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Abstract. While a variety of multiple classifier systems have been stud-
ied since at least the late 1950’s, this area came alive in the 90’s with
significant theoretical advances as well as numerous successful practi-
cal applications. This article argues that our current understanding of
ensemble-type multiclassifier systems is now quite mature and exhorts
the reader to consider a broader set of models and situations for fur-
ther progress. Some of these scenarios have already been considered in
classical pattern recognition literature, but revisiting them often leads to
new insights and progress. As an example, we consider how to integrate
multiple clusterings, a problem central to several emerging distributed
data mining applications. We also revisit output space decomposition to
show how this can lead to extraction of valuable domain knowledge in
addition to improved classification accuracy.

1 A Brief History of Multilearner Systems

Multiple classifier systems are special cases of approaches that integrate sev-
eral data-driven models for the same problem. A key goal is to obtain a better
composite global model, with more accurate and reliable estimates or decisions.
In addition, modular approaches often decompose a complex problem into sub-
problems for which the solutions obtained are simpler to understand, as well as
to implement, manage and update.

Multilearner systems have have a rather long and interesting history. For
example, Borda counts for combining multiple rankings are named after its 18th
century French inventor, Jean-Charles de Borda. Early notable systems include
Selfridge’s Pandemonium [1], a model of human information processing involving
multiple demons. Each demon was specialized for detecting specific features or
classes. A head-demon (the combiner) would select the demon that “shouted
the loudest”, a scheme that is nowadays called a “winner-take-all” solution.
Nilsson’s committee machine [2] combined several linear two-class models to
solve a multiclass problem.

A strong motivation for multilearner systems was voiced by Kanal in his
classic 1974 paper [3]:

“It is now recognized that the key to pattern recognition problems does
not lie wholly in learning machines, statistical approaches, spatial, fil-
tering,..., or in any other particular solution which has been vigorously



advocated by one or another group during the last one and a half decades
as the solution to the pattern recognition problem. No single model exists
for all pattern recognition problems and no single technique is applica-
ble to all problems. Rather what we have is a bag of tools and a bag of
problems.”

This inspired much work in the late seventies on combining linguistic and statis-
tical models, and on combining heuristic search with statistical pattern recogni-
tion. Subsequently, similar sentiments on the importance of multiple approaches
were also voiced in the AI community, e.g., by Minsky [4]:

“ To solve really hard problems, we’ll have to use several different rep-
resentations.....It is time to stop arguing over which type of pattern-
classification technique is best .....Instead we should work at a higher
level of organization and discover how to build managerial systems to
exploit the different virtues and evade the different limitations of each
of these ways of comparing things.”

In the 80’s, integration of multiple data sources and/or learned models was
considered in several disciplines, for example, the combining of estimators in
econometrics [5] and evidences in rule-based systems. Especially noteworthy are
consensus theoretic methods developed in statistics and management science,
including how to produce a single probability distribution that summarizes mul-
tiple estimates from different Bayesian experts [6, 7]. The area of decision fusion
and multi-sensor data fusion [8] has a rich literature from this era that can be
useful for modern day multiclassifier problems as well. Multiple model systems
are also encountered in some large engineering systems such as those that de-
mand fault tolerance or employing control mechanisms that may need to function
in different operating regimes [9]. In particular, multiple models for nonlinear
control has a long tradition [10].

In the data analysis world, hybridization in a broader sense is seen in ef-
forts to combine two or more of neural network, Bayesian, GA, fuzzy logic and
knowledge-based systems. The goal is to incorporate diverse sources and forms
of information and to exploit the somewhat complementary nature of differ-
ent methodologies. Since in real-life applications, classification is often not a
stand-alone problem but rather a part of a larger system involving optimization,
explanation and evaluation of decisions, interaction with the environment, etc.,
such hybrid approaches will be increasingly relevant as we expand the scope of
studies involving multiple classifiers.

2 Some Lessons from Multiclassifier Design

Figure 1 shows a generic diagram of the most popular type of multilearner sys-
tems studied in the past decade. While data ultimately originates from an under-
lying universal set X , each learner may receive somewhat different subsets of the
data for “training” or parameter estimation (as in bagging and boosting), and
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Fig. 1. Generic architecture of a multilearner system

may apply different feature extractors (fs) on the same raw data. Along with se-
lection of training samples and feature extractors, one needs to decide how many
and what types of learners to use, and finally, how to design the meta-learner.
There are also larger issues of how to train the components given that they are
part of a bigger system, and to estimate the overall gains achievable.

Ensembles. The simplest meta-learner is the ensemble or combiner, where
the output y is determined solely by the outputs of the individual learners,
each trying to solve the same classification or regression problem. The path
indicated by the right-most dotted line in Fig. 1 is not used. In the past few
years, a host of experimental results from both the neural network and machine
learning communities show that combining the outputs of multiple models via
voting, (weighted) averaging, order statistics, product rule, entropy, stacking etc.,
provides a statistically significant improvement in performance along with tighter
confidence intervals [11, 12]. A notable study [13] shows that if perfect Bayesian
classifiers are learned on distinct sets of extracted features, then a weighted
product rule is the optimal combination scheme. The study used sensitivity
analysis to show that the product rule is more susceptible to imperfections in the
individual classifiers, and a sum (or median) rule turns out to be more reliable in
practical situations. An extensive listing of both theoretical and practical works
on ensembles or committees circa 1996 is in [14].

Analytical expressions have been developed for both regression [15, 16] and
classification[17, 18], to quantitatively estimate the extra accuracy achieved by
an ensemble. The seminal work of Hansen and Salamon [17] recognised that the
unstable nature of certain neural networks was helpful for ensembles, though it
was perhaps too optimistic in anticipating the amount of independence achiev-
able among different networks given a shared training set. An extensive analysis
of the gains provided by plurarity voting was provided in this paper. In contrast,



the analysis of [18] assumes that the individual classifiers provide estimates of the
a posteriori class probabilities1. These estimates are combined by simple aver-
aging. By focussing on the distributions of the estimated a posteriori probability
functions about the true a posteriori probabilities, and how these distributions
(and hence the decision boundaries obtained using Bayes rule) are affected when
the averaging combiner is used, the following expression was derived under mild
assumptions:

Eave
model =

1 + δ(m − 1)
m

Emodel , (1)

where Eave
model and Emodel are the expected values of the added 2 classification

error rate for the average-based combiner and for the individual classifiers respec-
tively, m is the number of classifiers combined, and δ is the average correlation of
the errors (in estimating the a posteriori probabilities; not to be confused with
classification error rate) among the individual classifiers. Note that if δ = 0,
signifying that the errors in approximating the a posteriori functions are uncor-
related, then the added error can be reduced by a factor of m if an ensemble
of m classifiers is used. The Bayes error of course cannot be changed once the
input feature space has been selected. In practice, δ tends to be closer to 1 than
to 0 because of (partially) shared training sets and overlapping inductive biases
[19], so the gains are not as much.

Dietterich [20] provides an accessible and informal reasoning, from statistical,
computational and representational viewpoints, of why ensembles can improve
results. Combining is primarily a way of reducing model variance, though in
certain situations it also reduces bias. It works best when each learner is well
trained, but different learners generalize in different ways, i.e., there is diversity
in the ensemble [16].

The impact of diversity is quantified explicitly via the correlation measure
δ in Eq. 1. Diversity may be induced through different presentations of the in-
put data, as in bagging, variations in learner design, or by adding a penalty
to the ouputs to encourage diversity. Interestingly, while pre-90’s work mostly
concentrated on design of the individual learners and the combination scheme,
the most spectacular gains have come from smart input selection, as this has the
most noticeable impact on diversity.3 Another point of note is that ensembles are
most popular in the machine learning and neural network communities, where
the favorite classification models, namely decision trees and MLPs, are relatively
unstable - hence leading to greater diversity! In constrast, ensembles are not that
commonly applied, for example, to combine multiple robust logistic regression
models or other more stable techniques. Finally, given adequately powerful con-
stituent classifiers, there is a sweet spot of training data size for which diversity
1 for example, using MLP and RBF based classifiers trained with “1-of-C” desired

output vectors and a mean squared error or cross-entropy cost function.
2 i.e., extra error due to imperfect classifiers, incurred in addition to the Bayes error.
3 This has prompted studies on why bagging and boosting approaches work so well.

Attempts to relate them to established statistical approaches are resulting in more
sophisticated input selection techniques [21].



through input variation is most effective. For example, if there is too little data,
the gains achieved via a bagged ensemble cannot compensate for the decrease in
accuracy of individual models, each of which now sees an even smaller training
set. On the other end, if the data set is extremely large and computation time
is not an issue, even a single flexible classifier can be quite adequate.

My own “discovery” of ensembles was quite serendipitous. In the late 80’s, I
participated in the DARPA program of sonar signal classification using neural
networks. It was soon evident that many different types of features, including
Fourier, wavelet and autoregressive coefficients, could be extracted from a given
preprocessed time series. Each type of features provided useful discriminatory
information, but was not comprehensive by itself. At the same time, it was clear
that networks with global hidden units such as sigmoidal functions, general-
ized quite differently from those with localized hidden units such as gaussian
functions. So our solution was to use multiple feature sets as well as multiple
classification models [11]. The results from individual classifiers were combined
in several ways, including sum, entropy, majority vote and evidential reasoning
based approaches [22]. This multiclassifier system gave the best results among
all the solutions in this program and was subsequently selected for further de-
velopment and deployment. Clearly, an ensemble approach was a good idea, and
good ideas tend to pre-exist and get re-invented! Indeed, our subsequent litera-
ture study turned up much of the historical work described in the introduction,
in addition to more contemporanous use of ensembles for other applications [23,
24]. By now, ensembles are being regarded among the most significant advances
in pattern classification in the 90’s, and the successful series of international
workshops on Multiple Classifier Systems started in 2000 is a solid testimony to
this fact [25].

Modular Networks. If the dotted line on the far right in Fig. 1 is used
so that the combining action now depends on the current input, we obtain
(soft) modular solutions. In these divide-and-conquer approaches, relatively sim-
ple learners get specialized in different parts of the input-output space during
the training phase. This specialization enables the use of simpler as well as better
models tailored to their localized domain of expertise. The total model is a (pos-
sibly soft) union of such simpler models. Techniques of modular learning include
“mixtures-of-experts” (MOE), local linear regression, CART/MARS, adaptive
subspace models, etc.[26–28]. Note that, in contrast to ensembles, the individual
models do not need to perform well across all inputs, but only for their regions
of expertise. Modular learning systems are based on the precept that learning a
large number of simple local concepts is both easier and more useful than learn-
ing a single complex global concept. They are often found to learn concepts more
effectively (better performance) and more efficiently (faster learning). Using sim-
pler local models have several added advantages such as easier interpretability,
better local tuning or adaptation, easier incorporation of prior knowledge, and
less susceptibility to the curse of dimensionality.

Modular approaches till now have been largely confined to regression prob-
lems. A good beginning for classification applications is made in [29], where



the authors dynamically select one classifier out of an ensemble based on the
estimated accuracy in the neighborhood of the test point under consideration.
However, unlike in mixtures-of-experts, the procedure does not specialize differ-
ent classifiers for different regions of the input space during the training process.
Rather, all classifiers are trained on the entire input space and selection of a spe-
cific model is only made during the test phase. Thus there is scope for further
work in specializing classifiers based on soft decomposition of the input space.

(Back to) The Future. While there seems more scope for investigating
modular multiclassifiers, overall I feel that the understanding of multilearner
systems for static regression and classification is now quite mature. It is time to
use this solid foundation to extend the multilearner framework to qualitatively
new and more ambitious domains. There are several promising directions that
can be taken. In the next sections, I examine two such directions: consensus
clustering and output space decomposition. Both topics have been studied in
the past to some extent, but recent application demands and theoretical progress
makes it worthwhile to revisit them and expand their scope.

3 Combining Multiple Clusterings

Unlike classification problems, there are no well known approaches to combin-
ing multiple clusterings. This problem is more difficult than designing classifier
ensembles since cluster labels are symbolic and so one must also solve a corre-
spondence problem. In addition, the number and shape of clusters provided by
the individual solutions may vary based on the clustering method as well as on
the particular view of the data presented to that method. Moreover, the desired
number of clusters is often not known in advance. In fact, the ‘right’ number of
clusters in a data-set depends on the scale at which the data is inspected, and
sometimes, equally valid (but substantially different) answers can be obtained
for the same data [30].

History. A substantial body of largely theoretical work on consensus clas-
sification exists from the mid-80’s and earlier [31]. These studies used the term
‘classification’ in a very general sense, encompassing partitions, dendrograms
and n-trees as well. In consensus classification, a profile is a set of classifications
which is sought to be integrated into a single consensus classification. A repre-
sentative work is that of [32], who investigated techniques for strict consensus.
Their approach is based on the construction of a lattice over the set of all par-
titionings by using a refinement relation. Such work on strict consensus works
well for small data-sets with little noise and little diversity and obtains solution
on a different level of resolution. The most prominent application of strict con-
sensus is for the computational biology community to obtain phylogenetic trees
[33]. A set of DNA sequences can be used to generate evolutionary trees using
criteria such as maximum parsimony, but often one obtains several hundreds of
trees with the same score function. In such cases, biologists look for the strict
consensus tree, the ‘infimum’, which has lower resolution but is compatible with
all the individual trees. Note that such consensus approaches are very domain



specific. In particular, (i) they combine non-rooted but hierarchical clusterings,
(ii) they use domain specific metrics (e.g. Robinson-Foulds distance) and evalua-
tion criteria such as parsimony, specificity and density, and (iii) strict consensus
is a requirement.

More general approaches to combining multiple clusterings have started to
emerge recently. For example, in [34] a feasible approach to combining distributed
agglomerative clusterings is introduced, motivated by distributed data mining
scenarios. Another innovative approach is encountered in [35], where multiple,
fine-grain k-means clusterings are used to determine a co-association matrix of
patterns. This matrix represents a derived similarity measure that is then used
by an MST algorithm for identifying arbitrary shaped clusters.

3.1 Motivations for a Revisit

Why should the problem of integrating multiple clusterings be revisited? First,
the works on strict consensus are narrow in scope. They were not meant for large
datasets, and these approaches indeed do not scale well. Moreover, in presence
of strong noise the results can be trivial, namely the supremum is the mono-
lithic clustering (one cluster) and the infimum is the set of singletons. Another
drawback is that the strict consensus is not at the same level of resolution as
the original groupings. Second, there are several emerging applications that can
benefit from cluster ensembles. We briefly describe three application scenarios
below.

Quality and Robustness. Combining several clusterings can lead to im-
proved quality and robustness of results. As compared to classification one often
finds even more variability in clustering results for difficult data sets. This in-
creased level of diversity means that the potential gains from employing ensem-
bles is higher than that for classification problems of comparable difficulty. In
the clustering context, diversity can be created in numerous ways, including: (i)
using different features to represent the objects, (ii) varying the number and/or
location of initial cluster centers in iterative algorithms such as k-means, (iii)
varying the order of data presentation in on-line methods such as BIRCH, and
(iv) using a portfolio of very different clustering algorithms.

A different but related motivation for using a cluster ensemble is to build a
robust, diverse clustering portfolio that can perform well over a wide range of
data-sets with little hand-tuning.

Knowledge Reuse. Another important consideration is the reuse of existing
clusterings. In several applications, a variety of clusterings for the objects under
consideration may already exist. For example, on the web, pages are categorized
e.g., by Yahoo! (according to a manually-crafted taxonomy), by your Internet
service provider (according to request patterns and frequencies) and by your
personal bookmarks (according to your preferences). Can we reuse such pre-
existing knowledge to create a single consolidated clustering? Knowledge reuse
[36] in this context means that we exploit the information in the provided cluster
labels without going back to the original features or the algorithms that were used
to create the clusterings.



Distributed Computing. The ability to deal with clustering in a dis-
tributed fashion is becoming increasingly important since real applications nowa-
days often involve distributed databases. In several situations it may not be
feasible to collect all the data into a single flat file, because of the computa-
tional, bandwidth and storage costs, or because of a variety of practical reasons
including security, privacy, proprietary nature of data, need for fault tolerant
distribution of data and services, real-time processing requirements, statutory
constraints imposed by law, etc [37]. So, in a distributed computing scenario,
each clusterer may have access to only some of the objects, or see only a limited
number of features or attributes of each object. How can one perform distributed
clustering and combining of results under such situations?

3.2 Cluster Ensembles: A Knowledge Reuse Framework

Clearly, there are many approaches and issues in combining multiple cluster-
ings. In this section, we summarize some results from our recent work [38] on
one specific formulation: the combination of multiple partitionings of the same
underlying set of objects without accessing the original features. Since only clus-
ter labels are available to the combiner, this is a framework for knowledge reuse
[36].

If we number the k clusters as 1, .., k, then a given clustering can be denoted
by a label vector λ ∈ N

n, after imposing an arbitrary order on the n objects
that are being clustered. The first issue to address is how to evaluate a consen-
sus clustering. Note that there is no ground truth to measure against. Intuitively,
if there is no other apriori knowledge, then the best one can do is to extract the
commonalities among the different clusterings. This suggests that mutual infor-
mation, a symmetric measure that quantifies the statistical information shared
between two distributions, is the natural measure of the consensus quality. Sup-
pose there are two labelings λ(a) and λ(b). Let there be k(a) groups in λ(a) and
k(b) groups in λ(b). Let n(h) be the number of objects in cluster Ch according
to λ(a), and n� the number of objects in cluster C� according to λ(b). Let n

(h)
�

denote the number of objects that are in cluster h according to λ(a) as well as in
group � according to λ(b). Then, a [0,1]-normalized mutual information criterion
φ(NMI) is computed as follows [39]:

φ(NMI)(λ(a), λ(b)) =
2
n

k(a)∑
�=1

k(b)∑
h=1

n
(h)
� logk(a)·k(b)

(
n
(h)
� n

n(h)n�

)
(2)

We propose that the optimal combined clustering be defined as the one that has
maximal average mutual information with all individual labelings, given that
the number of consensus clusters desired is k.

Efficient Consensus Functions. In [38], three efficient heuristics are pro-
posed to solve the cluster ensemble problem. All algorithms approach the prob-
lem by first transforming the set of clusterings into a hypergraph representation.
Simply put, each cluster is considered as a hyperedge connecting all its members



(vertices). The hyperedges obtained from different clusterings are all added to a
common graph, which thus has n vertices and

∑r
q=1 k(q) hyperedges.

The simplest heuristic is to define a similarity measure between two objects
as the fraction of clusterings in which these objects are in the same cluster. The
resulting matrix of pairwise similarities can be used to recluster the objects us-
ing any reasonable similarity-based clustering algorithm. The second heuristic
looks for a hyperedge separator that partitions the hypergraph into k uncon-
nected components of approximately the same size, using a suitable hypergraph
partitioning package such as HMETIS. The idea behind the third heuristic is
to group and collapse related hyperedges into k meta-hyperedges. The hyper-
edges that are considered related for the purpose of collapsing are determined
by a graph-based clustering of hyperedges. Finally, each object is assigned to the
collapsed hyperedge in which it participates most strongly.

It turns out that the first and third approaches typically do better than the
second. Since the third approach is much faster than the first, it is preferred.
However, note that our objective function has an added advantage that it allows
one to add a stage that selects the best consensus function without any supervi-
sion information, by simply selecting the one with the highest NMI. So, for the
results reported later, we simply use this ‘supra’-consensus function Γ , obtained
by running all three algorithms, and selecting the one with the greatest score.

Applications and Results. For brevity, we just illustrate one application
of cluster ensembles, namely how it can be used to boost quality of results by
combining a set of clusterings obtained from partial views of the data. This
scenario is motivated by certain distributed data mining situations in which it is
not feasible to collect all the features at one central location. Results on a wider
range of application scenarios and data sets can be found in [38].

For our experiments, we simulate such a scenario by running several cluster-
ers, each having access to only a restricted, small subset of features. The cluster-
ers find groups in their views/subspaces. In the combining stage, individual re-
sults are integrated to recover the full structure of the data (without access to any
of the original features). Results are provided on two real data sets: (i) PENDIG
from the UCI ML repository, is for pen-based recognition of handwritten digits
from 16 spatial features. There are ten classes of roughly equal size corresponding
to the digits 0 to 9. (ii) YAHOO represents 2340 documents from 20 news cate-
gories, and is available from ftp://ftp.cs.umn.edu/dept/users/boley/. Af-
ter standard preprocessing, each document is represented by a 2903-dimensional
vector. These two data sets are partitioned into 10 and 40 clusters respectively
by each clustering algorithm. For this experiment, the individual clusterers are
all graph-partitioning based (as they are quite robust and give comparable sized
clusters), using a domain-appropriate similarity function, namely, Euclidean dis-
tance for PENDIG and cosine similarity for YAHOO. Table 1 summarizes the results,
averaged over 10 runs. For example, in the YAHOO case, 20 clusterings were per-
formed in 128-dimensions (occurrence frequencies of 128 randomly chosen words)
each. The average quality amongst the results was 0.17 and the best quality was
0.21. Using the supra-consensus function to combine all 20 labelings results in a



quality of 0.38, or 124% higher mutual information than the average individual
clustering. The results indicate that, when processing on the all features is not
possible but multiple, limited views exist, a cluster ensemble can significantly
boost results compared to individual clusterings.

data subspace#models quality of consensusmax. individual qualityave. individual quality

#dims r φ(NMI)(κ, λ) maxq φ(NMI)(κ, λ(q)) avgqφ(NMI)(κ, λ(q))

PENDIG 4 10 0.59009 0.53197 0.44625
YAHOO 128 20 0.38167 0.21403 0.17075

Table 1. Effectiveness of consensus clustering for integrating multiple clusterings based
on partial feature views.

4 Output Space Decomposition [40]

When one is faced with a C > 2 class problem, it is often preferable to break
it down into multiple sub-problems, each involving less than C classes or meta-
classes, where a metaclass, Ω, is formed by the union of two or more of the
original classes. This approach entails a decomposition of the output space, i.e.,
the space of target classes, and has to deal with the issue of how to combine
the answers from the sub-problems to yield a solution for the original C-class
problem. A major motivation for this approach is that the sub-problems are
typically much simpler to solve. In addition, feature selection/extraction can be
tailored to each individual sub-problem. We shall see later that output space
decomposition can also lead to extraction of valuable domain knowledge such
as the relationships and natural hierarchies among different classes, the most
discriminative features for a given pair of classes, etc.

Brief History. Both the Pandemonium (1958) and the Learning Machine
(1965) models mentioned in the introduction involve output space decomposi-
tion. Nilsson’s machine trained one linear discriminant function per class. For a
given test input, the class with the highest discriminant value was assigned as
the predicted label. This machine partitions the input space using hyperplanes
that all intersect at a point. This approach has since been extended to include
quadratic discriminants and kernel discriminants. Note that they all involve C
two-class problems with a simple “max” combination function, and are attrac-
tive when the individual classifiers are simple. Even with the advent of more
general classifiers, this methodology is helpful if either C is large or the class
boundaries are quite complex. For example, it has been shown that in several
cases, building C MLP-based models, one each for discriminating a specific class
from all the rest, outperforms a single complex model for discriminating all the
classes simultaneously [41].

In the 70’s and 80’s, there were some works in the pattern recognition com-
munity that used multiclassifiers arranged in tandem or as a tree-structured
hierarchy, and exploited output space decomposition[42]. One interesting tech-
nique was to decompose a C-class problem into

(
C
2

)
two-class problems, one for

each unique pair of classes. A naive way of labeling a test sample is to let each



of the
(
C
2

)
vote for the more likely of its two classes, and then sum up all the

votes to determine the winner. A more sophisticated approach [43] iteratively
re-estimates the overall posterior probabilities from the

(
C
2

)
pairwise posterior

probabilities. We have used this technique to address a 14 feature, 26-class digit
recognition problem and a 14 feature, 11-class remote sensing problem [44]. What
was most remarkable was that, in both applications, certain pairs of classes could
be distinguished by only using 2 or 3 features, even though the entire C-class
problem needed all the input features. But a drawback of this approach is that
O(C2) classifiers are needed, which becomes impractical if the number of classes
is in the tens or more.

In the machine learning community, a seminal work involving output space
decomposition is called error-correcting output coding [45]. Each member of an
ensemble solves a 2-class problem obtained by partitioning the original classes
into two groups (meta-classes) either randomly or based on error correcting
codes. A simple voting scheme is then used by the ensemble to label a test
input. This technique has the advantage that the number of classifiers required
can be varied and need not be quadratic in C. It also retains another advantage
of output decomposition, namely that feature selection can be tailored for each
2-class problem [46]. However, the output partitioning, being random, fails to
detect or exploit any natural affinities among different classes. Consequently,
some of the two-class problems may be quite complicated as very different classes
can get grouped together.

Prognosis. A very promising direction to explore is the design of multi-
ple classifiers organized as a hierarchy. A good example of the benefits of this
approach is provided in [47], where a hierarchical topic taxonomy is used to ef-
fectively organize large text databases. Recently, we introduced a hierarchical
technique to recursively decompose the output space into a binary tree [48].
The resulting architecture is illustrated in Fig. 2. It requires that only C − 1
two-(meta) class problems need to be solved.

The hierarchical ensemble is built using a top-down approach based on a gen-
eralized associative modular learning approach. Initially, a randomly selected
class is fully associated with a metaclass (to seed the partitioning) while all
other classes are equally associated with both metaclasses. An EM type itera-
tive procedure is used to update the metaclass parameters for the current class
associations, and then update the associations based on the new metaclass pa-
rameter values. Note that the selection of features that best discriminate the
resulting meta-classes can be concurrently updated as well. Using ideas from de-
terministic annealing, a temperature parameter can be used to slowly converge
the associations to hard partitions in order to induce specialization and decou-
pling among the modules. The overall approach produces class groupings that
are more natural in the sense of being highly likely to conform well with human
domain experts’ opinions.

The hierarchical ensemble technique described above was applied to the im-
portant remote sensing problem of determining the types of land-cover from
∼200 dimensional hyperspectral images. These are typically about ∼10 class
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Fig. 2. Hierarchical decomposition of a 5 class problem into four 2-(meta)class prob-
lems. All the feature extractors (ψs) as well as the classifiers (φs) are automatically
determined as part of the decomposition process.

problems. In coastal regions, we found that the first split would invariably sep-
arate land classes from water classes, the land classes would get further split
between uplands and wetlands, and so on. Equally important, custom discrimi-
natory features were obtained for the sub-problems, adding to our domain knowl-
edge.

The real payoff of such extracted knowledge will come as more and more of
the earth’s surface get mapped. Currently, hyperspectral classification is done
based on training and test samples drawn from the same image, since even a
single image generates megabytes of data. In a given image, not all classes are
present, and there are different mixtures of classes in different images. Due to
such changing compositions, when one attempts to apply a classfier to a new
image, the results are often much weaker since a fundamental assumption of data-
driven modeling, namely that the training and test samples are drawn uniformly
from a common distribution, is violated. The extracted domain knowledge from
hierarchical ensembles suggests a way out of this dilemma. If one organizes this
information properly, then, given data from a new area, one can quickly estimate
what features to extract and examine, and what classes to anticipate, even with
very little data from this new region. This can greatly reduce the amount of data
(both labelled and unlabelled) needed, with little compromise in the results. It
also provides a nice platform for integrating semi-supervised learning ideas into
a multiclassifier framework, yet another topic worth exploring!



5 Concluding Remarks

Besides the two directions described in this article, there are several more venues
worthy of exploration for scholars interested in multilearner systems. For exam-
ple, virtually all the work on ensembles and mixture of experts to date is on
static problems, where the output is solely a function of the current input. Sup-
pose we are interested in classifying variable length sequences of vectors, for
example, those representing gene expressions or acoustic signals. Does temporal
information have to be dealt with at the pre-processing step since our ensem-
bles cannot handle them directly, or can memory mechanisms be incorporated
into the meta-learner? What if one member of an ensemble is ready to make
a decision after observing a subsequence while others want to see more of the
sequence?

Another interesting situation arises when one has to solve a series of different
but related classification tasks, either simultaneously or over time, rather than a
single task. This issue is becoming increasingly relevant due to the ever increasing
and continual generation of data and problems thanks to the growing Internet,
advances in the human genome project, evolving financial markets, etc. Some
advances on this topic have already been made under categories such as ‘life-long
learning’, ‘learning to learn’, and ‘knowledge reuse’ [49, 36]. From a multiclassifier
point of view, in this case the individual members of an “ensemble” may not
be trying to solve the same task or be trained simultaneously, both significant
departures from the traditional framework. Clearly there are enough venues that
can be fruitfully explored, and I look forward to a continued stream of exciting
research on multiclassifier systems in the near future.
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