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Abstract

This paper describes an automated tool for clas-
sifying tone quality (a quality related to timbre).
This tool provides real-time visual feedback to
players of clarinet to help improve tone pro-
duction technique.  A neural network architec-
ture is employed to build a graphical biofeed-
back device that allows the user to immediately
“see” what changes in technique lead to better
tone-quality.  The tone is also classified and
probability estimates are shown in a bar graph,
giving quantitative feedback to the user.

Introduction

In musical sounds, timbre is that quality which is left
after pitch, duration and intensity are accounted for; it is
the quality that distinguishes the instruments in an or-
chestra.  However, once an instrument and its pitch have
been identified, there still remains to be evaluated the
tone-quality of the instrument relative to other instruments
of its type.  Tone-quality is a primary way of distinguish-
ing skilled players from novice ones, and a refined tone
is a common goal of all instrumentalists.  Because tone-
quality perception is a refined skill that beginning stu-
dents often have difficulty with,  an automated tool that
can provide continuous multi-modal feedback is desir-
able as a pedagogical tool.

Tone quality is a feature that is difficult to analyze in
physical and mathematical terms because it depends on
a great number of parameters.  The fact that the human
auditory system can make distinctions and decisions con-
cerning tone-quality without difficulty, in spite of this

high dimensionality, has led researchers to study the
mechanisms by which biological auditory systems can
achieve such a reduction in dimensionality.  Connectionist
approaches, such as Kohonen’s self organizing map al-
gorithm, seem a logical approach to this problem, par-
ticularly in light of the fact that several kinds of ordered
feature maps are known to appear in human structures
for sensory perception, e.g., in somatosensory maps con-
nected with the sense of touch, tonotopic organization in
the primary auditory cortex, retinotectal mapping in the
primary visual cortex, etc.

Laden [1] has studied neural network based methods for
identifying pitch from complex signals, and Cosi et al
[2] and Toivainen [3] have investigated neural network
based methods for identifying which instrument has pro-
duced a signal (timbre).  Self-organizing maps have been
used by a number of researchers for artificially modeling
timbre classification (Cosi [2];  Feiten & Gunzel [4]),
while others have employed similarity scaling techniques
to determine acoustic parameters contributing to percep-
tion of timbre in psychological subjects, using Multidi-
mensional Scaling (MDS) to map similarity ratings of
numerous samples into a low-dimensional space (Wedin
[5], Grey [6]).  A widely accepted result of several of
these experiments is Grey’s Timbre space, a three dimen-
sional space for clustering timbre using MDS.  Grey’s
timbre space is successful because its three dimensions
can be roughly labeled as describing a) power spectrum
b) synchronicity in attack, and c) presence of high fre-
quency inharmonic noise in the attack stage.

While the present study is not a study of timbre but of
tone-quality classification, tone-quality is a similar at-
tribute, in some respects simply a more refined kind of
timbre classification that further describes different in-
struments and players once their instrument has been iden-
tified.  Thus it is reasonable to assume that tone-quality
perception is processed by mechanisms quite similar to



timbre perception, and that similar methods for investi-
gation can be useful. In particular, is it possible to embed
tone-quality metrics into a very low-dimensional space
while retaining significant similarity information? Our
work investigates this question for a two-dimensional to-
pological space that can be readily visualized, and an-
swers it in the affirmative.  This result forms the core for
a powerful feedback and tutorial system for improving
clarinet tone quality.

Like previous studies, this study uses Fourier analysis to
preprocess samples, producing an auditory image which
is then presented to a self-organizing map.  As previous
researchers have pointed out, using Fourier analysis to
produce an auditory image effectively eliminates useful
time-domain information, which Grey’s timbre space has
shown to be significant in timbre perception.  However,
while time varying effects such as high frequency
inharmonic noise in the attack stage are important in iden-
tifying particular instruments, this study was primarily
concerned with steady state tone-colors for a single in-
strument, making the attack parameters of Grey’ space
less significant.  However, this study would ideally in-
clude better consideration of time-varying effects as well
as provide better auditory modeling (such as cochlear
modeling) for simulating the physical mechanisms of
sound perception.  Current research indeed involves in-
vestigation the use of various methods such as wavelet
analysis to extract useful time-domain information while
still considering the frequency information that is known
to be significant in perception.

The overall system architecture is depicted in Fig. 1.

The following sections describe the different compo-
nents in more detail.

Collecting and Pre-Processing the Data

A limited set of sound samples, representative of several
distinct tone qualities, were utilized to train the initial
network.  Samples were taken with a Sun amplified mi-
crophone using the recording software built into the Sun
OS on a ROSS Hyperstation.  These samples were taken
with 16 bits at a sampling frequency of 44.1 kHz and
were then edited and prepared for use on an Apple
Macintosh 8600/300 using Macromedia’s Sound Edit 16
version 2.

To train the system, a clarinet player from the UT School
of Music provided 300 samples of clarinet tones of vary-
ing quality, where each sample could be classified in one
of four classes of tone quality.  In addition to the examples
of good tone-quality, three examples of poor tone quality
were sampled, each identified by what fault was intro-
duced into the tone production method.  These were 1)
closed throat, 2) low tongue position, and 3) poor air sup-
port.  Samples were taken for each all of these four tone
qualities across three pitches.  The pitches were chosen
to represent the three registers of the clarinet (middle C
for the chalameau register, F2 for the clarion register, and
D3 for the altissimo register) in order to account for the
perceived change in timbre in each of these registers.
Indeed, the harmonic content of each register is slightly
different (essentially, lower harmonics are removed as
the register number is increased), while harmonic con-
tent of each tone-quality is relatively uniform within each
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Figure 1. The clarinet tone is first preprocessed by an FFT, and the power spectrum is normalized.  The frequency vector is then used
to classify the pitch, which is used to decide which harmonics to extract to form the harmonic peak vector.  This vector is fed into the
appropriate SOM, whose response an MLP uses to classify the tones, while an intensity map visually displays the most intense SOM
output node responses.



Figure 2: The multilayer perceptron (MLP) is trained on the response vectors from the SOM.  Each output node represents one
possible tone quality.

register.

Once samples were collected, they were preprocessed
with a windowed Fourier transform using Welch’s aver-
aged periodogram method to produce an auditory image
suitable for input into a SOM.  Each sample was divided
into overlapping sections, each of which was detrended,
then hanning windowed, then zero-padded to length 8196.
The magnitude squared of the DFTs of the sections were
then averaged to form a power spectral density vector.
This vector was normalized to make the samples inten-
sity invariant by forcing the maximum peak of each
sample to be equal to 10 dB.  Finally, because the power
spectrum density vector was several thousand elements
wide, the bands corresponding to the harmonic peaks
(typically appearing in integral multiples of the funda-
mental frequency) were extracted to make a reduced-di-
mensional vector of 32 elements, corresponding to the
first 32 harmonics present in the tone (up to 12 kHz for
F2).  This dimension reduction was performed primarily
to reduce computational effort and speed up response,
but there is also evidence that a similar dimension reduc-
tion occurs in the human auditory system.  Auditory fi-
bers tend to fire in a “phase-locked” way in response to
low-frequency stimuli, resulting in a more prominent re-
sponse in those frequency bands that are integral mul-
tiples of the principal stimulus period, thus emphasizing
the natural harmonics of musical instruments (Cosi 1994).
Thus, this method of feature extraction has some bio-
logical plausibility.

Training

Once the training set was collected, a 10x10 hexagonally
connected self organizing map was constructed using the

SOM toolbox for Matlab.  Due to the differences between
registers, three SOMs were trained, one for each register.
Once the SOMs were trained, the response of each SOM
to each sample was recorded, resulting in 270 response
vectors, where each of the one hundred elements of the
vector represented the response of one node of the SOM.
In order to help visually distinguish different groupings
of samples, the twenty five strongest responding nodes
were isolated by zeroing out the lower valued responses,
resulting in a one-hundred element vector with seventy-
five zeroes and twenty-five non-zero values for each
sample.  This forced Matlab to make all lower respond-
ing notes uniformly colored when the SOM response was
displayed.

The response vectors of the SOM to the elements of the
training set were then used as the training set for a multi-
layer perceptron (MLP), which used the high-response
isolated vectors as inputs and the labels of each vector as
the outputs.  A schematic of the MLP is shown in Figure
2.  Because there were three SOMs, one for each regis-
ter, there were three corresponding MLPs, one for each
SOM.

Output

Once the SOM and MLP had been trained, a production
system was built which evaluates new samples in real
time.  First a sample is taken using a simple amplified
microphone attached to the computer.  This sample is
then preprocessed in the same way as the original train-
ing samples:  The tone is analyzed using a STFT, and the
resulting vector is used to classify the pitch of the sample.
The pitch information is used to identify the sample as
being in register one, two or three, which is then used to
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Figure 3: The output display, showing four example reponses on the left, the real-time response to the user’s input of the upper
right, and the MLP psterior class probablity estimates on the bottom right.

decide which harmonics should be extracted to form the
32 channel acoustical image.  The register information is
also important in deciding which of the three SOMs (and
their corresponding MLP) to use.  Once the 32 channel
image is created, the vector is presented to the SOM, and,
as in the training set, the 25 highest responding nodes are
isolated by setting the values from the 75 lower response
nodes to zero.

This response vector is then used in two ways.  First, the
vector is presented to the trained MLP, which gives the
new sample a particular classification.  The output of the
MLP is shown in a bar graph, so that the user can visu-
ally see how closely their tone corresponds to one of the
predefined classes.  The accuracy of this MLP was tested
in a leave-one-out cross-validation, and an accuracy of
93 percent was observed.

Second, the response vector is plotted directly in a two
dimensional intensity map, where high responses are rep-
resented by colors early in the spectrum (such as red and
orange), while low intensity responses are represented
by darker, bluer colors.  Figure 3 shows the output dis-
play seen by the user.

The visual output is enhanced in two further ways.  First,
in addition to the two displays described above, the user
is also shown several example SOM responses to tone
samples in the training set.  This way the user can make
visual comparisons between his tone and other tones.

Second, the entire process of matching and displaying a
tone sample takes less than a second, so the display of
the user’s tone quality can be updated in near real time.
The sampling, classifying and displaying algorithms are
placed in a continuous loop, so that the display is up-
dated slightly faster than once per second.  The resulting
effect is that a changing tone-quality appears to result in
a moving color region on the two-dimensional map.

Conclusions

The SOM and MLP make for novel and useful tools for
musical analysis and pedagogy.  This is an excellent ex-
ample of how useful neural networks are for working
with extremely noisy and mathematically poorly charac-
terized data like musical signals.

There are several ways in which this system can be im-
proved.  First, it would be useful to allow many different
clarinetists to test and provide feedback about the sys-
tem to find more useful ways for representing tone-qual-
ity and possible solutions.  Current results are based en-
tirely on the opinions of one expert player. Second, be-
cause preprocessing is based on Fourier analysis, this
machine is currently only capable of providing feedback
about steady-state “long tones”.  It is not capable of pro-
viding feedback about the attack or decay stage of notes,
nor can it respond effectively to time-varying changes in
tone color that the more advanced clarinet players pro-
duce.  Furthermore, while the clarinet players at UT do



not use vibrato, some clarinetists do, as do many other
instruments.   To this end, current research is investigating
the use of wavelet analysis to replace the Fourier analysis
module of the system in order to identify invariant fea-
tures in the time-domain samples.  This makes the case of
feature reduction much more difficult, as there is no method
as straightforward as selecting integral harmonics avail-
able here.  One possible direction is the use of Kohonen’s
adaptive subspace SOM, which has been shown to spon-
taneously generate a wavelet-like solution through train-
ing.  Until these possible measures are implemented, how-
ever, we must be satisfied with long tone results.
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