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In classical clustering, each data point is assigned to at least one cluster. However, in many ap-

plications only a small subset of the available data is relevant for the problem and the rest needs

to be ignored in order to obtain good clusters. Certain nonparametric density-based clustering

methods find the most relevant data as multiple dense regions, but such methods are generally

limited to low-dimensional data and do not scale well to large, high-dimensional datasets. Also,

they use a specific notion of “distance”, typically Euclidean or Mahalanobis distance, which further

limits their applicability. On the other hand, the recent One Class Information Bottleneck (OC-IB)

method is fast and works on a large class of distortion measures known as Bregman Divergences,

but can only find a single dense region. This article presents a broad framework for finding k dense

clusters while ignoring the rest of the data. It includes a seeding algorithm that can automatically

determine a suitable value for k. When k is forced to 1, our method gives rise to an improved ver-

sion of OC-IB with optimality guarantees. We provide a generative model that yields the proposed

iterative algorithm for finding k dense regions as a special case. Our analysis reveals an interest-

ing and novel connection between the problem of finding dense regions and exponential mixture

models; a hard model corresponding to k exponential mixtures with a uniform background results

in a set of k dense clusters. The proposed method describes a highly scalable algorithm for finding

multiple dense regions that works with any Bregman Divergence, thus extending density based

clustering to a variety of non-Euclidean problems not addressable by earlier methods. We present

empirical results on three artificial, two microarray and one text dataset to show the relevance and

effectiveness of our methods.
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1. INTRODUCTION

Clustering, which involves dividing data into groups of similar objects, is an
important unsupervised learning problem that has been extensively applied in
various domains [Jain and Dubes 1988], and a variety of hierarchical [Johnson
1967; Jiang et al. 2003; Gupta et al. 2008; Gupta and Ghosh 2001b], partitional
[Banerjee et al. 2005b; Dhillon et al. 2003; MacQueen 1967; Linde et al. 1980;
Buzo et al. 1980; Karypis and Kumar 1998], graphical [Hendrickson and Leland
1995; Long et al. 2007; Sharan and Shamir 2000; Gupta and Ghosh 2001b;
Guha et al. 1999; Karypis and Kumar 1998; Karypis et al. 1997] and overlap-
ping [Banerjee et al. 2005a; Battle et al. 2004; Hastie et al. 2000; Arabie et al.
1981] clustering algorithms have been proposed and have found applications
in a wide variety of domains such as identifying customer and product groups
using market-basket data [Yun et al. 2001; Strehl and Ghosh 2000; Gupta and
Ghosh 2001a, 2001b; Guha et al. 1999], document/text categorization [Dhillon
et al. 2003, 2002; Banerjee et al. 2005a; Zhong 2005], and identifying functional
groupings of genes and proteins in bioinformatics [Jiang et al. 2003; Hendrick-
son and Leland 1995; Gupta et al. 2008; Sharan and Shamir 2000; Battle et al.
2004; Hastie et al. 2000].

In classical clustering, each data point either fully belongs to one cluster or
is softly assigned to multiple clusters. However, in certain real-world problems,
natural groupings are found among only on a small subset of the data, while
the rest of the data shows little or no clustering tendencies. In such situations
it is often more important to cluster a small subset of the data very well, rather
than optimizing a clustering criterion over all the data points, particularly in
application scenarios where a large amount of noisy data is encountered.

For example, consider a large, high-dimensional transactional market-
basket data that consists of product purchase records of a large number of
customers of a retail chain, gathered over a considerable period of time. For a
multitude of reasons, including rapid growth of the customer base and product
offerings, rapid evolution of the product catalog, and customer churn/inactivity,
such data can be very sparse, with the majority of the customers buying only
a very small set of products from a catalog of thousands of items [Linden et al.
2003; Gupta 2000]. Such a dataset can be used for clustering either products
(with customers as features) or customers (with products as features). Cluster-
ing on such data is useful in many applications including product recommen-
dations, customer and product segmentation, and identifying various customer
and market trends. However, typically only a small subset of customers show
statistically significant coherent buying behavior and that too when one fo-
cuses only a small subset of products [Strehl and Ghosh 2003; Deodhar and
Ghosh 2007; Wedel and Steenkamp 1991]. Therefore, a clustering algorithm
for such datasets should have the ability to prune out (potentially large) sparse
and noisy portions of the data to uncover the highly coherent clusters. There
are also nonalgorithmic reasons for desiring such a capability, for example,
the marketing department of a retailer might want to target only a fraction of
the customers and ignore the rest so as to maximize the ROI of their usually lim-
ited budgets. Another reason for desiring higher accuracy in such models at the
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cost of less coverage could be to minimize the chance targeting of a customer
with the wrong product, which can negatively impact a customer’s shopping
experience.

As a second example, consider microarray datasets that record the relative
expression levels of a few thousand genes across multiple experimental con-
ditions. The conditions typically cover only a specific “theme” such as stress-
response, and therefore only a few genes that are related to the conditions
show good clustering. Biologists are interested in identifying small groups
of genes that show strongly correlated expression patterns, as they indicate
common participation in biological processes that are involved in the spe-
cific context. For example, for the Gasch dataset [Gasch et al. 2000], which
consists of only stress response experiments and is a popular benchmark for
clustering microarray data, according to the authors, over 5,500 genes out of
6,151 genes are not directly involved in stress response. These genes show in-
significant change in expression level with respect to the control sample, and
should be pruned in order to better identify and characterize the genes that
are actually involved in specific types of stress responses. Similar character-
istics have been observed and exploited in other microarray as well as pro-
tein mass spectroscopy and phylogenetic profile datasets [Hastie et al. 2000;
Jiang et al. 2004; Dettling and Bühlmann 2002; McGuire and Church 2000],
where available features are often focused towards a few important contexts
that are suitable for resolving only a small number of well-defined genetic
pathways.

Finally, consider the grouping of documents according to their relevance to
certain search queries. Certain documents are not relevant for any of the queries
of interest. Moreover, the user is often interested in finding the top few matches
for a broad-topic query rather than all possible matches, so that a system that
returns a small number of highly relevant documents might be preferable over
the one that returns hundreds of somewhat relevant documents, that is, preci-
sion is more important than recall. By pruning out irrelevant or less relevant
documents, precision can be improved without compromising much on recall
[Crammer and Chechik 2004].

One way to handle such scenarios is to prune the large fraction of “don’t care”
data as a preprocessing or a post-processing step, and use existing “exhaustive”
clustering methods. However, optimal preprocessing requires the knowledge of
what subset would cluster well, which can only be defined well in the context
of the clustering step. Post-processing is also not ideal since the optimization
in exhaustive clustering is over the full dataset, and not on the relevant sub-
set. A more natural approach would involve finding the multiple dense regions
and the “don’t care” set simultaneously. Specifically, one desires clustering al-
gorithms that are (1) scalable, (2) can cluster only a specifiable fraction of the
whole dataset, (3) find multiple clusters, and (4) can work with a wide variety of
data types. Existing density-based methods such as DBSCAN [Ester et al. 1996]
naturally cluster only a subset of the data but are not suitable for many such
situations because of implicit metric assumptions, and are not scalable to very
large problems since they either require an in-memory O(n2) distance matrix,
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or an efficient index [Berchtold et al. 1996; Kriegel et al. 2003].1 In contrast,
the One Class Information Bottleneck (OC-IB) [Crammer and Chechik 2004]
provides a local search based approach for finding a single dense region in the
data that is fast and scalable to very high-dimensional datasets, and works
with a large family of distortion measures known as Bregman Divergences
(Section 2.1). However OC-IB can only find a single dense region, whereas
in many problems dense regions can form multiple natural clusters. Further-
more, OC-IB can get stuck into a bad local minimum and does not allow control
over the size of the cluster returned, which can vary greatly depending upon
the quality of the local minimum. A subsequent technique called BBOCC en-
hanced the capabilities of the OC-IB type approach by providing the ability to
control the size of the resultant cluster, as well as to use Pearson Correlation
and Cosine similarity, in addition to Bregman Divergences [Gupta and Ghosh
2006a]. This expanded the applicability of BBOCC to many types of biological
and textual clustering problems; however the limitation of identifying only a
single cluster remained.

This article substantially generalizes the single-cluster approach of BBOCC
while retaining its key desirable properties, resulting in a robust and scalable
framework for finding multiple dense clusters. Our main contributions are as
follows:

(1) We present a generalization of BBOCC called Bregman Bubble Clustering
(BBC) that can simultaneously find k dense clusters. BBC inherits O(nd )
time and space complexity of BBOCC for each iteration and is scalable to
much larger and higher dimensional datasets than existing density-based
methods. It also goes beyond Euclidean distance centric density-based clus-
tering, and is applicable to all Bregman Divergences. This extension allows
the method to be relevant for a very wide class of data properties (and corre-
sponding loss functions) while retaining the simplicity of the squared-loss
solution.

(2) We develop a generative (soft) model consisting of a mixture of k exponen-
tials and a uniform “background” distribution that leads to several insights
into the problem of finding dense clusters using Bregman Divergences. BBC
and many existing clustering algorithms are shown to be special cases of
this model. Our main contribution here was to show how the seemingly
distinct problem of finding dense clusters could be viewed as arising out
of a generalization of the well-known mixture of exponential distributions
model. This relationship also shows (1) how the problem setup of BBC is
not just a convenient heuristic, but arises as a special (hard) case of a much
more fundamental generative model, and (2) how BBC relates to the parti-
tional clustering problem (that involves all data points) at a fundamental
level.

1DBSCAN finds small dense regions of points by connecting nearest neighbor dense points.

DBSCAN (and its derivatives) requires an efficient database index to be scalable to large data

sets, since it uses the indexes to find the nearest neighbors. However, such indexes are usually

efficient for only low-dimensional datasets.
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(3) We introduce a mechanism called Pressurization that substantially im-
proves the quality of the local search in BBC and overcomes the problem of
local minima, while keeping the time and space complexity at O(nd ). This
is especially important for very large problems (e.g., clustering millions of
customers in a market-basket dataset) where the deterministic seeding ap-
proach is too slow to apply against the full dataset. In empirical evaluations,
Pressurization gives results that are robust to initialization and have very
small variations in quality over multiple trials.

(4) For medium-sized problems, we describe a deterministic seeding algorithm
for BBC called Density Gradient Enumeration (DGRADE). At the cost
of somewhat increased time and space complexity, DGRADE gives good
empirical results when seeding BBC, and can determine k automatically.
DGRADE uses a novel “density gradient estimation” at all the data points
to identify all the distinct dense regions in the data, which then allows it to
automatically estimate the best k, and the corresponding k cluster seeds.
For many problems, such as clustering gene-expression datasets where the
number of relevant clusters in a dataset are often unknown initially and
vary greatly, the more expensive time complexity of the seeding method as
compared to Pressurization provides a useful trade-off; it provides a mean-
ingful seeding algorithm for BBC in a completely unsupervised setting. It
also makes the BBC results deterministic, a desirable property for discov-
ering deterministic albeit unknown biochemical pathways in an organism.
Moreover, DGRADE can be used in conjunction with Pressurization for fur-
ther improving clustering quality while also determining k.

(5) We performed evaluations on a variety of datasets showing the effective-
ness of our framework on low, medium and very high-dimensional prob-
lems, as compared to Bregman Clustering, Single Link Agglomerative and
DBSCAN. We performed two types of experiments: (a) three artificial Gaus-
sian datasets of 2, 10 and 40 dimensions were used to show the stability of
observed results to the increasing dimensionality of the data, keeping the
number and type of clusters relatively similar, and (b) pertinence to real-
life applications was demonstrated using three different types of problems:
using microarray data to cluster genes (medium size, high dimensional),
clustering of conditions/experiments from microarray data (small, very high
dimensional), and text clustering (large, very high dimensional).

A brief word on notation: bold faced variables, for example, x, represent
vectors whose ith element are accessed as either xi or x(i). Sets are represented
by calligraphic upper-case alphabets such as X and are enumerated as {xi}n

i=1

where xi are the individual elements. |X | represents the size of set X . Capital
letters such as X are random variables. R and R

d represent the domain of
real numbers and a d-dimensional vector space respectively. Bold-faced capital
letters such as MD represent a two-dimensional matrix.

2. BACKGROUND

We now describe some key concepts and related work that will be important in
describing our methods.
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2.1 Partitional Clustering Using Bregman Divergences

Bregman Divergences. Bregman Divergences form a family of distance mea-
sures, defined as follows: Let φ : S �→ R be a strictly convex function defined on
a convex set S ⊆ R

d , such that φ is differentiable on int(S), the interior of S.
The Bregman Divergence Dφ : S × int(S) �→ [0, inf) is defined as:

Dφ(x, y) = φ(x) − φ(y) − (x − y, �φ(y)), (1)

where �φ is the gradient of φ.
For example, for φ(x) = ‖x‖2, Dφ(x, y) = ‖x − y‖2, which is the Squared Eu-

clidean Distance. Similarly, other forms of φ lead to other popular divergences
such as Logistic Loss, Itakura-Saito Distance, Hinge Loss, Mahalanobis Dis-
tance and KL Divergence [Pietra et al. 2001; Banerjee et al. 2005b].

Bregman Information. An important property of all Bregman Divergences is
as follows:

THEOREM 2.1 [BANERJEE ET AL. 2005a]. Let X be a random variable taking
values in X = {xi}n

i=1 ⊂ C ⊆ R
d (C is convex) following a probability measure

ν,2 and let E[ ] denote the expectation operator. Given a Bregman Divergence
Dφ : C × int(C) �→ [0, inf), the problem

min
c∈C

Eν[Dφ(X , c)]

has a unique minimizer given by c∗ = μ = Eν[X ].

Banerjee et al. [2005b] refer to the corresponding minimum Eν[Dφ(X , c∗)]
as the Bregman Information of X . Both variance and mutual information are
special cases of Bregman Information. Theorem 2.1 essentially states that given
any set of data points, the mean vector (or more generally, the expectation given
a probability measure defined over the points) is the best single representative
of the set in the sense of minimizing the average loss when each point gets
replaced by a common representative. This result is well known for squared
loss, but as per this Theorem it holds true for all Bregman Divergences. An
immediate implication is that the k-means type algorithm will have the same
guarantee of convergence to a local minima of the cost function for any Bregman
Divergence. This result is also used in the BBC algorithm formulated later in
Section 3.

Bregman Hard Clustering. Banerjee et al. [2005b] describe a partitional clus-
tering algorithm called Bregman Hard Clustering that exploits Theorem 2.1.
Starting with a random initialization of k centers Bregman Hard Clustering re-
peats the following until convergence to a local minimum: (1) assign each point
to the closest center, as measured by the particular choice of Dφ , and (2) update
the centers as the mean of points within each cluster. When Dφ is Squared
Euclidean distance, Bregman Hard Clustering reduces to the K-Means al-
gorithm, so one could view K-Means as a special case of Bregman Hard

2Unless stated explicitly otherwise, we assume all points to have the same weight, that is, ν is a

uniform measure.
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Clustering. An important result from Banerjee et al. [2005b] was to prove the
bijection that a K-Means type algorithm exists for any Bregman Divergence,
and only for Bregman Divergences. However, a subtle but perhaps more conse-
quential property of Bregman Hard Clustering is that different choices of Dφ

result in clustering algorithms that are appropriate for very different types of
datasets and problems; many of the special forms had been proposed, proved
and applied as independent algorithms, such as the celebrated Linde-Buzo-
Gray algorithm [Linde et al. 1980; Buzo et al. 1980], before Bregman Hard
Clustering was formulated.

2.2 Density-Based and Mode Seeking Approaches to Clustering

A variety of nonparametric density-based methods have been developed that
use different notions of “local” density to cluster only a part of the data and
to prune the rest. The classic work in this area is Wishart’s mode analysis
[Wishart 1968], which is closely related to the more recent DBSCAN algorithm
[Ester et al. 1996]. Other notable works include the application of mean-shift
algorithm to clustering [Cheng 1995; Georgescu et al. 2003]. The mean-shift
algorithm performs (adaptive) gradient ascent on the estimated density of
the data, as obtained by convolving a suitable localized kernel function with
the raw data, to find modes or local peaks of the density. If only modes that
are sufficiently dominant are selected, then points attracted to less important
modes could be discarded. By varying the widths of the kernels, one can inves-
tigate clustering behavior at different scales [Chakaravathy and Ghosh 1996].
DBSCAN has a slightly different flavor: given a point that has at least MinPts
points enclosed by a hypersphere of radius ε centered at the point, all points
within the ε sphere are assigned to the same cluster. DBSCAN has the ability
to find arbitrary shaped clusters, which is useful in certain problems. However,
different choices for ε and MinPts can give dramatically different clusterings.
OPTICS [Ankerst et al. 1999] proposed a visualization to make it easier to se-
lect these two parameters. Like other mode-seeking algorithms, DBSCAN is
computationally efficient only for low-d spatial data where efficient indexing
schemes are available, and is therefore popular in the database community for
indexing 2-d and 3-d images.

DHC [Jiang et al. 2003] is perhaps the first published work on applying
density-based clustering to biological data. It proposes a density-based hierar-
chical clustering algorithm for time-series data. DHC provides a hierarchical
grouping of time-series data that can be used to visually browse similar genes.
The cluster hierarchy built by DHC uses the heuristic of attraction that as-
sumes the data is uniformly distributed in a d-dimensional space. However,
points in many real-life high dimensional datasets tend to reside in much
lower dimensional manifolds [Tenenbaum et al. 2000] within the embedded
space.

We have recently proposed a non-parametric approach, Auto-HDS [Gupta
et al. 2008] for detecting a few dense clusters in data. Inspired by Wishart’s
work but much more computationally efficient, Auto-HDS simultaneously
detects clusters at multiple resolutions and provides a powerful visualization
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mechanism for cluster exploration. It also provides much superior results as
compared to DBSCAN. Since this paper focuses on parametric approaches, we
do not discuss Auto-HDS further, but point the interested reader to Chapter 11
of Gupta [2006], which provides a detailed theoretical as well as empirical com-
parison of Auto-HDS with BBC. In summary, BBC is more scalable than Auto-
HDS and other non-parametric approaches; and works better when one has a
fairly good generative model of the data. However, if one has little idea about
the nature of the data, or if the data has very odd-shaped dense regions at
different resolutions, the additional flexibility of a nonparametric approach is
helpful.

A parametric approach wherein a mixture of Gaussians plus a uniform back-
ground component is fitted to data in order to detect peaks was recently pre-
sented in Schmid et al. [2007]. The current approach and accompanying soft-
ware is specifically for detecting peaks in one-dimensional data, with additional
constraints such as no other peak allowed within a certain distance to the left or
right of a given peak. This constrained one-dimensional setting is designed for
specific applications such as detecting transcription start sites from gene anno-
tation data. If one properly generalizes this approach to multivariate data and
to all exponential family mixture models, one will obtain the soft BBC model,
which the new method proposed in this article compares favorably against (see
Section 10).

2.3 Iterative Relocation Algorithms for Finding a Single Dense Region

Traditional density-based clustering algorithms (Section 2.2) were aimed at
low-dimensional, spatial datasets. However, they have two major shortcom-
ings for broader clustering applications: (1) they typically rely on a Euclidean
distance type metric to determine idistancei, even though such measures
are not suitable for many datasets and (2) they do not scale well to large,
higher-dimensional datasets. A recently proposed algorithm for finding a sin-
gle dense region3 called One Class Information Bottleneck (OC-IB) [Crammer
and Chechik 2004] breaks these two barriers by proposing an iterative reloca-
tion based approach that is also generalizable to all Bregman Divergences, and
whose scaling properties are akin to K-Means even though K-Means itself is
not designed for finding dense clusters.

OC-IB uses the notion of a Bregmanian ball to find a single, locally dense re-
gion. Earlier approaches to One Class Clustering [Tax and Duin 1999; Schölkopf
et al. 1995; Schölkopf et al. 2001; Crammer and Singer 2003] used convex cost
functions for finding large-scale structures, or correspondingly, for finding a
small number of outliers. However, Crammer and Chechik [2004] showed that
such methods are not appropriate when we want to find distinct dense regions
covering only a small fraction of the data. For example, suppose the data is gen-
erated by two low-variance Gaussians embedded within a relatively uniform
background. Previously proposed convex One Class methods end up finding a
solution centered in-between the two Gaussians. In contrast, OC-IB is able to
find one of the two Gaussians, and could be applied sequentially to recover both.

3A problem that is also referred to as One Class Classification or Clustering.
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More discussion and evidence on this important conceptual difference between
the two One Class approaches and why the local approach used by OC-IB is
more relevant for finding dense regions can be found in Crammer and Chechik
[2004].

In an earlier paper, Gupta and Ghosh [2005], we described an algorithm
called Batch Ball One Class Clustering (BBOCC) that provides several im-
provements over OC-IB, including the ability to control the size (number of
data points) of the dense cluster, improved quality of local search, optimal-
ity guarantee using seeding4 and extension to Pearson Correlation. However,
BBOCC can also only find a single dense region. An obvious solution that comes
to mind is to apply OC-IB or BBOCC sequentially: removing points belonging to
the first dense cluster and then running the One Class algorithm again on the
reduced data. Unfortunately, unless a correspondence problem is solved, this
could result in a “cookie-cutter” clustering where additional clusters found are
comprised of left-over dense points surrounding the hole created by the removal
of the first dense cluster discovered. This limitation was also hinted upon in
the conclusion section of Crammer and Chechik [2004].5

This article addresses the problem of simultaneously finding k dense regions
in the data while ignoring a specified fraction of the data-points. While the
approach taken is not a straightforward generalization of BBOCC and entails
several new concepts, familiarity with BBOCC [Gupta and Ghosh 2005] will
provide an enriched understanding of this paper.

2.4 Clustering a Subset of Data into Multiple Overlapping Clusters

In the context of clustering microarray data, discovering overlapping gene clus-
ters is popular since many genes participate in multiple biological processes.
Gene Shaving [Hastie et al. 2000] uses PCA to find a small subset of genes that
show strong expression change compared to the control sample, and allows
them to be in multiple clusters. As we mentioned earlier, since only a small
fraction of the genes are relevant for clustering in a given dataset, the ability
of Gene Shaving to prune a large fraction of genes is particularly attractive.
However, Gene Shaving greedily extracts one cluster at a time, and is computa-
tionally very expensive (�(n3)). Other greedy methods such as Plaid [Lazzeroni
and Owen 2002] treat the original data X as a matrix, and decompose it into a
set of sub-matrices that when added together reconstruct X . This allows Plaid
to also find overlapping clusters. However, matrix approximation methods for
gene-expression datasets have only had partial success, in large part due to
the highly unbalanced nature of the matrix; there are typically to the order of
102 (biological experiment) conditions while there are to the order of 104 genes.
A critical issue therefore continues to be the ability to select a small number

4Guarantees that the solution is within two times of lowest possible cost (as given by Equation 2,

only applicable for k = 1, since k is always 1 for BBOCC), when the Bregman Divergence was

Squared Euclidean, and is constant times optimal for other Bregman Divergences. See Gupta and

Ghosh [2006a] for more details.
5Interestingly, the seeding algorithm DGRADE presented in this article in Section 9, solves exactly

this correspondence problem by identifying all the distinct “basins of attraction” corresponding to

the densest Bregmanian balls in the data.
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of highly relevant genes for clustering, while selecting all the conditions as
relevant.

3. BREGMAN BUBBLE CLUSTERING

In this section, we first generalize the notion of a single dense Bregmanian
Ball (used by One Class algorithms OC-IB and BBOCC) to the idea of multiple
dense regions called Bregman Bubbles. We then present an algorithm called
Bregman Bubble Clustering or BBC, that can find k dense Bregman bubbles
using a local search approach.

3.1 Cost Function

Let X = {x}n
i=1 ⊂ C ⊆ R

d (where C is convex) be the set of data points. Let
G ⊂ X represent a nonexhaustive clustering consisting of k clusters {C j }k

j=1

with X \G points that are “don’t care”, that is, they do not belong to any cluster.
For a given Bregman Divergence Dφ(x, y) �→ [0, ∞), and a set of k cluster
representatives {cj}k

j=1 ∈ R
d for the k clusters in clustering G = {C j }k

j=1, we

define the cost Qb as the average distance of all points in G from their assigned
cluster representative:

Qb
(
G, {cj}k

j=1

) = 1

|G|
k∑

j=1

|C j |∑
i:xi∈C j

Dφ(xi, c j ), (2)

3.2 Problem Definition

Given s, k and Dφ as inputs, where s out of n points from X are to be clustered
into a clustering G ⊆ X consisting of k clusters, where 1 ≤ k < n and k ≤ s ≤ n,
we define the clustering problem as:

Definition 1. Find the clustering G with smallest cost Qb such that |G| = s.

Definition 1 builds upon the cost formulation stated in 3.1, where the cost
contributed by each point in each cluster is proportional to the distance of
the member points from their cluster centroid, with an additional constraint
that exactly s points are clustered. For k = 1, this problem definition re-
duces to one used in one of the two form of BBOCC for finding a single dense
cluster.6

3.3 Bregmanian Balls & Bregman Bubbles

A Bregmanian ball [Crammer and Chechik 2004] Bφ(r, c) with radius r and
centroid c defines a volume in R

d such that all points x where Dφ(x, c) ≤ r
are enclosed by the ball. Given a set X = {xi}n

i=1 of n points in R
d , the

cost of the ball is defined as the average Dφ(x, c) of all points enclosed
by it.

6Section 6 discusses the connection with BBOCC in more detail.
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Fig. 1. An illustration showing (a) three Bregman bubbles, and (b) a Bregmanian ball (solid line),

and two other possible balls (dotted lines). The union of the points enclosed by the three possible

balls in (b) is the same as the set of points enclosed by the three bubbles.

For a specified set of k cluster representatives, and a fixed s, it can be shown
using Theorem 2.17 that the clustering that minimizes Q consists of: (1) the
assignment phase, where each point is assigned to the nearest cluster repre-
sentative, and (2) picking points closest to their representatives first until s
points are picked. Let rmax represent the distance of the last (sth) picked point
from its cluster representative.

These clusters can be viewed as k Bregman bubbles such that they are
either (1) pure Bregmanian balls of radius r ≤ rmax , or (2) touching bub-
bles that form when two or more Bregmanian balls, each of radius rmax over-
lap. Two Bregmanian balls Bφ(c1, r1) and Bφ(c2, r2) are said to overlap when
∃x : (Dφ(x, c1) < r1) ∧ (Dφ(x, c2) < r2). At the point of contact, the touching
bubbles form linear boundaries8 that result from assigning points to the clos-
est cluster representative. For the part of its boundary where a bubble does not
touch any other bubble, it traces the contour of a Bregmanian ball of radius
rmax . Therefore, bubbles arise naturally as the optimum solution for Qb for a
given s, k and Dφ .

Figure 1 illustrates a 2-D example of Bregman bubbles vs. balls. Unlike
Bregmanian balls, the boundary of the Bregman bubbles can only be defined in
the context of other bubbles touching it. It is important to note that the volume
of the convex hull of points in one bubble could be smaller than that of the
adjacent touching bubble, and the bubbles could also have different number of
points assigned to them.

3.4 BBC-S: Bregman Bubble Clustering with Fixed Clustering Size

For most real life problems, even for a small s, finding the globally optimal
solution for problem definition 1 would be too slow. However, a fast iterative
relocation algorithm that guarantees a local minimum exists. Bregman Bubble
Clustering-S (BBC-S, Algorithm 1) starts with k centers and a size s as input.
Conceptually, it consists of three stages: (1) the assignment phase, where each
point is assigned to the nearest cluster representative, (2) the selection phase,

7A more formal proof is presented after Proposition 3.1.
8This can be shown to be true for all Bregman Divergences [Banerjee et al. 2005b].
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where points are selected in ascending order of their distance from their corre-
sponding cluster representative, until s points are picked, and (3) the update
step, where cluster “means” are re-estimated and updated. It is interesting to
note that stages 1 and 3 of BBC-S are identical to the Assignment Step and
the Re-estimation step of the Bregman Hard Clustering (Section 2.1), proper-
ties that lead to the unification described in Section 6. Stages 1, 2 and 3 are
repeated until there is no change in assignment between two iterations, that
is, the algorithm converges. Algorithm 1 describes a more detailed implemen-
tation of BBC-S where line number 11 represents Stage 1, lines 16 to 20 map to
Stage 2, while lines 26–28 represent Stage 3. We randomly pick k data points
from X as the starting cluster representatives, but alternative initialization
schemes could be implemented.
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PROPOSITION 3.1. Algorithm 1 terminates in a finite number of steps at a
locally optimal solution, that is, the cost function Qb cannot be decreased by
(a) the assignment step, (b) the data selection step or (c) changing the means of
any existing clusters.

PROOF. The local optimality of steps (a) and (c) has been established in
Banerjee et al. [2005b, Prop. 3], and can be summarized as follows: local opti-
mality of step (a) can be readily shown by the contradiction that if a point is
not assigned to the nearest centroid, then the total cost Qb can be decreased by
assigning it to a closer centroid. Theorem 2.1 guarantees that step (c) is locally
optimal; a representative other than the mean would lead to a higher cost for a
given cluster. Local optimality of step (b) can also be shown by contradiction—if
a point xp that is not among the first s points (in the sorted order at line 14
of the algorithm) was part of the optimal solution, then the cost Qb could be
decreased by replacing this point with a point within the first s points that is
not picked. Thus, no such xp can be part of the best solution at step (b). So
the algorithm monotonically decreases the objective function value, while the
number of distinct clusterings is finite, thus assuring convergence in a finite
number of steps.

If heap-sort is used at line 14 of Algorithm 1, then each iteration of BBC-S
takes O(max(nkd , s log(n))) time, making it quite fast.

3.5 BBC-Q: Dual Formulation of Bregman Bubble Clustering with Fixed Cost

An alternative dual formulation of the Bregman Bubble Clustering called BBC-
Q is possible where a threshold cost qmax is specified as input rather than the
size s. Given qmax , k and Dφ as inputs:

Definition 2. Find the largest G with cost Qb ≤ qmax .

We can show that this definition also results in Bregman bubbles as the
optimal solution for a set of k cluster representatives. Definitions 1 and 2 are
equivalent, since for a given qmax there exists a largest s for k bubbles, and
for the same s, the same solution has the same smallest possible cost qmax .
Algorithm 1 can be easily modified to work with qmax by modifying Stage (2) to
stop adding points when the cost is more than qmax . The proof of convergence
for BBC-Q follows along similar lines as that for Proposition 3.1.

The seemingly minor difference between BBC-S and BBC-Q results in two
very different algorithms. For a fixed s as input (BBC-S), for iterations in sparse
regions the bubbles expand until s points are covered. As the bubbles move
into denser regions, their radii shrink. BBC-Q does not have this property and
generally gives worse performance when the bubbles are small [Gupta and
Ghosh 2006a]. Unless stated explicitly otherwise, the discussion on Bregman
Bubble Clustering in the rest of the paper is restricted to BBC-S, that is, BBC
with a fixed s as input.
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4. SOFT BREGMAN BUBBLE CLUSTERING (SOFT BBC)

4.1 Bregman Soft Clustering

In hard clustering, each point is assigned to one cluster. In soft clustering, each
point can be a “partial” member of all of the clusters. If the sum of the as-
signment weights of a given point to all clusters is normalized to 1, we can
interpret the soft assignments as probabilities. One popular way to model such
probabilistic assignments is to assume that the set of observed points come
from a mixture of k distributions whose parameters are estimated based on
the observed data. Once the parameters are estimated, the probabilistic mem-
bership of each point to each of the clusters can be computed. Banerjee et al.
[2005b] proposed a soft clustering algorithm called Bregman Soft Clustering as
a mixture model consisting of k distributions, taken from the family of regu-
lar exponential distributions, and showed that there is a bijection between this
family and regular Bregman Divergences. This bijection is expressed by:

p(ψ,θ )(xs) = exp(−βDφ(xs, μ)) fφ(xs), (3)

where φ is a convex function, and the conjugate function of ψ , Dφ is the corre-
sponding Bregman Divergence, p(ψ,θ ) is the corresponding regular exponential
distribution with cumulant ψ , fφ is a uniquely determined normalizing func-
tion that depends on the choice of φ, β is a scaling factor, μ is the expectation
parameter, θ are the natural parameters of pφ , and xs is the sufficient statistics
vector corresponding to x.

Well-known examples of regular Bregman Divergences (and the correspond-
ing exponential distribution) include squared Euclidean Distance (Gaussian
distribution), KL-divergence (multinomial distribution) and Itakura-Saito dis-
tance [Linde et al. 1980; Buzo et al. 1980].

Banerjee et al. [2005b] not only showed a formal unification of the various
hard partitional clustering methods as special cases of Bregman hard cluster-
ing, and the corresponding exponential distribution soft clustering models as
special cases of Bregman soft clustering, but went on to show that for all regu-
lar Bregman divergences, Bregman Hard Clustering falls out as a special case
of Bregman Soft Clustering. For example, for the Squared Euclidean distance
as Dφ , Bregman Hard Clustering maps to the standard K-Means algorithm,
and the corresponding Bregman Soft Clustering maps to a mixture of spherical
Gaussians with a fixed variance σ 2, popularly known as soft K-Means, and μ

maps to Gaussian mean a, fφ(xs) = 1√
(2πσ 2)d

, β = 1
2σ 2 , Dφ(xs, μ) = β||x−a||2,

θ = a
σ 2 , and ψ(θ ) = σ 2

2
||θ ||2. The soft K-Means model reduces to K-Means when

the variance σ 2 of the k Gaussians is set to 0+ that corresponds to β → ∞ in
Eq. (3).

4.2 Motivations for Developing Soft BBC

Bregman Bubble Clustering can be thought of as a nonexhaustive hard clus-
tering where points can belong to either one of the k clusters or to a “don’t
care” group, while there is no such “don’t care” grouping in Bregman Hard
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Clustering. The generative model for Bregman Soft Clustering consists of a
mixture of k regular exponential distributions of the form pφ corresponding
to the k clusters. Correspondingly, Soft Bregman Bubble Clustering (Soft BBC)
can be formulated as modeling the data as a mixture of k distributions from the
exponential family and an additional “background” distribution corresponding
to the “don’t care” points. Since we are trying to find k dense clusters, for a good
solution the “don’t care” group should be the least dense. One way to model this
low density background is with a uniform distribution. The goal of building
such a Soft BBC model is to give us deeper insights into the implicit modeling
assumptions behind BBC.

4.3 Generative Model

Let X = {xi}n
i=1 be the dataset consisting of n independent and identically

distributed points and k be the desired number of clusters. We propose Soft
BBC as a generative model containing k mixture components corresponding to
k dense clusters labeled 1 to k and one uniform background distribution labeled
0, where each data point is assumed to be generated by a unique but unknown
component. Let Y = {Yi}n

i=1 be the hidden random variables corresponding to
the mixture components associated with the data points, where Yi can take one
of k +1 possible values from 0 to k. In the absence of any other information, the
distribution of Y only depends upon the priors. Hence the model probability of
the data points is given by:

p(xi) =
k∑

j=1

α j p(ψ,θ )(xi|θ j ) + α0 p0, [i]n
1, (4)

where {α j }k
j=1 and {p(ψ,θ )(·|θ j )}k

j=1 denote the priors and the conditional dis-

tributions of the k clusters, while α0 and p0 denotes the prior probabil-
ity and the probability density of the uniform distribution. Since the data
points are assumed to be independent and identically distributed, the log-
likelihood of the observed data (or the incomplete log-likelihood) is given
by:

L(�|X ) =
n∑

i=1

log

( k∑
j=1

α j p(ψ,θ )(xi|θ j ) + α0 p0

)
, (5)

where � denotes all the parameters (priors and mixture component parame-
ters). Maximizing the above data likelihood is a natural approach for fitting
this generative model to the data. However, it is nontrivial to directly optimize
the likelihood function due to the presence of mixture components.

4.4 Soft BBC EM Algorithm

Since p0 is a uniform distribution by definition, 1/p0 defines the volume of its
domain. This domain should include the convex hull of X , which yields an upper
bound for p0. In Eq. (5), keeping all other parameters constant, a lower value
of p0 will always result in a lower likelihood. For now, we only consider the case
where p0 is set to a fixed value. Therefore, the only parameters we can optimize
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over are the priors {α j }k
j=0 and the exponential mixture parameters {θ j }k

j=1. We

consider two slightly different scenarios: (A) where α0 is a variable parameter,
and (B) where α0 is a fixed value ≤ 1. To maximize the log-likelihood function,
we adopt a standard EM-based approach and first construct the negative free
energy function [Neal and Hinton 1998]:

F (P̃ , �) =
n∑

i=1

Ep̃(Yi ,xi )[log p(xi, Yi|�)] −
n∑

i=1

Ep̃(Yi ,xi )[log p(Yi|xi)],

where P̃ = {{ p̃(Yi = j |xi)}n
i=1}k

j=1 are the current estimates of Y. It can be

shown that the EM procedure with the E and M steps alternately optimizing
F (P̃ , �) over P̃ and � is guaranteed to converge to a local maximum P̃∗ and
�∗. Furthermore, it can be shown that a local maximum of F (P̃ , �) leads to a
local maximum on the original likelihood given by Eq. (5). Hence we will now
focus on obtaining the updates involved in the E and M steps for the two cases.

Case A. α0 is not fixed.
E-Step. In this step, we optimize F (P̃ , �) (Eq. (6)) over P̃ under the con-

straints that the
∑k

j=0 p̃(Yi = j |xi) = 1, [i]n
1, and p̃(Yi = j |xi) ≥= 0, ∀i, j . Using

Lagrange multipliers for the n equality constraints, taking derivatives with re-
spect to p̃(Yi = j |xi), and then eliminating the Lagrange multipliers, we obtain:

p̃(Yi = j |xi)
∗ = α j p(ψ,θ )(xi|θ j )∑k

j=1 α j p(ψ,θ )(xi|θ j ) + α0 p0

, 1 ≤ j ≤ k (6)

= α0 p0∑k
j=1 α j p(ψ,θ )(xi|θ j ) + α0 p0

, j = 0 (7)
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M-Step. In this step, we optimize F (P̃ , �) over � under constraints∑k
j=0 α j = 1 and α j ≥ 0, ∀ j . It can be shown that the inequality constraints

are not binding. On applying the standard Lagrange procedure, one obtains:

α∗
j =

∑n
i=1 p̃(Yi = j |xi)

n
, [ j ]k

0 . (8)

Note that the update equation for the background distribution prior, α0, turns
out to be the same as that for the exponential mixture distributions α1 to αk . The
optimal mixture component parameter estimation can be obtained by setting
derivatives over {θ j }n

j=1 to 0 as follows:

n∑
i=1

p̃(Yi = j |xi)∇θ j p(ψ,θ )(xi|θ j ) = 0. (9)

This results in the update equation for the exponential distribution mixtures
{θ}k

j=1 as the weighted average of x [Banerjee et al. 2005b]:

θ j =
∑n

i=1 p(Yi = j |xi)xi∑n
i=1 p(Yi = j |xi)

. (10)

An example of re-estimation of mixture component parameters for Gaussians
is described in more detail in Section 7.

Case B. α0 is fixed.
E-Step. Since keeping α0 fixed does not result in any additional constraints,

this step is identical to that of Case A.
M-Step. Keeping α0 constant modifies the constraints on the priors so that

we now require
∑k

j=1 α j = 1 − α0 and α j ≥ 0, ∀ j . As before, the inequality
constraints are not binding and by using a Lagrange multiplier and taking
derivatives, we arrive at:

α∗
j = (1 − α0)

∑n
i=1 p̃(Yi = j |xi)∑k

j=1

∑n
i=1 p̃(Yi = j |xi)

. (11)

The optimal mixture component parameters are obtained exactly as in
Case A.

4.5 Choosing an Appropriate p0

For Case A of the Soft BBC algorithm, one can argue that the parameter α0 is
essentially a function of p0 given by the relation (from the M step):

α0 = 1

n

n∑
i=1

α0 p0∑k
j=1 α j p(ψ,θ )(xi|θ j ) + α0 p0

. (12)

Using this relation, for a given α0 and a set of mixture component parame-
ters, it is possible to solve for p0. But one cannot do this in the EM framework
since the best value for p0 is always the highest possible one. However, this
relationship allows us to calculate the value of p0 for the initial seed parame-
ters. For a given value of α0, one approach would be to rewrite Eq. (12) as an
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optimization problem and solve for the best value of p0:

f (p0) = α0 − 1

n

n∑
i=1

α0 p0∑k
j=1 α j p(ψ,θ )(xi|θ j ) + α0 p0

= 0. (13)

Written in this form, one could now start with a seed value between 0 and
1, and then search for the value of p0 that brings f (p0) closest to 0. An opti-
mization routine such as Matlab fsolve (http://www.mathworks.com) could be
used for this process. However, a faster approximation of p0 can be obtained as
follows:

(1) Perform the first E step (Eqs. (6) and (7)).

(2) Compute the pi
max = maxk

j=0(p(Yi = j |xi)) for each xi.

(3) Pick p0 as the sth largest value in pi
max[i]n

1 where s = �α0n�.

The above formulation works well because of the following reason: the
final soft BBC results are probabilistic, with each point having a probability
of belonging to either one of the k clusters, or the background. The probabilities
need to be converted into hard assignment to obtain clustering needed in many
applications. Later, in Section 6, we show that the natural hard assignment cor-
responds to assigning each point to the mixture with the maximum posterior
probability (which could be either of the k clusters or the uniform background).
In other words, selecting label j such that p(Yi = j |xi) = pi

max using Step (2)
above. For the hard assignment case, since the fraction of data points clustered
is s, and since s = �α0n�, picking p0 equal to (or in theory, slightly larger than)
the sth largest value in pi

max[i]n
1 would result in very close to s points getting

assigned to the clusters, while the remaining, having a pi
max ≤ p0 get assigned

to the background cluster. In practice, the value of p0 obtained using this ap-
proach corresponds closely with the value computed using the more expensive
optimization type approach.

The following enhancement works even better in practice: an initial esti-
mate of p0 is computed using the approach described above using the seed
cluster parameters to Soft BBC ({θ j }k

j=1 and {α j }k
j=1). This initial value of p0

is then used to run Soft BBC to convergence. The clustering parameters ob-
tained at convergence are then used to compute p0 again, and Soft BBC is then
run to convergence a second time using the new p0. This second p0 estimate
is better since it is based on parameters that are closer to the convergence
values.

5. IMPROVING LOCAL SEARCH: PRESSURIZATION

5.1 Bregman Bubble Pressure

We first introduce a concept called Bregman bubble pressure that has properties
analogous to that of pressure around air bubbles rising from a seabed; as air
bubbles rise in a column of water, the hydrostatic pressure outside drops, and
the bubbles expand (see Judd and Hovland [2007, Chap. 10, Sec. 10.4.4] for a
description of this phenomena).
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In the case of the generative or Soft BBC model, we can think of this ex-
ternal pressure as being driven by the relative weight of the background dis-
tribution, α0 in Eq. (4). Bregman bubble pressure can be seen as being pro-
portional to the ratio of the background distribution weight vs. the weight of
all the k bubbles combined, that is, α0/

∑k
j=1 α j , which is equal to α0

1−α0
, since∑k

j=0 α j = 1.
As α0 tends to 1, the Bregman bubble pressure, being proportional to

α0

1−α0
, tends to infinity, causing the extent of the regions around the k ex-

ponential distribution centroids, where the corresponding distributions have
higher weight than the background distribution in Eq. (4), to shrink towards
0 (since the weights of the exponential distributions all get forced to 0). For
the hard BBC, the increasing weight of α0 corresponds to the number of
points clustered, s, tending towards 0. The Bregman bubble pressure can
also be thought of as being proportional to (n − s)/s, where s is the num-
ber of data points clustered, and is an input to the hard BBC algorithm
(Algorithm 1).

Conversely, when α0 tends to 0, the background pressure (proportional to
α0

1−α0
) tends to 0, and the Soft BBC model gives rise to Bregman Soft Clustering,

where there is no background distribution. This also corresponds to the hard
BBC model reducing to Bregman Clustering, where s = n and all the data
points are clustered.

Note that the behavior of the Bregman Bubble for the two extreme cases
(0 and infinite pressure) is also analogous to the phenomena of water bubbles
reducing to very small sizes under extreme external hydrostatic pressure, and
expanding to unlimited extent when all pressure is removed (such as for free
moving air molecules in a perfect vacuum).

5.2 Motivation

BBC-S is able to find locally dense regions because of its ability to explicitly
ignore large amounts of data by considering only points close to the cluster
representatives for cluster membership. If the bubbles are initialized in sparse
regions, they have to expand in order to enclose s points. Then, during each
iteration, the bubble representatives move to lower cost nearby locations, and
the bubbles shrink in their extent.9 These mechanisms ensure that the results
are less sensitive to initialization. However, when threshold s is small, only a
few close neighbors get assigned, thereby decreasing the mobility of the rep-
resentatives at each iteration. This makes it difficult for BBC-S to find small,
dense regions far from initial seed locations. Addressing this issue by starting
with a large s would be contrary to the goal of finding small dense regions. This
problem is even more severe with BBC-Q, since the bubbles cannot expand
automatically in sparser regions. Is there a way to improve upon the ability
of BBC-S to “expand” in a sparse region, while still optimizing clustering over
small, dense regions?

9A toy example demonstrating this phenomena can be seen in our power-point slides at

http://www.ideal.ece.utexas.edu/∼gunjan/bbc/bbcicdm.ppt.gz, slides 16 through 20.
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The pressure mechanism described in the previous section indicates a way
of ameliorating this problem. The essential idea is to start BBC with a very
small pressure, allowing it to reach out to all the data points, and then slowly
increasing the pressure, which would correspond to increasing α0 or s for
Soft and Hard BBC respectively. This causes the bubbles to be “squeezed” by
the increasing external pressure into denser regions. Moreover, bubbles that
move to a denser region retain proportionately more points at the expense
of bubbles in less dense regions. This is because when points compete for
being assigned to one of the k clusters (Stage 2 of Algorithm 1), the ones
nearest to their respective centroids get assigned first, while n − s points
farthest from their cluster centroids get dropped. Both of these trends help
to improve solution quality. A demo of the BBC-Press algorithm in action on
the Gauss-2 dataset illustrating this “squeezing” phenomena can be seen at
http://www.ideal.ece.utexas.edu/∼gunjan/bbc/bbcicdm.ppt.gz, slides 31 to 36.

5.3 BBC-Press

Based on the ideas described in the last two sections, we propose an algorithmic
enhancement to BBC-S that we call Pressurization that is designed to improve
upon the quality of the local minimum discovered. We start the first iteration of
BBC-S with a small enough pressure to cause all points to be assigned to some
cluster, and slowly increase the pressure after each iteration. An additional
parameter γ ∈ [0, 1) that controls the rate of pressure increase is used as an
exponential decay parameter,10 and sj = s+�(n−s)γ j−1� is used instead of s for
the j th iteration. Convergence is tested only after (n− s)γ j−1 < 1. A slower but
more robust alternative involves running BBC-S to full convergence after each
recomputation of s and using the resultant centroids to seed the next iteration,
and in practice yields slightly better results. Algorithm 3 describes the steps for
the full-convergence version of BBC-Press in more detail. Pressurization can
similarly be implemented for the alternate formulation BBC-Q, by varying the
fixed cost qmax .

10A smaller value gives better results, but runs slower. A value between 0.01 and 0.05 seems to

work well for most real-world scenarios.
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5.4 Soft BBC-Press

The Pressurization scheme can also be extended to Soft BBC for Case B when α0

is not updated. When α0 and p0 are large (close to 1), only a small amount of data
is “explained” by the k exponential mixtures. This may lead to bad local minima
problems similar to (although less severe than) the one faced in BBC. Therefore,
we propose a soft version of Pressurization that takes a decay parameter τ ∈
[0, 1) and runs Soft BBC (Case B) multiple times as follows: (1) start with some
initial model parameters {θ1

j }k
j=1 and run Soft BBC to convergence, (2) at trial

r set α0 to αr = α0(1 − τ r−1), and for r > 1 set current model parameters to the
output of last trial: {θr

j }k
j=1 = {θr−1

j }k
j=1. Repeat step (2) until αr − α0 is smaller

than ε (a small positive value close to 0, for example, 0.001), and then perform
a final run with αr = α0.

5.5 Pressurization vs. Deterministic Annealing

Although our concept of Pressurization conceptually resembles the approach
of Deterministic Annealing [Ueda and Nakano 1998], they are not the same.
For example, deterministic annealing in a Gaussian mixture modeling setting
would involve gradually reducing the variance term σ 2 (Eq. (17)), whereas Soft
Pressurization involves gradually increasing the probability mass α0 (Eq. (4))
of the uniform background distribution. A notable property of Pressurization is
that it works on both Hard and Soft BBC, whereas Deterministic Annealing is
only applicable in a soft setting. This is significant for large, high dimensional
datasets; a Deterministic Annealing approach for improving local search would
require us to use Soft BBC, which contains exponential mixtures, and expo-
nential mixtures are generally hard to compute on high-dimensional datasets
because of rounding errors [Casella et al. 2003].

6. A UNIFIED FRAMEWORK

6.1 Unifying Soft Bregman Bubble & Bregman Bubble Clustering

We are now ready to look at how the generative model Soft BBC relates to the
BBC problem, specifically the formulation where the number of points classified
into the k real clusters (excluding the “don’t-care” cluster) is fixed (Definition 1,
Section 3.2), and show the following:

PROPOSITION 6.1. Maximizing L2(�|X ) is identical to minimizing the BBC
objective function Qb (Eq. (2)).

PROOF. Let us consider the cost function:

L2(�|X ) =
n∑

i=1

Ep†(Yi= j |xi ,�)[log p(xi, Yi = j |θ j )] (14)

where p†(Yi = j |xi, �) = 1 for j = argmax0≤ j≤k p(xi, Yi = j |θ j ) and 0 other-
wise, which is essentially equivalent to the posterior class probabilities based
on the hard assignments used in BBC. It can be shown [Kearns et al. 1997]
that for a fixed set of mixture parameters � = {θ}k

j=1, and L(�|X ) being the
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log-likelihood objective of Soft BBC (Eq. (5)):

L2(�|X ) ≤ L(�|X ). (15)

This result is independent of the choice of priors {α j }k
j=0. Note that while L(·)

depends upon the priors, L2(·) does not. For our choice of mixture components,
based on Eqs. (3) and (15), one can readily obtain the following form for L2(·):

L2(�|X ) =
k∑

j=1

k∑
∀Yi= j

log pφ(xi) −
(16)

βDφ(xi, θ j ) +
∑

∀Yi=0

log(p0)[i]n
i=1

If the number of points assigned to the uniform distribution is fixed to n − s,
s points are assigned to the k exponential distributions, and p0 and β are fixed,
we can see from Eq. (16) that maximizing L2(�|X ) is identical to minimizing
the BBC objective function Qb (Eq. (2)).

PROPOSITION 6.2. BBC with a fixed s as input (Definition 1, Section 3.2) is a
special case of Soft BBC with fixed α0.

PROOF. Let us consider an extreme case when β → ∞ for Soft BBC (see
Eqs. (5) and (3)). Then the class posterior probabilities in Soft BBC converge
to hard assignment (BBC) ensuring that L(�|X ) = L2(�|X ) in Eq. (16). Since
BBC is equivalent to optimizing L2(�|X ) (Proposition 6.1), we can also view
BBC with fixed s (Definition 1) as input as a special case of Soft BBC with
fixed α0.

6.2 Other Unifications

The following other interesting unifications can also be shown easily for our
framework:

(1) BBC is a special case of BBC-Press when γ = 0.

(2) Bregman Bubble Clustering becomes BBOCC when k=1.

(3) Soft BBC11 reduces to Bregman Soft Clustering when p0 = 0.

(4) Bregman Bubble Clustering reduces to Bregman Hard Clustering (which
is a special case of Bregman Soft Clustering) when qmax = ∞ (for BBC-Q)
or when s = n (for BBC-S).

Figure 2 summarizes the hierarchy of algorithms descending from BBC-
Press and Soft BBC. We could think of BBC as a search under “constant pres-
sure”, and for Bregman Hard Clustering this pressure is zero. Note that for
k = 1, BBC gives rise to BBOCC. In the context of finding dense regions in the
data, BBC can be thought of as a conceptual bridge between the problems of one
class clustering and exhaustive k class clustering. However, the defining char-
acteristic of BBC is its ability to find small, dense regions by modeling a small
subset of the data. BBC combines the salient characteristics of both Bregman
Hard Clustering and BBOCC resulting in an algorithm more powerful than

11For both cases A and B.
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Fig. 2. Unification of various algorithms for a given Bregman Divergence Dφ : (top) BBC, BBOCC

and Bregman Hard Clustering are special cases of BBC-Press. (bottom) Bregman Hard and Soft

Clustering, BBC-S, BBOCC-S and a “soft” BBOCC (consisting of one exponential and a uniform

background mixture) are special cases of Soft BBC obtained as specific combinations of (i) whether

β → ∞, (ii) whether α0 is 0 (Eq. (4)), and (iii) whether k is 1. Bregman Clustering (both hard and

soft) for k = 1 does not result in a useful algorithm. BBOCC-S and BBOCC-Q represent BBOCC

with fixed s or qmax as inputs, respectively.

either, and that works across all Bregman Divergences. BBC-S is a natural ex-
tension of BBOCC-S following directly from a common underlying generative
model, and is not just a heuristic; the difference in the generative model is only
in having a single vs. multiple exponential distributions mixed with a uniform
background.

7. EXAMPLE: BREGMAN BUBBLE CLUSTERING WITH GAUSSIANS

Now that we have developed the theoretical framework for Soft BBC to work
with all regular exponential distributions, we describe a concrete example
with the Gaussian distribution, which is popularly used for many real-life
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applications. Let us consider spherical d -dimensional Gaussian distributions
of the form:

N (x|a, σ ) = 1√
(2πσ 2)d

exp
(

− ||x − a||2
2σ 2

)
(17)

where a ∈ R
d is the the mean, and σ 2 ∈ R is the variance that is the same

across all the d dimensions. There are two major variations of the Soft BBC
algorithm depending upon how we treat the variance σ 2:

7.1 σ 2 is Fixed

Soft BBC. The parameters {θ j }k
j=1 in Eq. (4) correspond to the parameters of

the k exponential distributions of the mixture model that are updated in the M
step of Soft BBC (Algorithm 2). For the Gaussian example, if we fix the values
of {σ 2

j }k
j=1 for the k spherical Gaussians mixtures then the only parameters that

can be updated are the k Gaussian means {a j }k
j=1. For the Soft BBC algorithm,

this corresponds to θ = a and the sufficient statistics xs is simply x. 1
2σ 2 is the

scaling parameter β (Eq. (3)) for the exponential function pφ , Dφ(x, a) = ||x−a||2
corresponds to the Squared Euclidean distance of x from Gaussian mean a, and
fφ(x) = 1√

(2πσ 2)d
.

Therefore, the E step of Algorithm 2 involves computing pφ as N (x|a, σ )
using the current Gaussian means {a j }k

j=1 and the fixed variances {σ 2
j }k

j=1 and

then performing the rescaling given by Eqs. (6) and (7) to get p(Yi = j |xi) for all
the n points. For the M step, the new priors αk

j=1 can now be re-estimated using

either Eqs. (8) or (11) depending upon whether we keep α0 fixed or not (Case A
vs. B). The θ j for j th exponential component represented by the Gaussian mean
a j can then be re-estimated as the weighted average of x as described by Eq.
(10).

BBC-S. The proof for Proposition 6.2 tells us that the BBC-S algorithm will
fall out from the Soft BBC when β → ∞. For our Gaussian model with fixed
variance, since β = 1

2σ 2 , this corresponds to setting the variances {σ 2
j }k

j=1 → 0.

This results in BBC-S (Definition 1, Section 3.2) using Squared Euclidean dis-
tance as the Bregman divergences. Furthermore, when we set s = n, this ver-
sion of BBC-S also gives us the classical K-Means algorithm, or Bregman Hard
Clustering with Squared Euclidean distance as Dφ . An example of output from
such a BBC-S variant is shown in Figure 3(d).

7.2 σ 2 is Optimized

Soft BBC: If the variances {σ 2
j }k

j=1 are also updated as a part of the EM, then

both {aj}k
j=1 and {σ 2

j }k
j=1 get updated in the M step of Soft BBC (Algorithm 2)

and the sufficient statistics xs becomes [x, x2]T . The E step of Algorithm 2 still
involves computing pφ as N (x|a, σ ) using the current Gaussian means {a j }k

j=1

and the current variances {σ 2
j }k

j=1 and then performing the rescaling given by

Eqs. (6) and (7) to get p(Yi = j |xi) for all the n points. For the M step, the new
priors can also be re-estimated as before using either Eqs. (8) or (11) depending
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Fig. 3. Comparison of bubbles generated using a variant of Soft BBC and two variants of BBC-

S on the simulated 2-D dataset: Soft BBC with updated σ 2 for (a) k = 7 and (b) k = 5. k was

intentionally kept large in (a) to illustrate the non-linear boundaries produced by touching bubbles.

BBC-S resulting from Soft BBC model where (c) σ 2 is updatable and (d) σ 2 is fixed. For Soft BBC,

each point was assigned at convergence to the cluster to which it had the largest soft assignment

value.

upon whether we keep α0 fixed or not. However, the θ j for j th exponential
component, now a function of both the Gaussian mean a j and the variance σ 2

j ,
needs to be re-estimated as the weighted average over the sufficient statistics.
It can be shown that this maps to: (1) re-estimating the mean a j as the average
of x over the n points weighted by p(Yi = j |xi) , and (2) re-estimating the
variance as a weighted average of (x − a j )

2 over the n points also weighted by
p(Yi = j |xi). An example of output from such a Soft BBC variant is shown in
Figure 3(b).

BBC-S. Unlike for the fixed variance case, the scaling parameter β cannot be
thought of as a function of variance since σ 2 is a part of the updatable parame-
ters. The corresponding Dφ , (which is not the Squared Euclidean distance) can
be derived from the relationship defined by Eq. (3) and corresponds to Maha-
lanobis distance in the original space of x. A corresponding BBC-S algorithm
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Table I. 8 Flavors of Soft BBC for Spherical

Gaussians Arise Depending upon the Choice of �

Flavor Update σ {σ j }k
j=1

= σ1 Fixed α0

1 No No No

2 No No Yes

3 No Yes No

4 No Yes Yes

5 Yes No No

6 Yes No Yes

7 Yes Yes No

8 Yes Yes Yes

Table II. A Summary of the Datasets Used

Dataset Source n d D k C
Lee Microarray 5,612 591 DP 9 NA

Gasch Array Microarray 173 6,151 DP 12 12

Cleaned 20-NG Web documents 19,975 4,292 (1−Cosine Sim.) 6 6

Gauss-2 Synthetic 1,298 2 Sq. Euclidean 5 5

Gauss-10 Synthetic 2,600 10 Sq. Euclidean 5 5

Gauss-40 Synthetic 1,298 40 Sq. Euclidean 5 5

D is the distance function used for clustering while C represents the number of classes for labeled

datasets only. k represents the number of clusters specified to the clustering methods that require

it as an input, and is only needed for BBC when testing without DGRADE. When seeding with

DGRADE, k output by DGRADE was used for all methods that required it as an input.

obtained when β → ∞ is different from the BBC-S algorithm described for
the scenario where σ 2 was fixed. One property of such a generative model is
that in the original space of x, bubbles of varying diameters can be discovered
by both the Soft BBC and the corresponding BBC-S algorithm, which could be
suitable for domains where the natural clusters have very different diameters.
It can be shown that in each iteration of such an implementation, the estimated
distances to clusters need to be rescaled in proportion of the variances of the
respective clusters in that iteration. An example of output from such a BBC-S
variant is shown in Figure 3(c).

7.3 “Flavors” of BBC for Gaussians

For Soft BBC built using spherical Gaussians, there are eight possible flavors
(Table I) depending upon whether (1) α0 is updated (Case A vs. B, Section 4.4),
(2) the Gaussian mixture variances are updated (Section 7.1 vs. 7.2), or (3) all
cluster variances are forced to be equal. For the cases where variance could be
updated, forcing them to be equal requires computing a weighted average of
the variances of the k Gaussians after updating the variances in the M step
as described in Section 7.2, and then assigning this weighted average to the
variances of all the k Gaussians. Corresponding BBC-S for these eight flavors
could also be derived. Figure 3 shows a comparison of bubbles generated using
some of these variants for the simulated 2-D dataset (Gauss-2 dataset, Table II,
Section 10) that has points generated from 5 Gaussians of variances varying
from small to large and a uniform background.
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Fig. 4. Three common types of correlations observed between expression levels of genes. The

x-axis represents distinct measurements at different time points/across conditions, while the

y-axis represents the expression level of the gene.

7.4 Mixture-6: An Alternative to BBC Using a Gaussian Background

For the Gaussian case where σ 2 is optimized, we could also define an alternative
mixture model where the uniform background distribution is replaced by a
background Gaussian distribution with a large variance.12 This results in a
mixture of Gaussians model with k + 1 Gaussians where the 0th Gaussian
has a fixed large variance and only its mean is updated, while for all other
Gaussians both the mean and the variance are updated. Such a model can be
viewed as a “hybrid” of the models in Sections 7.1 and 7.2, and update steps
using EM can be readily derived.

We call this model Mixture-6 since it is analogous to the flavor 6 of Soft
BBC (Table I). Unlike in the Soft BBC where the background mass (and the
corresponding fraction of data assigned to the background after converting to
hard assignment at convergence) is easy to control and predict (Section 4.5),
using a large variance background does not result in a stable background; the
final background mass varies substantially depending upon where the center
of the background Gaussian lies at convergence. Mixture-6 serves as another
baseline for empirically evaluating Soft BBC.

8. EXTENDING BBOCC & BBC TO PEARSON DISTANCE
& COSINE SIMILARITY

8.1 Pearson Correlation and Pearson Distance

In biological organisms, genes involved in the same biological processes are
often correlated in an additive or multiplicative manner, or both (Figure 4).
Pearson Correlation captures the similarity between two variables in R

d that
is invariant to linear scaling, such as a multiplicative and/or additive offset,
and is therefore a popular similarity measure for clustering gene-expression
and other biological data [Sharan and Shamir 2000; Mansson et al. 2004].

12Much larger than the cluster variances.
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For two data points x, y ∈ R
d , the Pearson Correlation P can be computed as

P (x, y) = z score(x)•z score(y)
d−1

, where z score(x) = x−μ(x)
σ (x)

represents the vector-based
z-scoring of the data point vector x, μ(x) is the mean of the elements of the
vector x, and σ (x) is the standard deviation. Note that we z-score each of the
data points separately across features values.13 We then define the Pearson
Distance as DP = 1 − P . Since P �→ [−1, 1], therefore DP �→ [0, 2]. It can
be shown that Pearson Distance is equal to the Squared Euclidean distance
between z-scored points normalized by 2(d − 1):

DP (x, y) = ‖z score(x) − z score(y)‖2

2(d − 1)
. (18)

DP can also be viewed as the Squared Euclidean distance between points
that have been first rotated by subtracting the mean, and then, by variance
normalization, projected onto a hypersphere of radius 1 (radius 1√

2
in Euclidean

space) centered at the origin. When Dφ is replaced by DP in Eq. (2), we refer to
Qb as Average Pearson Distance (APD).

PROPOSITION 8.1. For any cluster C j in G, the cluster representative cj
∗ that

minimizes contribution to APD by that cluster is equal to the mean vector of the
points in C j projected onto a sphere of unit radius, that is,

cj
∗ = argmin

cj

(APD(C j , cj)) = Cm
j

‖ Cm
j ‖ ,

where Cm
j = 1

|C j |
∑|Ci |

i:xi∈C j
z score(xi).

The proof for the above proposition follows directly from the result used by
Dhillon and Modha [2001] for updating the center for their Spherical K-Means
algorithm, which is a K-Means type of algorithm that uses Cosine Similarity
as the similarity measure. Pearson Distance and Cosine Similarity are closely
related; if we estimate the Squared Euclidean distance between points normal-

ized by their L2-norm (
√∑d

i=1 x2
i ) instead of between z-scored points, we obtain

2 × (1−Cosine Similarity). Note that (1−Cosine Similarity) of z-scored points
is the same as Pearson Distance. Because of Proposition 8.1, for D = DP the
optimum representative computation in BBC involves the averaging of the z-
scored points rather than the original points, and then re-projecting of the mean
onto the sphere. This minor modification to BBC allows it to work with DP and
ensures convergence to a local minimum.14 Since BBOCC is a special case of
BBC, the same modification works for BBOCC too for the problem of One Class
Clustering.

13This is different from the way z-scoring is often used in statistics, where it is performed for each

column/dimension. We are performing it across rows of a data matrix, if the rows were to represent

the data points.
14And the corresponding local maximum for Average Pearson Correlation.
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8.2 Extension to Cosine Similarity

Because of the relationship between Cosine Similarity and Pearson Distance
described above, BBC will also work with Cosine Similarity, which is a popular
similarity measure for clustering textual data [Dhillon and Modha 2001]. Note
that for s = n, BBC with Cosine Similarity degenerates to Spherical K-Means.
For running BBC with Pearson Distance, since the z-scored data points have
zero mean across the d dimensions, the mean of the z-scored points Cm

i used for
center update only needs to be normalized by its L2-norm to obtain zscore(Cm

i ).
For this reason, if we z-score the individual data points in advance and run
BBC using Cosine Similarity, it produces the same results as running BBC
with Pearson Distance.

8.3 Pearson Distance vs. (1-Cosine Similarity) vs. Other Bregman
Divergences—Which One to Use Where?

It is important to note that the effect of not subtracting the mean gives rise
to different distance measures (Pearson Distance vs. (1−Cosine Similarity))
and can result in very different clusterings; points with additive offsets will
not necessarily be close when using only the Cosine Similarity. This difference
could be important depending upon the application. For example, Pearson Dis-
tance/Correlation is more suitable for gene-expression data (Figure 4), while Co-
sine Similarity works better for document clustering. In Section 10, we present
results based on Pearson Distance for the biological datasets Lee and Gasch
(see Table II), while for the 20 Newsgroup data, where the features consist of
words, (1-Cosine Similarity) is used.

A similar distinction should be kept in mind about Bregman Divergences in
general; although BBC works with all Bregman Divergences, it can produce
quite different results depending upon the choice of the divergence; the par-
ticular problem domain and the underlying exponential distribution (Eq. (3)
and Proposition 6.2) should guide the selection of the appropriate Bregman
Divergence for BBC.

9. SEEDING BBC AND DETERMINING K USING DENSITY GRADIENT
ENUMERATION (DGRADE)

We now present an alternative to Pressurization for alleviating the problem
of local minima in our local search. For medium-sized datasets,15 the seeding
framework described in this section is computationally feasible on machines
with modest resources, and provides two key advantages over Pressurization:
(1) deterministic results, and (2) the ability to automatically determine the
number of distinct dense regions in the data (k), the location of these dense
regions, and their representative centroids in X . These k representatives are
then used to seed BBC.

15Such as gene clustering datasets, where the number of genes is usually O(104).
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9.1 Background

In Gupta and Ghosh [2005], we presented a deterministic enumeration based
algorithm called Hypersphere One Class Clustering (HOCC) that finds an ap-
proximate, restricted solution to the problem of finding a single dense cluster
in the data. The centroid location determined by HOCC can be used to to seed
BBOCC. HOCC is based on the observation that if c is restricted to one of the
sample data points X , then the number of distinct solutions is only n(n − 1),
and can be enumerated efficiently.

The problem of finding a good seeding method for local search for BBC for
k > 1 is a harder problem than for the One Class case, since the search space
for possible initializations gets much larger. For a given k, a simple extension
of the strategy used in HOCC that involves restricting the search for cluster
representatives to the given data points, and then enumerating all the

(n
k

)
com-

binations of centroids, is prohibitively expensive. On the other hand, picking
the best solution over multiple trials of BBC-S or BBC-Press seems to give quite
high quality solutions in practice, but also requires k as an input. Is there a
fast, HOCC-type algorithm that can be used for seeding BBC and also indicates
a suitable value of k? This is answered positively via the DGRADE algorithm
described next.

9.2 DGRADE Algorithm

The key idea behind the DGRADE seeding algorithm is to (i) limit the search
for seeds to the actual data points and (ii) do the search in a computationally
efficient manner. For each point, we consider the cost of a Bregmanian Ball that
is centered at that location, and encompasses s = sone points. This cost can be
viewed as the “potential” at the corresponding point. If the cost at a neighboring
point is lower, then that point is (locally) more preferable. This leads to a chain
of local preferences viewed as a potential gradient. Points that follow a chain
of preferences to the same final point (lowest local potential) can be viewed as
belonging to the same partition, the physical analogy being that they are all part
of the same “basin of attraction”. Thus, the data points can be quickly grouped,
with the number of groups indicating the corresponding value of k. Note that
this k is dependent on sone, which acts as a scale or smoothing parameter.

Density Gradient Enumeration (DGRADE), described in detail as Algorithm
4, has the following key steps:

(1) Input integers sone, and the number of dense points s to be classified into
clusters.

(2) Sort each row of the distance matrix and save the corresponding sorted sone

nearest neighbors indices into radM, idxM (just like in HOCC).

(3) Compute cost Qone for each of n points as cost of a Bregmanian ball of size
sone centered on the point.

(4) Sort the n points by increasing cost and save the cost of the first s points.

(5) Set k = 1, labels of all points to 0. Create a pointer corresponding to each
of the n points.
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(6) Assign cluster label 1 to the lowest cost point.16 Set its pointer to null.

(7) Now pick the next s − 1 points in the order of increasing cost and perform
the following: for each point x find the lowest cost point y among the closest
sone neighbors of x (including itself). If y = x, set k = k + 1 and set label of
the point to k and set pointer of x to null. Else assign the label of y to x and
set pointer of x to point to y.

(8) Return the clustering G consisting of the s densest points, and the k cluster
centroids as the k points with pointers set to null.

At the end of the process, we get a set G ⊆ X consisting of k clusters {C j }k
j=1

formed by a subset of s points from X with the lowest cost. We also get a pointer
from each of the s points leading to a point of lower cost Qone. There are exactly
k points from G that form k centroids, one for each cluster C j , and the centroid
is the point in C j with the lowest cost. The pointers from each of the members
of a cluster C j form a path of lower cost leading eventually to the centroid of the
cluster. Figure 5 shows the output of DGRADE on the Gauss-2 dataset when
(b) the assignments of all the points is performed, that is, when s = n, vs.
(a) when only s = 750 points are assigned. DGRADE consists of two dis-
tinct phases: (1) sorting of points by Bregmanian ball cost to get the absolute

16For the restricted One Class case (k = 1), returning this (lowest cost) point as a solution corre-

sponds to the One Class seeding algorithm described in our earlier paper [Gupta and Ghosh 2005],

and results in strong optimality guarantees for One Class that are described in more detail in

Gupta and Ghosh [2005, 2006a].
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measurement of cost in various regions of the data, and (2) pointing each data
point to the direction of maximum decline in cost within the same Bregmanian
ball to get an estimate of the direction of maximum cost decline. The second
phase generates a global map of the distinct valleys that ultimately converge
to the locally dense (restricted) centroids. Essentially, the algorithm performs
a global search for local density cost estimate and the gradient direction, and
unlike density-based clustering methods such as DBSCAN, is compatible with
asymmetric Bregman Divergences.17 Although DGRADE can be used as a al-
gorithm to find dense regions, or as an exhaustive clustering algorithm (for
s = n), our main goal in designing it was to obtain a seeding solution for
BBC-S. Therefore, we simply use the centroids discovered by DGRADE to seed
BBC-S.

A detailed time and space complexity of DGRADE is given in Gupta and
Ghosh [2006a]. To a first approximation, time complexity is quadratic in data
size, and space requirements are only O(n).

9.3 Selecting sone: The Smoothing Parameter for DGRADE

sone, which is a parameter for DGRADE that needs to be input by the user, acts
like a smoothing parameter; a larger value typically results in a smaller k. When
sone is increased, the number of clusters found drops rapidly (Figure 5(c)), and
beyond a certain value of sone a consecutive set of values result in the same k.
This characteristic enables several alternatives for selecting sone automatically.
We now present three common scenarios and the corresponding solutions for
them:

(1) If k is known, we can find the smallest sone ≥ 2 that results in k clusters
and a binary search could be performed in O(n2 log(n)) time for finding the
best centroids of the k clusters using DGRADE. The clustering using this
approach on the Gauss-2 data is shown in Figure 5(a) and 5(b).

(2) If k is not known and somewhat “over-split” clusters are preferred, a user
can specify a maximum stability integer value of m and a linear search
could be performed for up to a certain maximum value of sone to find the
value of sone after which sone + 1 to sone + m − 1 values all result in k clus-
ters. This value of sone and the corresponding solution of DGRADE is then
returned. This technique is more appropriate for many biological datasets
where the signal-to-noise ratio is often very low, and the clustering present
is extremely weak.

(3) For datasets with well-defined or prominent clusters, we can simply select
k with the largest stability for sone ranging from 1 to the smallest value
that returns k = 1. Then, we select the smallest sone that gives k clusters.
This selection method is shown in Figure 5(c), where k = 4 is obtained for
62 ≤ sone ≤ 214, corresponding to the largest stable interval. The smallest
sone for k = 4 is 62, which is the value used for the final clustering output
(for s = n) shown in Figure 5(d). It is interesting to note that the densest
cluster (numbered 3 in Figure 5(b)) gets merged with a nearby larger cluster

17Bregman Divergences are generally not symmetric; Squared Euclidean is a notable exception.
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Fig. 5. Clustering of Gauss-2 data using DGRADE for various scenarios. For (a), (b) and (d), lines

show the path of the simulated local search converging at the locally lowest cost/densest point,

which also form the centroid of the corresponding cluster, and are marked as “x” and numbered 1 to

k. For (a) and (b), k is known and set to 5, and sone was automatically determined as 57. (a) shows

clustering for s = 750, while (b) for s = n. For unknown k, (c) shows the relationship between sone
and k when s = n and how it can be used for choosing sone and determining k automatically. The

most stable k and the corresponding smallest sone is shown using the dotted lines. (d) shows the

four clusters discovered by DGRADE using the automatic model selection described in (c).

(numbered 1 in Figure 5(b)) resulting in k = 4, which is quite good for this
completely parameterless, unsupervised setting.

10. EXPERIMENTS

10.1 Overview

Results in Section 10.4 show the effectiveness of BBC with Pressurization in
finding high-quality, robust results as compared with three other methods,
against three real and three synthetic datasets. Section 10.5 then presents the
corresponding results when using DGRADE to seed BBC. Although on some
datasets DGRADE gave good results by itself, more consistently, seeding BBC
with the centers found by DGRADE gave results that were significantly better
than using either BBC or DGRADE separately, and generally better than even

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 8, Publication date: July 2008.



8:34 • G. Gupta and J. Ghosh

BBC with Pressurization. Results suggest that it is also possible to combine all
three: BBC, Pressurization and DGRADE to achieve the best quality of clus-
tering, and confirm that in practice, DGRADE can estimate k automatically,
and the deterministic, high-quality results generated are a good alternative to
Pressurization for biological datasets.

10.2 Datasets

We tested our algorithms on multiple real and synthetic datasets that are
summarized in Table II.

Real Data:
(A) Microarray Datasets. A microarray dataset can be represented by a ma-

trix that shows (suitably normalized) expression levels of genes (rows) across
different experiments/conditions (columns). Researchers are interested in clus-
tering either the rows, the columns, or simultaneously clustering both rows
and columns, in order to find similar genes, similar conditions, or subsets
of genes with related expressions across a subset of conditions, respectively
[Slonim et al. 2005; Segal et al. 2003; Banerjee et al. 2005a]. For this article,
we report results on clustering the rows of the Lee dataset, which was ob-
tained from Lee et al. [2004], and consists of 591 gene-expression conditions
on yeast obtained from the Stanford Microarray database [Gollub et al. 2003]
(http://genome-www5.stanford.edu/), and also contains a Gold standard based
on Gene Ontology (GO) annotations (http://www.geneontology.org). The Gold
standard contains 121,406 pairwise links (out of a total of 15,744,466 gene
pairs) between 5,612 genes in the Lee data that are known to be functionally
related. The Gold standard was generated using Gene Ontology biological pro-
cess from level 6 through 10. The Gasch dataset [Gasch et al. 2000] consists
of 6,151 genes of yeast Saccharomyces cervisiae responding to diverse environ-
mental conditions over 173 microarray experiments. These experiments were
designed to measure the response of the yeast strain over various forms of stress
such as temperature shock, osmotic shock, starvation and exposure to various
toxins. Each experiment is labeled with one of the 12 different categories of
experiments. For Gasch, we clustered the columns instead, for three reasons:
(1) we have good labels for experiments from Gasch et al. [2000], (2) the Gasch
Array dataset viewing the conditions as the objects to be clustered, provides a
high-dimensional biological testbed (6,151 dimensions), and (3) the 173 Gasch
Array experiments are already incorporated in the 591 conditions contained in
the Lee dataset, which we use for clustering genes.

(B) Text Data. The 20-Newsgroup (20-NG) dataset is a popular dataset
for text classification [Lang 1995], and is widely available on the web in-
cluding the KDD UCI repository (http://kdd.ics.uci.edu/). It consists of 20,000
Usenet articles taken from 20 different newsgroup, 1,000 from each newsgroup.
The 20 groups can also be categorized into 6 high-level categories shown in
Table III, which are then used as the class labels for evaluating the clustering
algorithms. The 20-NG data contains over 50,000 distinct words after remov-
ing punctuations, common words such as articles, and stemming. Since we
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Table III. The 6 Top-Level Classes (C) in the 20-Newsgroup Data

C |C| Member Newsgroups

Computers 4,959 comp.graphics, comp.os.ms-windows.misc,

comp.sys.ibm.pc.hardware,comp.sys.mac.hardware, comp.windows.x
Recreation 3,984 rec.autos, rec.motorcycles, rec.sport.baseball, rec.sport.hockey
Science 3,989 sci.crypt, sci.electronics, sci.med, sci.space
Miscellaneous 988 misc.forsale
Talk 2,994 talk.politics.misc, talk.politics.guns, talk.politics.mideast
Religion 2,994 talk.religion.misc, alt.atheism, soc.religion.christian

use the 20-NG data to evaluate (unsupervised) clustering algorithms, we used
an unsupervised approach for selecting features; we selected 4,292 most fre-
quent words (all words occurring ≥ 100 times over the 20,000 documents) as
features.

Synthetic Data. These datasets are useful for verifying algorithms since the
true labels are known exactly. The Gauss-2 dataset was generated using 4 2-D
Gaussians of different variances (Figure 3) and a uniform distribution. Similar
datasets were generated with 5 Gaussians in 10-D and 40-D to produce Gauss-
10 and Gauss-40 datasets.

10.3 Evaluation Methodology

Having shown the value of the local search approach and seeding for the One
Class problem in Gupta and Ghosh [2005], this paper presents results for the
general case of finding multiple dense clusters. Additional results for the One
Class case can be found in Gupta and Ghosh [2006a].

Evaluation Criteria. Evaluating clustering is a challenging problem even
when labeled data is available [Strehl et al. 2000]. Depending upon the type
of the labeled data, we performed the following three different types of evalua-
tions:

(1) Adjusted Rand Index. Given a set of class labels U , and a set of cluster labels
V for a set of points X , Rand Index (RI) is computed as:

R I = auv + au

auv + au + av + duv
, (19)

where: auv represents the number of pairs of points (in X ) that have the
same label in U and V, au represents the pairs of points that have the same
label in U but not in V, av represents the pairs of points that have the same
label in V but not in U , and duv represents the pairs of points that have
different labels both in U and V.

A problem with Rand Index is that the expected value for Rand Index
of two random partitions does not go to 0, but depends on a multitude of
factors, including the number of distinct labels in U and V, and the size of
the sets, (i.e., the number of data points being clustered). Adjusted Rand
Index was proposed by Hubert and Arabie [1985] as a normalized version
of Rand Index that takes care of this problem, and returns 1 for a perfect
agreement between the class label set U and the clustering label set V, and
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0 when the clustering is as bad as random assignments. The adjustment
uses the following formula:

ARI = RI − (Expected RI)
(Maximum RI) − (Expected RI)

. (20)

Using a generalized hypergeometric model, Hubert and Arabie [1985]
showed that the ARI computation can be reduced to the following form:

ARI =
∑

i, j

(ni, j
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where ni, j represents the number of data points that are in class i and
cluster j , ni· represents the number of data points in class i, n· j represents
the number of data points in cluster j .

ARI can be used on the Gasch Array, 20-NG and the synthetic datasets
since the true class-labels are available.

(2) p-Value. We use p-value to evaluate individual clusters of Yeast genes found
using BBC for the Lee dataset. Funspec (http://funspec.med.utoronto.ca/) is
a popular Yeast database query interface on the Web that computes cluster
p-values for individual clusters using the hypergeometric distribution, rep-
resenting the probability that the intersection of a given list of genes with
any given functional category occurs by random chance. p− value is a com-
monly used measure of individual cluster quality used by bioinformatics
researchers.

(3) Overlap Lift. For evaluating the overall clustering quality, it is not possible
to use ARI to evaluate against the links in the Lee Gold standard. In gen-
eral, measuring overall clustering quality for genes is quite difficult since
only an incomplete and partially verified ground truth is known, such as the
links in the Lee Gold standard. We propose Overlap Lift as a measure of the
statistical significance of our clustering results against the gold standard as
follows: a cluster containing w genes creates w(w−1)/2 links between genes,
since every point within the cluster is linked to every other point. Therefore,
k clusters of size {wj }k

j=1 would result in a total of lc = ∑k
j=1 wj (wj − 1)/2

links. The fraction of pairs in the Gold standard that are linked flinked

is known (for example for Lee dataset flinked = 121, 406/15, 744, 466 =
0.007711). If we construct a null hypothesis as randomly picking lc pairs out
of n(n−1)/2 pairs in the Gold standard, we can expect lnull = flinkedlc pairs
to be correctly linked. A good clustering should result in (a lot) more cor-
rectly linked pairs than lnull. If ltrue is the number of correct links observed
(which will always be ≤ lc) in our clustering, then the Overlap Lift is com-
puted as the ratio

ltrue
lnull

, which represents how many times more correct

links are observed as compared to random chance. A larger ratio implies
better clustering.

Handling “Don’t care” Points in Evaluations. All the evaluations are per-
formed across a range of coverage of the data; a coverage of s/n = 0.4
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implies 40% of the points are in clusters while the remaining 60% are in the
“don’t care” or the background cluster. The points in the background or the
“don’t care” clusters are excluded from all evaluations. To keep the compar-
isons fair, all methods are compared against each other only across the same
coverage.

Evaluating Soft BBC. We tested Soft BBC using Gaussians as the exponen-
tial mixture components. There are eight possible flavors of Soft BBC (Table
I) depending upon the choice of the updatable parameters. We present results
on the Soft BBC implementation, flavor 6, that is, with updatable, unequal
variances with a fixed α0. We also compared Soft BBC for Gaussians with the
alternative soft model called Mixture-6 (Section 7.4).

Hard Assignments for Soft BBC. To compare Soft BBC against BBC and
other hard assignment methods, on convergence, the points are assigned to
the mixture with the largest probability, that is, to j = argmax j=0→k p(Yi =
j |xi). The estimation of p0 described in Section 4.5 results in approximately
(n × α0) points getting assigned to the background. In order to ensure that
exactly (n − s)/n points are assigned to the “don’t care” set, a post-processing
is performed where we: (1) compute pi

max = maxk
j=0(p(Yi = j |xi)) for each xi,

(2) set p†
0 to the sth largest value in pi

max[i]n
i=1, (3) put all points below p†

0 into the
“don’t care” cluster, and assign rest to cluster j = argmax j=1→k p(Yi = j |xi). A
similar conversion was required for evaluating Mixture-6.

Comparison Against Other Methods. We also compared our method with
Bregman Hard Clustering, Single Link Agglomerative clustering and DBSCAN.
Bregman Hard Clustering18 assigns every data point into a cluster. To be able
to compare it meaningfully with BBC, we picked s points closest to their re-
spective cluster representatives. This procedure was also used for Single Link
Agglomerative clustering. For the two DBSCAN parameters, we set MinPts to 4
as recommended by [Ester et al. 1996], while we searched for Eps that resulted
in s points in clusters. k is automatically estimated by DBSCAN while for all
the other methods and datasets, when evaluating BBC with Pressurization, k
was set to |C| (Table II), except for the Lee dataset (where |C| is not known)
where we set k to 9.

All five methods use the same and appropriate distance measure that cor-
responds to the D listed for each of the datasets in Table II; Sq. Euclidean
for the synthetic Gaussian datasets, Pearson Distance for the gene-expression
datasets, and (1-Cosine Similarity) for the 20-Newsgroup data.

10.4 Results for BBC with Pressurization

For the lower dimensional datasets, both Soft and Hard BBC with Pressur-
ization perform extremely well, giving near-perfect results (ARI ≈ 1) for up
to 40% coverage on Gauss-10 data and an ARI between 0.8 and 0.9 for up to
40% coverage on Gauss-2 data. As expected, both BBC and Soft BBC without
Pressurization tend to be a lot more sensitive to initialization, thus exhibiting

18Bregman Hard Clustering reduces to K-Means when Dφ is Sq. Euclidean distance, which is the

distance measure used for the Gaussian datasets (Table II).
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noticeable error-bars.19 For Gauss-40 and all the real datasets, results are only
shown for Hard BBC with Pressurization (BBC-Press). This is because exponen-
tial mixture models in general, including Bregman Soft Clustering, Mixture-6
and Soft BBC, all suffer from an inherent problem that makes them impractical
for high-dimensional datasets: there are rounding errors while estimating the
mixture membership probabilities, and these rounding errors worsen exponen-
tially with the dimensionality of the data d (e.g., for Gaussians, when left-hand
side of Eq. (17) is substituted for p(ψ,θ ) in Eq. (6)), so much so that the models
often do not work well beyond d = 10. However, the main purpose of designing
Soft BBC was to show that a fundamental generative model lies behind BBC
(Section 6).

On the Gauss-40 dataset, BBC-Press continues to give an ARI ≈ 1 for up
to 40% coverage (Figure 6(c)). These results are impressive given that the
ARI was obtained as averages of multiple runs with random seeding. The im-
provement against labeled data using BBC Press as compared to BBC is also
quite remarkable for the two micro-array datasets Gasch Array and Lee, and
a similar trend is seen for 20-Newsgroup as well. This indicates that Pressur-
ization works well on a variety of real datasets; from very high dimensional
gene experiments (Figure 7(a)) where most of the data is relevant, discov-
ering small number of relevant gene clusters on high-dimensional microar-
ray data (Figure 7(e)), to clustering large and high-dimensional documents
(Figure 7(c)).

On both artificial and real datasets (Figures 6 and 7), DBSCAN, Single Link
Agglomerative and Bregman Hard Clustering all perform much worse than
BBC-Press in general, and especially when clustering a part of the data. Note
that these results are based on labels that were not used for clustering; using
ARI on Gaussians, Gasch Array and the 20-Newsgroup data, and using Overlap
Lift on Lee, and are therefore independent of the clustering methodology. Figure
7(f) shows that (1) BBC-Press not only beats other methods by a wide margin
but also shows high enrichment of links for low coverages (over 6 times for
5% coverage), and (2) Single Link Agglomerative clustering does not work well
for clustering genes and gives results not much better than random. On all
datasets, Single Link tends to perform the worst; one explanation might be its
inability to handle noisy data. For 20-Newsgroup, the ARI of Single Link is not
clearly visible although it has been plotted because it hovers close to 0 for all
coverages. In fact, for some situations (Figure 6(d) to 6(f)), DBSCAN and Single
Link Agglomerative give slightly worse than random performance resulting
in ARI values that are slightly below 0. The performance difference between
our method (BBC-Press) and the three other methods is quite significant on
all the six datasets, given the small error bars. Additionally, if we were to pick
the minimum-cost solution out of multiple trials for the local search methods,
the differences in the performance between BBC-Press vs. DBSCAN and Single
Link become even more substantial.

19Note that the error bars were plotted on all the local search algorithms, but are often too small

to be visible.
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Fig. 6. Evaluation on synthetic Gaussian data of increasing dimensionality using ARI: (a), (b) and

(c) demonstrate the effectiveness of Pressurization. (d), (e) and (f) show effectiveness of BBC-Press

as compared to three other methods: Bregman Hard Clustering, Single Link Agglomerative and

DBSCAN. Error bars of one std. deviation are shown (but are sometimes too small to be visible) for

nondeterministic methods (i.e., excluding DBSCAN and Agglomerative) for which ARI is plotted

as the average over 100 trials with random initialization.
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Fig. 7. Evaluation of BBC-Press on real data using ARI for Gasch Array and Cleaned 20-NG and

Overlap Lift for Lee, as compared to BBC, Bregman Hard Clustering, Single Link Agglomerative,

and DBSCAN. Local search (i.e., excluding DBSCAN and Agglomerative) results were averaged

over 20 trials for Gasch Array and Cleaned 20-NG, and over 10 trials for Lee. The corresponding

one std. dev. error-bars are plotted, but are sometimes too small to be visible.
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Selecting Size and Number of Dense Clusters in the Absence of DGRADE
Seeding. In BBC-Press, s controls the number of data points in dense clusters.
The dense clusters were invariably very pure when using BBC-Press, with near-
perfect clusters on the Gaussian data for s of up to 40% of n, while on the Gasch
Array dataset the performance peaks at a coverage of around 0.3 but shows a
general decline after that. The rapid increase in cluster quality with decreasing
s is more pronounced in BBC-Press than in the other methods, and shows that
on these datasets, dense regions are indeed highly correlated with the class
labels. In practice, selecting dense clusters with BBC-Press requires choosing
an appropriate s and k. If a small amount of labeled data is available, the best
k can be estimated for a fixed s using an approach such as PAC-MDL [Banerjee
and Langford 2004], while a reasonable s can be picked by applying BBC-Press
on a range of s and picking the “knee” (e.g., Figures 6(a), 6(b), 6(c) and 7(b) show
a sudden decline in ARI near s = 0.4 × n). Alternatively, in many problems k
can be an input, while s simply has to be a small threshold (For example for
finding a small number of relevant web documents or a small number of relevant
genes).

Evaluating Individual Clusters. Although the results based on ARI and Over-
lap Lift show the effectiveness of our method, visual verification serves as an-
other independent validation that the clusters are not only statistically signifi-
cant but also useful in practice. For the Gauss-2 dataset, it is easy to verify the
quality of the clusters visually (Figure 3(b)). For the Gasch Array clustering,
most clusters were generally very pure using BBC-Press for lower coverages.
For example, when only 70 out of 173 experiments are clustered by repeating
BBC-Press 20 times and picking the lowest cost solution, the average ARI is
around 0.6 over 12 classes. Some clusters are even purer, for example, one of the
clusters contained 12 out of 13 points belonging to the class “YPD”.20 Similarly,
for the Lee dataset, when clustering only 600 genes into 30 clusters and pruning
the rest, we verified a high purity cluster using FunSpec; 10 out of 14 genes in
one of the clusters belonged to the functional category “cytoplasmic and nuclear
degradation” (p-value of < 10−14). Many other gene clusters on the Lee dataset
also had low p-values for some of the categories recovered by FunSpec.

10.5 Results on BBC with DGRADE

In an alternative setting where DGRADE is used to seed BBC, we compared
both DGRADE and BBC seeded with DGRADE with Bregman Hard Cluster-
ing, Single Link Agglomerative clustering and DBSCAN. The experimental
setup and evaluation was similar to when comparing BBC with Pressuriza-
tion against the three other methods, except that for a given coverage, k was
automatically determined by DGRADE, and this k was then used as input for
methods that require it: BBC, BBC-Press, Bregman Hard and Single Link. For
DBSCAN, which determines k internally, as before, we set MinPts to 4 as rec-
ommended by Ester et al. [1996], while we searched for Eps that resulted in s
points in clusters. The input parameter sone required by DGRADE was deter-
mined automatically by using the approach described in Section 9. DGRADE

20Which represents one of the class of experiments set up by Gasch et al. [2000].
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Fig. 8. (a) Automatically determined sone for DGRADE on various datasets, using the approach

described in Section 9. (b) For the Lee data, selecting the largest k (smallest sone) with stability > 1

gives a stability = 3, sone = 13 and k = 9.

then uses the same sone for smaller coverages, which can result in a smaller
k (Figure 9) as the lesser dense clusters become “don’t care” points, and the
corresponding k is then used as input to all the algorithms requiring it. When
seeding (Hard/Soft/Pressurized) BBC with the output of DGRADE, the cluster
centroids output by DGRADE were used as the seed/initial centroids. We now
present results on DGRADE when it is used for seeding BBC, on two real and
three synthetic datasets.

Ability to Estimate sone Automatically. In the table in Figure 8(a), the first
column shows the values of sone determined automatically using one of the
three methods described in Section 9, the second column shows the number
of clusters discovered when clustering all of the data (s = n), while the third
column shows the user input, if any, required by DGRADE. For all the datasets
except Lee, k was known and was used to determine sone automatically. For the
Gauss-2 dataset, when both k and sone were determined automatically using
the maximum cluster stability criteria, we obtained k = 4 (Figures 5(c) and
5(d)). For the Lee dataset, by using a cluster stability threshold >1 we obtained
k = 9 and sone = 10. Figure 8(b) shows the process of automatically determining
both k and sone for the Lee dataset; interestingly, k = 9 also had the maximum
stability of 3 in the range 2 ≤ sone ≤ 20, for which k ranged from 948 (for
sone = 2) to 5 (for sone = 20).

Using Cluster Centroids from DGRADE for Seeding and Selecting k, for Vari-
able Coverages. For a constant sone, the results of DGRADE are not only deter-
ministic for varying values of s, but also have another useful property that
follows directly from Algorithm 4; using a smaller s gives clusters that are
guaranteed to be subsets of the DGRADE clustering with a larger s. This effect
can also be seen in Figure 5(b) vs. 5(a), when s was reduced from 1298 to 750.
Eventually, some of the less dense clusters disappear completely resulting in a
decline in k returned by DGRADE. However, the remaining centroids output
by DGRADE remain unchanged. The decline in k with s can be seen for the
5 different datasets in Figure 9, and provides us with a meaningful method
for selecting centroids and k for seeding BBC (for varying fraction of data
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Fig. 9. (a) On Gauss-2 data, the number of clusters k found by DGRADE declines asymptotically

with the fraction of densest data clustered (s/n). (b) A summary of a similar trend on the other

datasets. The maximum k corresponds to s = n, and the minimum k corresponds to the smallest

coverage. sone was held constant for all coverages, and corresponded to the automatically deter-

mined values of 4,10, 57, 104, and 57 for the Gasch, Lee, Gauss-2, Gauss-10 and Gauss-40 datasets

respectively.

clustered), as compared with other seeding methods that require k as an input.
The k corresponding to those shown in Figure 9 for various coverages were used
as inputs to Bregman Hard and Single Link Agglomerative Clustering. Also,
the corresponding centroids output by DGRADE for various coverages were
used as inputs for seeding any of the forms of BBC (Hard/Soft/Pressurized).

DGRADE Seeding Works Well with BBC. Figures 10 and 11 show results for
BBC seeded with DGRADE as compared to the other alternatives; BBC with
Pressurization and the other three benchmark algorithms. For the Gauss-2
dataset, when DGRADE was used to seed Soft BBC, the results were compa-
rable to that of Soft BBC with Pressurization (Figure 10(b)), while the results
of DGRADE as a clustering algorithm by itself were quite good (Figure 10(a)).
On the Gauss-40 dataset (Figures 10(e) and 10(f)), although DGRADE does
not perform well by itself, when used for seeding BBC-Press, the combination
gives results that are superior to all other algorithms, and beats even BBC-
Press; an ARI close to 1 is observed for coverages as high as 0.6 as compared
to only until 0.4 for BBC-Press. Similar trends were seen on the Gauss-10
(Figures 10(c) and 10(d)) dataset. One possibility is that the global search bias
behind DGRADE provides additional advantages to a robust local search algo-
rithm such as BBC-Press, and especially on higher-dimensional datasets. This
agrees with the intuition that the local search problems should become more
severe with increasing dimensionality of the data (Gauss-40 vs. Gauss-2), and
is similar to the boost in performance observed when DGRADE-style seeding
is combined with local search for the One Class scenario [Gupta and Ghosh
2005, 2006a]. This phenomenon of DGRADE and BBC-Press improving results
as a combination is also observed on the really high-dimensional real datasets-
the Gasch Array (Figures 11(a) and 11(b)). However, this relationship is only
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Fig. 10. Evaluation of BBC seeded with DGRADE using the synthetic Gaussian datasets: as

compared to BBC with seeding, and against three other methods. Error bars of one std. deviation

are shown (but are sometimes too small to be visible) for non-deterministic methods (i.e., all except

DBSCAN and Agglomerative) for which ARI is plotted as the average over 100 trials with random

initialization. Note: These experiments were setup differently from those without DGRADE; the k
output by DGRADE was used as input to all algorithms except DBSCAN.
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Fig. 11. Evaluation of BBC seeded with DGRADE on two real datasets as compared to BBC

without seeding, and against the three other methods. Performance was measured using ARI for

Gasch Array and using Overlap Lift for the Lee dataset. Results for Bregman Hard clustering and

BBC without seeding were averaged over 20 and 10 trials for Gasch and Lee respectively, and the

corresponding one std. dev. error-bars are plotted (but are sometimes too small to be visible). Note:

These experiments were setup differently from those without DGRADE; the k output by DGRADE

was used as input to all algorithms except DBSCAN.

seen for the lowest coverage of 0.05 on the Lee dataset (Figure 11(e)), perhaps
because the fraction of genes that are usually dense when clustering genes is
usually very small.

11. CONCLUDING REMARKS

Bregman Bubble Clustering extends the notion of “density-based clustering” to
a large class of divergence measures, and is perhaps the first that uses a local
search/parametric approach in such settings. The availability of appropriate
Bregman Divergences21 for a variety of problem domains where finding dense
clusters is important, opens density-based clustering to many new domains.
Moreover, the extension of BBC to Pearson Correlation (Pearson Distance) is

21For example, Itakura-Saito for voice identification, Mahalanobis distance for digital Mammogra-

phy, and KL-divergence for identifying most relevant documents.
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particularly helpful for analyzing several biological datasets. Bregman Bubble
Clustering can also be thought of as a conceptual bridge between partitional
clustering algorithms and the problem of One Class Clustering. The Soft BBC
model shows that BBC arises out of a more fundamental model involving a
mixture of exponentials and a uniform background.

Empirical results show that BBC-Press gives good results on a variety of
problems involving both low- and high-dimensional feature spaces, often out-
performing other alternatives by large margins. DGRADE provides effective
seeding for BBC and BBC-Press, and provides an additional mechanism for in-
dicating the appropriate number of dense clusters that one should seek. Overall,
the combination of the three components; BBC, Pressurization, and DGRADE
provides a robust framework for finding dense clusters with several key prop-
erties: deterministic results, reasonable scalability to large, high-dimensional
datasets, and applicability to a wide variety of problem domains.
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DETTLING, M. AND BÜHLMANN, P. 2002. Supervised clustering of genes. Genome Biol. 3, 12.

DHILLON, I., MALLELA, S., AND KUMAR, R. 2003. A divisive information-theoretic feature clustering

algorithm for text classification. J. Mach. Learn. Res. 3, 1265–1287.

DHILLON, I. S., GUAN, Y., AND KOGAN, J. 2002. Refining clusters in high-dimensional text data.

In Proceedings of 2nd SIAM International Conference on Data Mining (Workshop on Clustering
High-Dimensional Data and Its Applications). SIAM, Philadelphia, PA.

DHILLON, I. S., AND MODHA, D. S. 2001. Concept decompositions for large sparse text data using

clustering. Mach. Lear. 42, 1-2 (Jan.-Feb.), 143–175.

ESTER, M., KRIEGEL, H.-P., SANDER, J., AND XU, X. 1996. A density-based algorithm for discovering

clusters in large spatial databases with noise. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’96). ACM, New York, 226–231.

GASCH A. P., SPELLMAN, P. T., KAO, C. M., CARMEL-HAREL, O., ELSEN, M. B., STORZ, G., BOTSTEIN, D., AND

BROWN, P. O. 2000. Genomic expression programs in the response of yeast cells to environmen-

tal changes. Mol. Bio. Cell. 11, 112 (Dec.), 4241–4257.

GEORGESCU, B., SHIMSHONI, I., AND MEER, P. 2003. Mean shift based clustering in high dimensions: A

texture classification example. In ICCV ’03: Proceedings of the 9th IEEE International Conference
on Computer Vision (Washington, DC). IEEE Computer Society Press, Los Alamitos, CA, 456–

463.

GOLLUB J., BALL, C. A., BINKLEY, G., DEMETER, J., FINKELSTEIN, D. B., HEBERT, J. M., HERNANDEZ-

BOUSSARD, T., JIN, H, KALOPER, M., MATESE, J. C., SCHROEDER, M., BROWN, P. O., BOTSTEIN, D., AND

SHERLOCK, G. 2003. The Stanford Microarray Database: Data access and quality assessment

tools. Nucleic Acids Res. 31, 1 (Jan.), 94–96.

GUHA, S., RASTOGI, R., AND SHIM, K. 1999. Rock: A robust clustering algorithm for categorical

attributes. In Proceedings of the 15th International Conference on Data Engineering (Sydney,

Australia). 512.

GUPTA, G. 2006. Robust methods for locating multiple dense regions in complex datasets, Ph.D.

dissertation. University of Texas at Austin, Austin, TX.

GUPTA, G. AND GHOSH, J. 2005. Robust one-class clustering using hybrid global and local search.

In Proceedings of ICML 2005 (Bonn, Germany), 273–280.

GUPTA, G. AND GHOSH, J. 2006a. Bregman Bubble Clustering: A robust framework for mining

dense clusters. In Tech Report, Dept. of Elec. & Comp. Engineering, University of Texas at

Austin. IDEAL-TR04,http://www.lans.ece.utexas.edu/techreps.html.

GUPTA, G. AND GHOSH, J. 2006b. Bregman Bubble Clustering: A robust, scalable framework for

locating multiple, dense regions in data. In ICDM-06, Runners up Best Research Paper Award.

Hong Kong, 232–243.

GUPTA, G., LIU, A., AND GHOSH, J. 2008. Automated hierarchical density shaving: A robust, auto-

mated clustering and visualization framework for large biological datasets. IEEE/ACM Trans. on
Computat. Biol. Bioinf., 11 Mar. 2008. IEEE Computer Society Digital Library. IEEE Computer

Society, http://doi.ieeecomputersociety.org/10.1109/TCBB.2008.32.

GUPTA, G. K. 2000. Modeling customer dynamics using motion estimation in a value based cluster

space for large retail data-sets. M.S. thesis, University of Texas at Austin, Austin, TX.

GUPTA, G. K. AND GHOSH, J. 2001a. Detecting seasonal trends and cluster motion visualization

for very high dimensional transactional data. In Proceedings of the 1st International SIAM Con-
ference on Data Mining (SDM’01). SIAM, Philadelphia, PA.

GUPTA, G. K. AND GHOSH, J. 2001b. Value Balanced Agglomerative Connectivity Clustering. In

SPIE Proceedings of the Conference on Data Mining and Knowledge Discovery III (Orlando, FL),

6–15.

HASTIE, T., TIBSHIRANI, R., EISEN, M. B., ALIZADEH, A., LEVY, R., STAUDT, L., CHAN, W. C., BOTSTEIN, D.,

AND BROWN, P. 2000. “Gene shaving” as a method for identifying distinct sets of genes with

similar expression patterns. Genome Biol. 1, 1–21.

HENDRICKSON, B. AND LELAND, R. 1995. An improved spectral graph partitioning algorithm for

mapping parallel computations. SIAM J. Sci. Comput. 16, 2, 452–469.

HUBERT, L. AND ARABIE, P. 1985. Comparing partitions. J. Class., 193–218.

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 8, Publication date: July 2008.



8:48 • G. Gupta and J. Ghosh

JAIN, A. K. AND DUBES, R. C. 1988. Algorithms for Clustering Data. Prentice Hall, Englewood

Cliffs, NJ.

JIANG, D., PEI, J., RAMANATHAN, M., TANG, C., AND ZHANG, A. 2004. Mining coherent gene clusters

from gene-sample-time microarray data. In Proceedings of KDD’04 (Seattle, WA). 430–439.

JIANG, D., PEI, J., AND ZHANG, A. 2003. DHC: A density-based hierarchical clustering method for

time series gene expression data. In Proceedings of BIBE’03 (Washington, DC). IEEE Computer

Society Press, Los Alamitos, CA, 393.

JOHNSON, S. C. 1967. Hierarchical clustering schemes. Psychometrika 32, 3 (Sept.), 241–254.

JUDD, A. AND HOVLAND, M. 2007. Seabed Fluid Flow: The Impact of Geology, Biology and the
Marine Environment. Cambridge University Press, Cambridge, UK.

KARYPIS, G., AGGARWAL, R., KUMAR, V., AND SHEKHAR, S. 1997. Multilevel hypergraph partitioning:

Applications in VLSI domain. In Proceedings of Design and Automation Conference. ACM, New

York.

KARYPIS, G. AND KUMAR, V. 1998. A fast and high quality multilevel scheme for partitioning irreg-

ular graphs. SIAM J. Sci. Comput. 20, 1, 359–392.

KEARNS, M., MANSOUR, Y., AND NG, A. Y. 1997. An information-theoretic analysis of hard and

soft assignment methods for clustering. In Proceedings of the 13th Conference on Uncertainty in
Artificial Intelligence. AAAI, Menlo Park, CA, 282–293.
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