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Abstract provements include: (1) creating a faster version of HMA
appropriate for larger datasets; (2) the ability to use eetyar
In many clustering applications for bioinformatics, only of distance metrics; and (3) a novel, useful visualizatibn o
part of the data clusters into one or more groups while the the resulting cluster hierarchy that can help guide clisser
rest needs to be pruned. For such situations, we present Hi-lection. For more about the relationship between DBSCAN,
erarchical Density Shaving (HDS), a framework that con- HMA, and our algorithms, see [5]. Empirical tests of our
sists of a fast, hierarchical, density-based clusteringoal HDS framework on gene expression microarray data show
rithm. Our framework also provides a simple yet powerful that we do indeed obtain very good results.
2-D visualization of the hierarchy of clusters that can be
very useful for_further exploration. We present results to 2 Hierarchical Mode Analysis
show the effectiveness of our methods.

LetX = {x;}", C R? be a set of data points that need
1 Introduction to be clustered. L&Vl g represent the correspondingx n
) symmetric distance matrix. The algorithms described is thi
In many real-world clustering problems, only a_subset of paper only requirdg as input. In our algorithms, this
the data actually needs to be clustered. In particular, thisyiciance metric could be Euclidean, 1 - Cosine Similarity,

is tr_ue of many types of Iarge,.high-dimensional bioinfor- 4, pearson Distancel,) [4] computed as — p, wherep
matics datasets such as protein mass spectroscopy, phylQs thepearson Correlationa popular similarity measure for

genetic profile data, and gene-expression datasets. In Palz|ustering gene-expression and other biological data][9, 8

ticular, gene-expression datasets measure expressei lev. gification for why these distance metrics can be used can
of genes compared to a control across a few thousand genege tound in [5]

over a set of experiments that cover only a specific “theme” |\ [11] uses the following notion of density. Given
such as stress-response, and therefore only a small NUMsomer, € R : min(Mg) < r. < maz(Mg) as an
ber of genes related to the conditions show good clustering.input’ the densitys,. (x) at aﬁy give_n pointc is propor-
From this data, biologists are interested in recovering-clu tional to the numbeF of points Y that are within- of x *:

ters formed from small subsets of genes that show stronglyprs (x) x [{y € X : ds(y,x) < r.} The HMA algorithm
correlated expression patterns, and that often map to theg 55 follows?:

biological processes involved in the specific context (e.g.

stress). 1. Select the density threshold as integer< n, com-
Density-based clustering algorithms [2, 1] usernel pute the inter-point distance matrds and the dis-

density estimatiofi7] to identify dense regions, and are ca- tancesd™ from each point to its:t" nearest point.

pable of clustering only a subset of dense data. Perhaps the

first algorithm to use such an approach wiisrarchical 2. Order the distance®" so that the smallest is first us-

Mode AnalysiHMA) [11], which could also find a com- ing the arraya™ as an index. Thua”c defines the

pact hierarchy of dense clusters. However, HMA seems to order in which the data points become dense: point

have gotten lost in time (it was published in 1968) and is a"<(1) has the smallest” distanced™« (1) and is first

not known to most current researchers. In this paper, we—; _ — _
present an improved framework called Hierarchy Density 1 ne SetOf points withim distance ok includesx. .

. . . Since [11] is not easily available, what follows below is g@Bted
Shaving(HDS) tha_t builds upon the HMA algorithm anq exactly as in [11] except with the substitution of notatiosed in this
greatly broadens its scope and effectiveness. These impaper.



to become dense when = d™<(1), pointa™(2) is Algorithm 1 DS

second atl"<(2), and so on. Input: Distance matridMLs, nc, fshave-
. . Output: Cluster labels{lab; };—, corresponding to the data
3. Select distance thresholdsfrom successivel™« val- pl?)ints. sllabiFimy P d

ues, initializing a new dense point at each cycle. As Initialize: {lab;}"; = 0
the second and each subsequent dense point is intro- . = [n(1 — forave)]
duced, the method tests the new point to determine one s: [M?>, M| = sortrows(Msg)

rad>

of three possible fusion phases: either (i) the new point  [radx™, idx™] = sort(M™(-, n.))

does not lie withinr, of another dense point, in which re = radz™ (nc)
case it initializes a new cluster mode, (i) the pointlies 9 = {x(idz"<(i)) };;, S _
within . of dense points from one cluster only, and * Lines 12-20: For each point i@, find other dense points

10: within r. distance of it and make sure they have the same

therefore the point is directly fused to that cluster, or )
labels, if not, relabel */

(i) the point falls in the saddle region, lying within ,
of dense points from separate clusters, and the clusters for i =1 ton. do
P P ’ idwb = binSearch({Mpy(idz™ (i), j)}i=n.)

concerned are fused. Xonbrs = MU (idz™ (i), 1)1z

4. Finally, a note must be kept of the nearest-neighbor 15 Xanbrs = Xnprs NG
distancer,,;,, between dense points of different clus- Lanbrs = unique(lab(Xanvr))/{0}
ters. Whenr, exceeds,,;, the direct fusion of the lVybe‘la:ib |f03y)e(LdW.S:_y‘ !
two clusters separated by, is indicated. ab(indezOf(Xansrs)) = i

end for
) ) 20: Count clustersk = |unique(lab)|/{0}
3 Density Shaving (DS) Remap the non-zero labelslab to the range 1 td:.

For the labeled points (i.e., the dense points) from the
it" iteration of HMA, it can be shown that two dense points
x,y € G (whereg is the set of dense points), belong to Proposition 4.1 The cluster labels in each of theitera-
the same dense cluster represente@ @sd(x,y) < r.. tions of the HMA hierarchy can be computed independently
Thatis: Vx,y € G : d(x,y) < re = X,y € C Thus, of one another.
for any two pointx; andx,, € G, if there exists a chain of
PoINtsSxy,Xa, ..., Xm—1,Xm € G suchthafds(x;,x;-1) <
re i, thenx; andx,, also belong to the same cluster in a
given iteration of HMA.

This leads to an algorithm that can compute the cluster

This proposition follows as a consequence of the DS al-
gorithm that can compute th&" iteration of HMA directly
without using the iterative procedure originally propobgd
[11]. Computing all the: levels of HMA using either the
> o § ) X ; original algorithm (Section 2) or DS results in a time com-
labels in the*" iteration of HMA directly without the itera- plexity of O(n?). Since the HMA iteration cluster labels are

“Ye process required in HMA. We call this al_goritmen- . nested (which follows from HMA directly), and because of
sity ShavingDS), and a pseudocode for DS is presented in Proposition 4.1, any subset of DS executions correspond-

(Algorithm 1). DS essentially takes two parameters as in- i 4 some subset of the HMA iteration clusterings also

puts: (1) fsnave, the fraction of least dense pointssbave 5 4 hierarchical clustering. An obvious way to produce
or exclude from consideration, and (&), the number of o, 4 hierarchy faster would be to compute a linearly sam-

points that must be within a distanceof a given pointz; pled subset of the HMA iterations using DS. However, we
in order forz; to be considered dense, where DS COMPUtes 1, 5nose an alternate scheme and an algorithm as follows:

t.hf corrlespondmge .I?# tomatlcallfyDaSg €~ dn (gc Iwhere Algorithm C: We start with all then, = n data points
|ZB Ené {‘th;”eﬂ'd be O#tpum ¢ c(;)n3|sts c_ustersd in the first iteration, and at each successive iteration: (1)
abeled 1 tok formed by the se@ of n. densest points and  wgp, o\ (remove) a fractionuane, 0 < Tnave < 1 0f the

nggégf:(;% sel) containing the remaining points which least dense of the. points from the current ;et of dense

points3, (2) apply DS steps 9 through 21 (Algorithm 1) on
. . thesen. points. We repeat these two steps untildrops

4 Hierarchical DS(HDS) below 1. As output, Algorithm C produces anx nze,
label matrixL, wheren,;., is the number of iterations in

In this Section we descriigierarchical Density Shaving  Algorithm C, andL(i, §) is the cluster ID of theth point in

(HDS), in which we first use the DS algorithm to compute a
subset of the HMA iterations, and then perform a relabeling ~ *Note that the geometric shaving of previous iteratiomsresults in
of the DS clusterings to generate a noise-tolerant version o 2 '¢& number, which is then rounded off to the nearest integgive the

. . . valuen.. In practice, we keep the real valued and only round it when
the HMA hierarchy. We start with the following observa- g it as an input to DS. Also, if the rounded valuergfresuits in the

tion: same integer value as the last iteration, then that iteragiskipped.




thejth iteration. The parameter.,. can be viewed as the
exponent of amxponential shavingand we refer to it as the
“shaving rate”. It can be shown that Algorithm C results in
a total number of iterations that is at m@st—28()

a continuation of the corresponding cluster on leyvel 1,
barring those points which are now part@for a particle.
If the condition in (2.1) is not satisfied, then (2.2) a clus-
mL ter has split in_to two or more child clusters. Each of these
and that its time complexity is oni@(n2 log(n)). The ex- child clust.ers is assigned a new cluster ID. The.relabeled
ponential shaving also gives HDS another desirable prop-@bel matrixL ps represents a smoothed HMA hierarchy,
erty: its ability to find finer approximations of the smaller, Which we refer to as theiDS hierarchy
denser clusters, which matches well with our goal of finding
small, pure, dense clusters.

We also define the HDS levélc,c;(n.) as the number
of shavings by fractiom,... required to obtaim,, and it
can be computed from, as follows:

_ log(n,) —log(n)
L s v

5 Visualization with HDS

Each row of then x n;;.,, HDS hierarchy matrid.g pg
represents the cluster label of each point in all the HDS it-
erations. We now sort the rows &fy ps using a dictio-
nary sort, such that we give higher precedence to labels with
smaller column indices.

A simple yet powerful visualization of the HDS hierar-
chy can be achieved by plotting this sorted matrix and as-
signing separate colors to each distinct positive valubén t

Extracting a smoothed HMA hierarchy: The hierar-  matrix, and a background color to the values that are 0. Fig-
chy produced by HMA involves top-down “growing” clus-  ure 1, (g) shows such a visualization for the 2-D Sim-2 data,
ters; the algorithm starts with the densest point and then re while Figure 2 (a) shows the same for the 6,151 dimensional
peatedly merges an additional point in each iterationgeith Gasch data. The visualization also showsitaightof each
(1) starting a new cluster, (2) merging points in an exist- cluster, which is defined as the difference between the lev-
ing cluster, or (3) merging two existing clusters. Although els (Equation 1) of the first and the last iterations that the
Algorithm C produces a subset of the full HMA iterations cluster existed in HDS. The visualization provides a power-
(represented by the x n;., label matrixL), the labels  ful, compact, informative hierarchy and a spatially retgva
are not based on labels in previous iterations. Hence, there-D projection of a high-dimensional density distribution
is no correspondence between the different HDS iterations.While many visualization tools are built on top of cluster-
In order to produce labels in HDS that also correspond to ing results, the HDS visualization directly corresponds to
the HMA labels on a hierarchical basis, a re-labeling of the clustering methodology. The visual feedback provided
the cluster labels needs to be performed. We perform thealso allows the user to explore the clusters discovered in
relabeling on the labels generated by Algorithm C using a the hierarchy as well as to adjust the smoothing parameters
bottom-up approach. Such a relabeling can also be viewedy,,,,.; andn.. Typically, however, the results are quite stable
as a “compaction” of the hierarchy generated by Algorithm over a range of parameter values.

C.

Additionally, we introduce the notion of particle, a
cluster that emerges from a parent cluster but is considered
spurious due to its small size. Particles are ignored when6.1 Datasets

(1)

More details on HDS, including an even faster version
calledRecursive HD@re describe in [5].

Experimental Evaluation

compactingd.. We defingparticle as any cluster of size less
thann,..; points. Note that,... = 0 results in an exact
subset of the HMA hierarchy, a larger valuergf,,. has a

We tested our framework on one real and one artificial
datasets. The artificial dataset, called Sim-2, consists of
1,298 points generated from five 2-D Gaussians of different

smoothing effect on the process of compacting the hierar-variances (which roughly correspond to the clusters in Fig-

chy, while a largern.. has a smoothing effect on the original
HDS clustering. The effect produced by, + > 0 is simi-
lar to that ofrunt pruningused in [10].

The relabeling proceeds as follows:
uniquerows operation to find the unique cluster IDs at iter-
ationj — 1. (2) Repeat the following for each of the clusters
found in Step 1: (2.1) If all points belonging to a cluster in

iterationj — 1 are either: (a) clustered in the same cluster

in iteration j, (b) are assigned to the don't care €&tor

ure 1 (f)) and a uniform distribution. The Gasch dataset [3],
a widely used benchmark for testing clustering algorithms
on microarray data, consists of 6,151 genes of y®astha-

(1) use the romyces cervisiagesponding to diverse environmental con-

ditions over 173 microarray experiments. Each of the 173
experiments have a description associated with them which
was used to categorize the experiments into 11 classes.

In order to compare our algorithms with various bench-
mark algorithms, we used Adjusted Rand Index (ARI) [6],

(c) are assigned to a cluster that is a particle, then werassig a metric which returns 1 for a perfect agreement between

the child cluster at level the label of the parent cluster at
level ; — 1. That is, one can view the cluster on leyehs

clusters and class labels and close to 0 when the clustering
is as bad as random assignments. However, most labeled
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Figure 1. (a) to (c): Effect of DS applied with varying Ne (fshave) fOr ne = 20, resulting in a hierarchy of
clusters. For n. = 20,n,q+ = 5, HDS visualization after cluster identification (d), and ma nual cluster
selection (e), allowing for clusters of different densitie s (f). The numbers on clusters in (d) and (e)
represent the height of each of the clusters.

evaluation measures for clustering (including ARI) are-sen search forE'ps that results in the desired coverage, witile

sitive to the number of clusters discovered and the percent-s found automatically by DBSCAN.

age of data clustered. To get around this problem we ensure

that the benchmark algorithms use the samendk as 6.2 Results

our methods by applying the following procedure that we

call MaxBall: (1) Find k clusters, wheré is given by the Figure 3, (top) and (bottom) compare DS with bench-

number of clusters found by DS for a particutar. (2) marks on the Sim-2 and Gasch dataset using ARI over a

Compute the cluster center for each of thelusters as the ~ range of fraction of data clustered (x-axis). In general, fo

mean of the cluster member points. (3) Assign each ofithe lower coverages that correspond to dense regions, DS tends

points to their closest center and then pigkpoints closest ~ t0 perform very well. HDS works well for detecting the

to their cluster center. Assign remaining— n. points to most significant dense regions in the data. The clusters also

the “don’t care” set. UsinglaxBall, we modified K-Means match well with the true labels in the target classes (e.qg.,

and Single-Link agglomerative clustering. Figure 2 (b) and (c), Figure 1, (f)). It should be stressed tha

sincek is discovered by our framework and is given as an

For the sake of discussion, we define coverage as thenput to the MaxBall based benchmarks, they are not a vi-

fraction of points clustered (i.en./n). For DS, compar-  able alternative to our framework for finding dense regions

isons with other benchmarks were performed across a rang@utomatically.

of coverages. Since varying the coverage for DS results The hierarchy found by HDS on the extremely high-

in varying k, the corresponding is used as an input to dimensional Gasch dataset is quite compact and easy to in-

the benchmark algorithms. We also include DBSCAN as a terpret (Figure 2(a)). Many of the clusters discovered by

benchmark algorithm. Note that it is not possible to control HDS (e.g., Figure 2(b)) contain highly correlated experi-

either the number of clusteksor the coverage in DBSCAN.  mental descriptions, while others that form siblings have

Instead, we fix\MinPts to 4 as suggested by [2] and then closely related descriptions. For example, a particularly



Heat Shock 17 to 37, 20 minutes 1
Heat Shock 21 to 37, 20 minutes 1
Heat Shock 25 to 37, 20 minutes 1
Heat Shock 29 to 37, 20 minutes 1
Heat Shock 33 to 37, 20 minutes 1
DBY7286 37degree heat - 20 min 12
DBYyapl-37degree heat-20 redo 9

Heat Shock 05 minutes hs-1 1
Heat Shock 10 minutes hs-1 1
Heat Shock 15 minutes hs-1 1
100 ] : Heat Shock 20 minutes hs-1 1
120 . Heat Shock 30 minutes hs-1 1
Heat Shock 40 minutes hs-1 1
Heat Shock 60 minutes hs-1 1

140

160 Heat Shock 80 mi he-1 1 DBY7286+0.3 mM H202 (20 min) 9
B eat Shock 80 minutes hs- DBYyap1-+0.3 mM H202 (20 min) 9
(a) Gasch, HDS, Clust. Hier. (b) Gasch, ClusteiC| = 8 (c) Gasch, ClusteB, |C| =9

Figure 2. (a): Demonstration of HDS clustering and visualiz ation of Gasch experiments showing
the effectiveness of the 2-D projection of the 6,151 dimensi onal Gasch data; related clusters form
“siblings" that are located close to each other; their size, density and heights are easy to compare.
(b) and (c) show an example of such a sibling pair.

interesting pair of sibling clusterd and B are shown in  of this paper for providing useful comments.
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