolean matrix such that Zi j is 1 if the jth

component density was selected to generate Xi, and 0 otherwise.
Let zi be a hidden random variable corresponding to the index of the
1 in each row Zi: every zi is therefore a multinomial random vari-
able, since it can take one of k discrete values. Since the Z matrix is
unknown, the optimum parameters Θ of the mixture model can be
obtained using the well-known iterative Expectation Maximization
(EM) algorithm [12]. The probability value p(zi = h|Xi,Θ) after
convergence of the EM algorithm gives the probability of the point
Xi being generated from the hth mixture component. Using these
probabilities, mixture models are often used to generate a parti-
tional clustering of the data, where the points estimated to be most
probably generated from the hth mixture model component are con-
sidered to constitute the hth partition.

In order to use the mixture model to get overlapping clustering,
where a point can deterministically belong to multiple clusters, one
can choose a threshold value λ such that Xi belongs to the hth par-
tition if p(zi = h|Xi,Θ) > λ. Such a thresholding technique can
enable Xi to belong to multiple clusters. However, there are two
problems with this method. One is that the choice of the parameter
λ, which is difficult to learn given only X . Secondly, this is not a
natural generative model for overlapping clustering. In the mixture
model, the underlying model assumption is that a point is generated
from only one mixture component, and p(zi = h|Xi,Θ) simply gives
the probability of Xi being generated from the hth mixture compo-
nent. However, an overlapping clustering model should generate
Xi by simultaneously activating multiple mixture components. We
describe one such model in the next section.

3.2 Proposed Overlapping Clustering Model
The overlapping clustering model that we present here is a gener-

alization of the SBK model described in Section 2. The SBK model
minimizes the squared loss between X and MA, and their proposed
algorithms is not applicable for estimating the optimal M and A
corresponding to other loss functions. In MOC, we generalize the
SBK model to work with a broad class of probability distributions,
instead of just Gaussians, and propose an alternate minimization
algorithm for the general model.

The most important difference between MOC and the mixture
model is that we remove the multinomial constraint on the matrix
Z, so that it can now be an arbitrary boolean matrix. To distin-
guish from the constrained matrix Z, we denote this unconstrained
boolean matrix as the membership matrix M. Every point Xi now
has a corresponding k-dimensional boolean membership vector Mi:
the hth component Mh

i of this membership vector is a Bernoulli ran-
dom variable indicating whether Xi belongs to the hth cluster. So,
a membership vector Mi with multiple 1’s directly encodes the fact
that the point Xi belongs to multiple clusters.

Let us now consider the probability of generating the observed
data points in MOC. A is the activity matrix of this model, where A j

h
represents the activity of cluster h while generating the jth feature
of the data. The probability of generating all the data points is

p(X |Θ) = p(X |M,A) = ∏
i, j

p(X j
i |Mi,A j) (1)

where Θ = {M,A} are the parameters of p, and X j
i ’s are condition-

ally independent given Mi and A j . In MOC, we assume p to be
the density function of any regular exponential family distribution,
and also assume that the expectation parameter corresponding to
Xi is of the form MiA, so that E[Xi] = MiA. In other words, using



vector notation, we assume that each Xi is generated from an ex-
ponential family density whose mean MiA is determined by taking
the sum of the activity levels of the components that contribute to
the generation of Xi, i.e., Mh

i is 1 for the active components.
Using the above assumptions and the bijection between regular

exponential distributions and regular Bregman divergences [2], the
conditional density can be represented as:

p(X j
i |Mi,A j) ∝ exp{−dφ(X j

i ,MiA j)} (2)

where dφ is the Bregman divergence corresponding to the chosen
exponential density p. For example, if p is the Poisson density, dφ
is the I-divergence; if p is the Gaussian density, dφ is the squared
Euclidean distance [2].

Similar to the SBK model, the overlapping clustering model tries
to optimize the following joint distribution of X , M and A:

p(X ,M,A) = p(M,A)p(X |M,A) = p(M)p(A)p(X |M,A)

=

(
∏
i,h

p(Mh
i )

)(
∏
h, j

p(A j
h)

)(
∏
i, j

p(X j
i |Mi,A j)

)
.

Making similar model assumptions as in Section 2, we assume
that M and A are independent of each other apriori and A is dis-
tributed uniformly over a sufficiently large compact set, implying
that p(M,A) = p(M)p(A) ∝ p(M). Then, maximizing the log-
likelihood of the joint distribution gives

max
M,A

log p(X ,M,A) ≡ max
M,A

[
∑
i,h

log p(Mh
i )−∑

i, j
dφ(X j

i ,MiA j)

]

≡ min
M,A

[
∑
i, j

dφ(Xi j,(MA)i j)−∑
i,h

logαih

]
.

where αih = p(Mh
i ) is the (Bernoulli) prior probability of the i-th

point having a membership Mih to the h-th cluster.

4. ALGORITHMS AND ANALYSIS
In this section, we propose and analyze algorithms for estimating

the overlapping clustering model given an observation matrix X . In
particular, from a given observation matrix X , we want to estimate
the prior matrix α, the membership matrix M and the activity matrix
A so as to maximize p(M,A,X), the joint distribution of (X ,M,A).
The key idea behind the estimation is an alternating minimization
technique that alternates between updating α, M and A.

4.1 Updating α
The prior matrix α can be directly calculated from the current

estimate of M. If πh denotes the prior probability of any point be-
longing to cluster h, then, for a particular point i, we have αih =

πMh
i

h (1−πh)1−Mh
i . Since πh is the probability of a Bernoulli random

variable, and the Bernoulli distribution is a member of the expo-
nential family, the maximum likelihood estimate is just the sample
mean of the sufficient statistic [2]. Since the sufficient statistic for
Bernoulli is just the indicator of the event, the maximum likelihood
estimate of the prior πh of cluster h is just πh = 1

n ∑i
�

{Mh
i =1}. Thus,

one can compute the prior matrix α using these update equations.

4.2 Updating M
In the main alternating minimization technique, for a given X ,A,

the update for M has to minimize

∑
i, j

dφ(Xi j,(MA)i j) .

Since M is a binary matrix, this is integer optimization problem and
there is no known polynomial time algorithm to exactly solve the
problem. The explicit enumeration method involves evaluating all
2k possibilities for every data point, which can be prohibitive for
even moderate values of k. So, we investigate simple techniques of
updating M so that the loss function is minimized.

There can be two ways of coming up with an algorithm for up-
dating M. The first one is to consider a real relaxation of the
problem and allow M to take real values in [0,1]. For particular
choices of the Bregman divergence, specific algorithms can be de-
vised to solve the real relaxed version of the problem. For example,
when the Bregman divergence is the squared loss, the correspond-
ing problem is just the bounded least squares (BLS) problem given
by min

M:0≤Mih≤1
‖X −MA‖2, for which there are well studied algo-

rithms [6]. Now, from the real bounded matrix M, one can get the
cluster membership by rounding Mih values either by proper thresh-
olding [23] or randomized rounding. If k0 clusters get turned “on”
for a particular data point, the SBK model performs an explicit 2k0

search over the “on” clusters in order get improved results. Another
alternative could be to keep M in its real relaxed version till the
overall alternating minimization method has converged, and round
it at the very end. The update equation of the priors πh and αih has
to be appropriately changed in this case.

Although the real relaxation approach seems simple enough for
the squared loss case, it is not necessarily so for all Bregman diver-
gences. In the general case, one may have to solve an optimization
problem (not necessarily convex) with inequality constraints, be-
fore applying the heuristics outlined above. In order to avoid that,
we outline a second approach that directly tries to solve the integer
optimization problem without doing real relaxation.

We begin by making two observations regarding the problem of
estimating M: (1) In a realistic setting, a data point is more likely
to be in very few clusters rather than most of them; and (2) For
each data point i, estimating Mi is a variant of the subset sum prob-
lem that uses a Bregman divergence to measure loss. Taking the
first observation a step further, for a domain if it is well understood
(or desirable) that each data point can belong to at most k0 clus-
ters, for some k0 possibly significantly smaller than k, then it may
be computationally feasible to perform an explicit search over all

the possibilities:
(k

1
)

+
(k

2
)

+ · · ·+
( k

k0

)
≤
(

ek
k0

)k0
, where the last in-

equality holds if k0 ≤ k/2. Note that for k0 = 1, the overlapping
clustering model essentially reduces to the regular mixture model.
However, in general, such a brute-force search may only be feasible
for very small value of k0. Further, it is perhaps not easy to decide
on such a k0 apriori for a given problem. So, we focus on design-
ing an efficient way of searching through the relevant possibilities
using the second observation.

The subset sum problem is one of the hard knapsack problems [9]
that tries to solve the following: Given a set of k natural numbers
a1, . . . ,ak and a target number x, find a subset S of the numbers
such that ∑ah∈S ah = x. In a more realistic setting, one works with
a set of real numbers, and tries to find a subset such that the sum
over the subset is the closest possible to x. In our case, we measure
closeness using a Bregman divergence and we have multiple target
numbers to which we want the sum to be close. In particular, then
the problem is to find M∗i such that

M∗i = argmin
Mi∈{0,1}k

dφ(Xi,MiA) = argmin
Mi∈{0,1}k

m

∑
j=1

dφ(Xi j,
k

∑
h=1

Mh
i A j

h) .

Thus, there are m target numbers Xi1, . . . ,Xim, and for each target
number Xi j the subset is to be chosen from A1

j , . . . ,A
k
j . The total

loss is the sum of the individual losses, and the problem is to find a
single Mi that minimizes the total loss.



Using the inherent bias of natural overlapping problems to put
each point in low number of clusters, and the similarities of our
formulation to the subset sum problem, we propose the algorithm
dynamicM (Algorithm 1). The algorithm is motivated by the Apri-
ori class of algorithms in data mining and Shapley value compu-
tation in co-operative game theory [17]. It is important to note
that no theoretical claim is being made regarding the optimality of
dynamicM. The belief is that such an efficient algorithm will work
well in practice, as the empirical evidence in Section 5 suggests.

Algorithm 1 dynamicM
Input: Row vector [x]1×d , distance function d, activity matrix [A]k×d , initial

guess [m0]1×k
Output: Boolean membership vector [m]1×k that gives a low value for

d(x,mA)
Method:

Initialize assignment vector [m]1×k to all zeros
{Separate search thread for each initial cluster turned “on’}
for h = 1 to k do

Turn “on” only the h-th cluster, i.e., set m(h) = 1,m(i) = 0, if i 6= h
Set the h-th thread th to be ‘active’
Compute objective function `h = d(x,mA)
{Run over all possible sizes (> 1) of clusters turned “on”}
for r = 2 to k do

if thread th is still ‘active’ then
Set `old

h = `h
From the rest (k− r + 1) clusters, find best cluster to turn “on”
if best cluster to turn “on” is p then

Turn “on” the p-th cluster, i.e., m(p) = 1
Compute objective function `h← d(x,mA)

if `old
h ≤ `h then

Set `h = `old
h

Set the h-th thread th to be ‘inactive’
Set m = m0, `= d(x,m0A)
Find the best m over all threads using `h,h = 1, . . . ,k
If best m over threads is worse than m0, set m = m0
Output [m]1×k

The algorithm dynamicM starts with 1 cluster turned “on” and
greedily looks for the next best cluster to turn “on” so as to min-
imize the loss function. If such a cluster is found, then it has 2
clusters turned “on”. Then, it repeats the process with the 2 clus-
ters turned “on”. In general, if h clusters are turned “on”, dynamicM
considers turning each one of the remaining (k− h) clusters “on”,
one at a time, and computes loss corresponding to the membership
vector with (h + 1) clusters turned “on”. If, at any stage, turning
“on” each one of the remaining (k− h) clusters increases the loss
function, the search process is terminated. Otherwise, it picks the
best (h + 1)th cluster to turn “on”, and repeats the search for the
next best on the remaining (k−h−1) clusters.

Such a procedure will of course depend on the order in which
clusters are considered to be turned “on”. In particular, the choice
of the first cluster to be turned “on” will partly determine which
other clusters will get turned “on”. The permutation dependency of
the problem is somewhat similar in flavor to that of pay-off com-
putation in a co-operative game. If h players are already in co-
operation, the value-add of the (h + 1)th partner will depend on the
permutation following which the first h were chosen. In order to
design a fair pay-off strategy, one computes the average value-add
of a player, better known as Shapley value, over all permutations of
forming co-operations [17].

Then, in theory, dynamicM should consider each all possible per-
mutations, keep turning clusters “on” following each permutation
to figure out the lowest loss achieved along that particular permu-
tation, and finally compute the best membership vector among all
permutations. Clearly, such an approach would be infeasible in

practice. Instead, dynamicM starts with k threads, one correspond-
ing to each one of the k clusters turned “on”. Then, in each thread, it
performs the search outlined above for adding the next “on” cluster,
till no such clusters are found, or all of them have been turned “on”.
The search is similar in flavor to the Apriori algorithms, or, dy-
namic programming algorithms in general, where an optimal sub-
structure property is assumed to hold so that the search for the best
membership vector with (h + 1) clusters turned “on” starts from
that with h clusters turned “on”. Effectively, dynamicM searches
over k permutations, each starting with a different cluster turned
“on”. The other entries of the permutation are obtained greedily on
the fly. Since dynamicM runs k threads to achieve partial permuta-
tion independence, the best membership vector over all the threads
is selected at the end. The algorithm has a worst case running time
of O(k3) and is capable of running with any distance function.

4.3 Updating A
We now focus on updating the activity matrix A. Since there are

no restrictions on A as such, the update step is simpler than that
for M. Note that the only constraint that such an update needs to
satisfy is that MA stays in the domain of φ. We give exact updates
for particular choices of Bregman divergences: the squared loss and
the I-divergence, since we use only these in section 5.

In case of the square loss, since the domain of φ is
�

, the prob-
lem minA ‖X−MA‖2 is just the standard least squares problem that
can be exactly solved by A = M†X , where M† is the pseudo-inverse
of M, and is equal to (MT M)−1MT in case MT M is invertible. In
case of I-divergence or un-normalized relative entropy, the problem

min
A

dI(X ,MA) = min
A

∑
i, j

(
Xi j log

Xi j

(MA)i j
−Xi j + (MA)i j

)
, (3)

has been studied as a non-negative matrix factorization technique [19].
The optimal update for A for given X ,M multiplicative and is given
by

A j
h = A j

h
∑i Mh

i X j
i /(MA)

j
i

∑i Mh
i

(4)

In order to prevent a division by 0, it makes sense to use max((MA)
j
i ,ε)

and max(∑i Mh
i ,ε) as the denominators for some small constant

ε > 0. With the above updates, the respective loss functions are
provably non-increasing. In the case of a general Bregman diver-
gence, the update steps need not necessarily be as simple and will
be investigated as a future work.

5. EXPERIMENTS
This section describes the details of our experiments that demon-

strate the superior performance of MOC on real-world data sets,
compared to the thresholded mixture model.

5.1 Methodology
We run experiments on three types of datasets: synthetic data,

movie recommendation data, and text documents. For the high-
dimensional movie and text data, we create subsets from the origi-
nal datasets, which have the characteristics of having a small num-
ber of points compared to the dimensionality of the space. The pur-
pose of performing experiments on these subsets is to scale down
the sizes of the datasets for computational reasons but at the same
time not scale down the difficulty of the tasks, since clustering a
small number of points in a high-dimensional space is a compara-
tively difficult task.

Synthetic data: In [23], apart from demonstrating their approach
on gene microarray data and evaluating on standard biology databases,



Segal et al. also showed results on microarray-like synthetic data
with a clear ground truth since the biology databases are generally
believed to be lacking in coverage. The synthetic data was gen-
erated by sampling points from the overlapping clustering model
and subsequently adding noise. We used a similar technique to cre-
ate three synthetic datasets of different sizes: (1) small-synthetic: a
dataset with n = 75, d = 30 and k = 10; (2) medium-synthetic: a
dataset with n = 200, d = 50 and k = 30; and (3) large-synthetic:
a dataset with n = 1000, d = 150 and k = 30. For the synthetic
datasets we used squared Euclidean distance as the cluster distor-
tion measure in the overlapping clustering algorithm, since Gaus-
sian densities were used to generate the noise-free datasets.

Movie Recommendation data: The EachMovie1 dataset has 5-
point user ratings for the 74,424 movies in the collection. The cor-
responding movie genre information is extracted from the Internet
Movie Database (IMDB)2 collection. If each genre is considered
as a separate category or cluster, then this dataset also has naturally
overlapping clusters since many movies are annotated in IMDB as
belonging to multiple genres, e.g., Aliens belongs to 3 genre cat-
egories: action, horror and science fiction. We created 2 subsets
from the EachMovie dataset: (1) movie-taa: 300 movies from the
3 genres – thriller, action and adventure; and (2) movie-afc: 300
movies from the 3 genres – animation, family, and comedy. We
clustered the movies based on the user recommendations to redis-
cover genres, based on the belief that similarity in recommendation
profiles of movies gives an indication about whether they are in
related genres. For this domain we use I-divergence with Laplace
smoothing as the cluster distortion measure.

Text data: Experiments were also run on 3 text datasets derived
from the 20-Newsgroups collection3, which has 20,000 documents
from 20 Usenet newsgroups. We processed the original newsgroup
articles to recover the multiple newsgroup labels on each message
posting. From the full dataset, a subset was created having 100
postings in each of the 20 newsgroups, from which the following
three data subsets were created with varying levels of overlap in
the topics: (1) news-similar-3; (2) news-related-3; and (3) news-
different-3. Details of these datasets are outlined in [3]. The vector-
space model of each data subset was created using standard text
pre-processing methods [13], and each data subset has 300 points in
high-dimensional space (> 1000 words). In this case, I-divergence
was again used as the Bregman divergence for overlapping cluster-
ing, with suitable Laplace smoothing.

We used an experimental methodology similar to the one used
to demonstrate the effectiveness of the SBK model [23]. For each
dataset, we initialized the overlapping clustering by running k-means
clustering, where the additive inverse of the corresponding Breg-
man divergence was used as the similarity measure and the number
of clusters was set by the number of underlying categories in the
dataset. The resulting clustering was used to initialize our overlap-
ping clustering algorithm.

To evaluate the clustering results, precision, recall, and F-measure
were calculated over pairs of points. For each pair of points that
share at least one cluster in the overlapping clustering results, these
measures try to estimate whether the prediction of this pair as be-
ing in the same cluster was correct with respect to the underlying
true categories in the data. Precision is calculated as the fraction of
pairs correctly put in the same cluster, recall is the fraction of actual
pairs that were identified, and F-measure is the harmonic mean of
precision and recall.

1http://research.compaq.com/SRC/eachmovie
2http://www.imdb.com
3http://www.ai.mit.edu/people/jrennie/20Newsgroups

5.2 Results
Table 1 presents the results of MOC versus the standard mixture

model for the datasets described in Section 5.1. Each reported re-
sult is an average over ten trials. For the synthetic data sets, we
compared our approach to thresholded Gaussian mixture models;
for the text and movie data sets, the baselines were thresholded
multinomial mixture models. Table 1 shows that for all domains,
even though the thresholded mixture model has slightly better pre-
cision in most cases, it has significantly worse recall: therefore
MOC consistently outperforms the thresholded mixture model in
terms of overall F-measure, by a large margin in most cases. Ta-
ble 1 also shows that the performance of MOC improves empiri-
cally as the ratio of the data set size to the number of processes
increases.

Table 2 compares the performance of using the dynamicM algo-
rithm versus the bounded least squares (BLS) algorithm followed
by local search, in the M estimation step in MOC. BLS/search gets
better results on precision, which is expected since BLS is the opti-
mal solution for the real relaxation of the M estimation problem for
the Gaussian model. However dynamicM outperforms BLS/search
on the overall F-measure. Moreover, BLS is only applicable for
squared Euclidean distance, whereas dynamicM can be applied for
M estimation with any distance function.

Detailed inspection of the results revealed that MOC gets over-
lapping clusterings that are closer to the ground truths for the text
and the movie data. For example, for movie-afc, the average num-
ber of clusters a movie is assigned to is 1.19, whereas MOC cluster-
ing has an average of 1.13 clusters per movie. The thresholded mix-
ture model got posterior probability values very close to 0 or 1, as
is very common in mixture model estimation for high-dimensional
data: as a result there was almost no cluster overlap for various
choices of the threshold value, and points were assigned to 1.00
clusters on an average in the thresholded mixture models. MOC
was also able to recover the correct underlying multiple genres in
many cases, e.g., the movie “Toy Story” in the movie-afc dataset
belongs to all the three genres of animation, family and comedy in
this dataset, and MOC correctly put it in all 3 clusters.

The main purpose of the experiments in this section is to illus-
trate that the overlapping clustering model can be generalized to
work for exponential models beyond Gaussians. We have not pro-
vided results on the biological datasets in this section due lack of
space. However, note that if we run our algorithm on the biologi-
cal data using BLS/search and a Gaussian model, then we will get
exactly the same results as the SBK model [23].

6. RELATED WORK
Possibility theory, developed in the fuzzy logic community, al-

lows an object to “belong” to multiple sets in the sense of having
high membership values to more than one set [5]. In particular,
unlike probabilities, the sum of membership values may be more
than one [22]. One of the earlier works on overlapping cluster-
ing techniques with the possibility of not clustering all points was
presented in [20]. Most recent work in overlapping clustering has
been primarily driven by the needs of microarray analysis. Several
methods for obtaining overlapping gene clusters, including gene
shaving [16] and mean square residue bi-clustering [8] have been
proposed. Before the PRM based SBK model was proposed, one of
the most notable efforts was the the plaid model [18], wherein the
gene-expression matrix was modeled as a superposition of several
layers of plaids (subsets of genes and conditions).

Bregman divergences were conceived and have been extensively
studied in the convex optimization community [7]. Over the past
few years, they have been successfully applied to a variety of ma-



F-measure Precision Recall
Data MOC Mixture MOC Mixture MOC Mixture
small-synthetic 0.64 ± 0.12 0.36 ± 0.08 0.83 ± 0.07 0.80 ± 0.07 0.53 ± 0.14 0.24 ± 0.07
medium-synthetic 0.71 ± 0.06 0.24 ± 0.01 0.73 ± 0.05 0.60 ± 0.03 0.70 ± 0.09 0.15 ± 0.01
large-synthetic 0.87 ± 0.04 0.33 ± 0.01 0.85 ± 0.06 0.87 ± 0.04 0.89 ± 0.05 0.20 ± 0.01
movie-taa 0.62 ± 0.03 0.50 ± 0.04 0.55 ± 0.01 0.56 ± 0.01 0.71 ± 0.07 0.46 ± 0.08
movie-afc 0.76 ± 0.03 0.61 ± 0.07 0.80 ± 0.01 0.81 ± 0.02 0.72 ± 0.06 0.50 ± 0.09
news-different-3 0.45 ± 0.01 0.41 ± 0.05 0.34 ± 0.01 0.40 ± 0.05 0.68 ± 0.05 0.41 ± 0.06
news-related-3 0.54 ± 0.02 0.39 ± 0.02 0.42 ± 0.01 0.44 ± 0.02 0.76 ± 0.08 0.35 ± 0.01
news-similar-3 0.35 ± 0.02 0.28 ± 0.01 0.23 ± 0.01 0.24 ± 0.01 0.69 ± 0.06 0.34 ± 0.01

Table 1: Comparison of results of MOC and thresholded mixture models on all datasets

F-measure Precision Recall
Data dynamicM BLS/search dynamicM BLS/search dynamicM BLS/search
small-synthetic 0.64 ± 0.12 0.55 ± 0.20 0.83 ± 0.07 0.98 ± 0.03 0.52 ± 0.14 0.41 ± 0.19
medium-synthetic 0.71 ± 0.06 0.65 ± 0.05 0.73 ± 0.05 0.91 ± 0.06 0.70 ± 0.09 0.51 ± 0.06
large-synthetic 0.87 ± 0.04 0.87 ± 0.02 0.85 ± 0.06 0.92 ± 0.02 0.89 ± 0.05 0.83 ± 0.04

Table 2: Results: dynamicM vs Bounded Least Squares (with search) for synthetic data

chine learning issues, for example to unify seemingly disparate
concepts of boosting and logistic regression [11]. More recently,
they have been studied in the context of clustering [2].

Our formulation has some similarities to generalized linear mod-
els (GLMs) [21, 10]. However, there are a few very important dif-
ferences. In GLMs [21], a multidimensional regression problem
of the form dφ(Y, f (BZ)) is solved where Z is the (known) input
variable, Y is the (known) response and f is the so-called canon-
ical link function derived from φ. The problem is to find B and
can be solved using iteratively re-weighted least squares (IRLS) in
the general case. Extension to the case where both B and Z are
unknown and one alternates between updating B and Z has been
studied by Collins et al. [10] while extending PCA to the exponen-
tial families. Although several extensions [15] of the basic GLM
model to matrix factorization have been studied, except for the well
known instance of non-negative matrix factorization (NMF) using
I-divergence [19], all formulations use the canonical link function
and hence are different our formulation. Moreover, our model con-
straints M to be a binary matrix, which is never a standard con-
straint in GLMs.

7. CONCLUSIONS
In contrast to traditional partitional clustering, overlapping clus-

tering allows items to belong to multiple clusters. In several im-
portant applications in bioinformatics, text management, and other
areas, overlapping clustering provides a more natural way to dis-
cover interesting and useful classes in data. This paper has intro-
duced a broad generative model for overlapping clustering, MOC,
based on generalizing the SBK model presented in [23]. It has
also provided a generic alternating minimization algorithm for effi-
ciently and effectively fitting this model to empirical data. Finally,
we have presented experimental results on both artificial data and
real newsgroup and movie data, which is more general and effec-
tive than an alternative “naive” method based on thresholding the
results of a traditional mixture model.

A few issues regarding practical applicability of MOC needs fur-
ther investigation. It maybe often desirable to use different expo-
nential family models for different subsets of features. MOC allows
such modeling in theory, as long as the total divergence is a convex
combination of the individual ones. Further, MOC can potentially
benefit from semi-supervision [3] as well as be extended to a co-
clustering framework [1].
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