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Abstract

In many clustering applications for bioinformatics, only
part of the data clusters into one or more groups while the
rest needs to be pruned. For such situations, we present Hi-
erarchical Density Shaving (HDS), a framework that con-
sists of a fast, hierarchical, density-based clustering algo-
rithm. Our framework also provides a simple yet powerful
2-D visualization of the hierarchy of clusters that can be
very useful for further exploration. We present results to
show the effectiveness of our methods.

1 Introduction

In many real-world clustering problems, only a subset of
the data actually needs to be clustered. In particular, this
is true of many types of large, high-dimensional bioinfor-
matics datasets such as protein mass spectroscopy, phylo-
genetic profile data, and gene-expression datasets. In par-
ticular, gene-expression datasets measure expression levels
of genes compared to a control across a few thousand genes
over a set of experiments that cover only a specific “theme”
such as stress-response, and therefore only a small num-
ber of genes related to the conditions show good clustering.
From this data, biologists are interested in recovering clus-
ters formed from small subsets of genes that show strongly
correlated expression patterns, and that often map to the
biological processes involved in the specific context (e.g.,
stress).

Density-based clustering algorithms [2, 1] usekernel
density estimation[7] to identify dense regions, and are ca-
pable of clustering only a subset of dense data. Perhaps the
first algorithm to use such an approach wasHierarchical
Mode Analysis(HMA) [11], which could also find a com-
pact hierarchy of dense clusters. However, HMA seems to
have gotten lost in time (it was published in 1968) and is
not known to most current researchers. In this paper, we
present an improved framework called Hierarchy Density
Shaving(HDS) that builds upon the HMA algorithm and
greatly broadens its scope and effectiveness. These im-

provements include: (1) creating a faster version of HMA
appropriate for larger datasets; (2) the ability to use a variety
of distance metrics; and (3) a novel, useful visualization of
the resulting cluster hierarchy that can help guide clusterse-
lection. For more about the relationship between DBSCAN,
HMA, and our algorithms, see [5]. Empirical tests of our
HDS framework on gene expression microarray data show
that we do indeed obtain very good results.

2 Hierarchical Mode Analysis

Let X = {xi}
n
i=1 ⊆ R

d be a set of data points that need
to be clustered. LetMS represent the correspondingn × n
symmetric distance matrix. The algorithms described in this
paper only requireMS as input. In our algorithms, this
distance metric could be Euclidean, 1 - Cosine Similarity,
or Pearson Distance (dp) [4] computed as1 − p, wherep
is thePearson Correlation, a popular similarity measure for
clustering gene-expression and other biological data [9, 8].
Justification for why these distance metrics can be used can
be found in [5].

HMA [11] uses the following notion of density. Given
somerǫ ∈ R : min(MS) ≤ rǫ ≤ max(MS) as an
input, the densityρrǫ

(x) at any given pointx is propor-
tional to the number of points inX that are withinrǫ of x 1:
ρrǫ

(x) ∝ |{y ∈ X : dS(y,x) ≤ rǫ} The HMA algorithm
is as follows2:

1. Select the density threshold as integernǫ < n, com-
pute the inter-point distance matrixMS and the dis-
tancesdnǫ from each point to itsnth

ǫ nearest point.

2. Order the distancesdnǫ so that the smallest is first us-
ing the arrayanǫ as an index. Thusanǫ defines the
order in which the data points become dense: point
anǫ (1) has the smallestnth

ǫ distancednǫ(1) and is first

1The set of points withinrǫ distance ofx includesx.
2Since [11] is not easily available, what follows below is presented

exactly as in [11] except with the substitution of notation used in this
paper.



to become dense whenrǫ = dnǫ(1), point anǫ (2) is
second atdnǫ(2), and so on.

3. Select distance thresholdsrǫ from successivednǫ val-
ues, initializing a new dense point at each cycle. As
the second and each subsequent dense point is intro-
duced, the method tests the new point to determine one
of three possible fusion phases: either (i) the new point
does not lie withinrǫ of another dense point, in which
case it initializes a new cluster mode, (ii) the point lies
within rǫ of dense points from one cluster only, and
therefore the point is directly fused to that cluster, or
(iii) the point falls in the saddle region, lying withinrǫ

of dense points from separate clusters, and the clusters
concerned are fused.

4. Finally, a note must be kept of the nearest-neighbor
distancermin between dense points of different clus-
ters. Whenrǫ exceedsrmin, the direct fusion of the
two clusters separated byrmin is indicated.

3 Density Shaving (DS)
For the labeled points (i.e., the dense points) from the

ith iteration of HMA, it can be shown that two dense points
x,y ∈ G (whereG is the set of dense points), belong to
the same dense cluster represented asC if d(x,y) < rǫ.
That is: ∀x,y ∈ G : d(x,y) < rǫ ⇒ x,y ∈ C Thus,
for any two pointsx1 andxm ∈ G, if there exists a chain of
pointsx1,x2, ...,xm−1,xm ∈ G such that{dS(xi,xi−1) <
rǫ}

m
i=2, thenx1 andxm also belong to the same cluster in a

given iteration of HMA.
This leads to an algorithm that can compute the cluster

labels in theith iteration of HMA directly without the itera-
tive process required in HMA. We call this algorithmDen-
sity Shaving(DS), and a pseudocode for DS is presented in
(Algorithm 1). DS essentially takes two parameters as in-
puts: (1)fshave, the fraction of least dense points toshave
or exclude from consideration, and (2)nǫ, the number of
points that must be within a distancerǫ of a given pointxi

in order forxi to be considered dense, where DS computes
the correspondingrǫ automatically asrǫ = dnǫ(i), where
i = ⌈n(1−fshave)⌉. The output of DS consists ofk clusters
labeled 1 tok formed by the setG of nc densest points and
a “don’t care” setO containing the remaining points which
are labeled 0.

4 Hierarchical DS (HDS)

In this Section we describeHierarchical Density Shaving
(HDS), in which we first use the DS algorithm to compute a
subset of the HMA iterations, and then perform a relabeling
of the DS clusterings to generate a noise-tolerant version of
the HMA hierarchy. We start with the following observa-
tion:

Algorithm 1 DS
Input: Distance matrixMS , nǫ, fshave.
Output: Cluster labels{labi}

n
i=1 corresponding to then data

points.
Initialize: {labi}

n
i=1 = 0

nc = ⌈n(1 − fshave)⌉
5: [Mnbr

rad,M
nbr
idx ] = sortrows(MS)

[radx
nǫ , idx

nǫ ] = sort(Mnbr
rad(·, nǫ))

rǫ = radxnǫ(nc)
G = {x(idxnǫ(i))}nc

i=1

/* Lines 12-20: For each point inG, find other dense points
10: within rǫ distance of it and make sure they have the same

labels, if not, relabel */
for i = 1 to nc do

idxb = binSearch({Mnbr
rad(idxnǫ(i), j)}n

j=nǫ
)

Xnbrs = M
nbr
idx (idxnǫ(i), l)idxb

l=1

15: Xdnbrs = Xnbrs ∩ G
Ldnbrs = unique(lab(Xdnbrs))/{0}
∀y ∈ lab if ∃y ∈ Ldnbrs : y = i
lab(indexOf(Xdnbrs)) = i

end for
20: Count clusters:k = |unique(lab)|/{0}

Remap the non-zero labels inlab to the range 1 tok.

Proposition 4.1 The cluster labels in each of then itera-
tions of the HMA hierarchy can be computed independently
of one another.

This proposition follows as a consequence of the DS al-
gorithm that can compute theith iteration of HMA directly
without using the iterative procedure originally proposedby
[11]. Computing all then levels of HMA using either the
original algorithm (Section 2) or DS results in a time com-
plexity ofO(n3). Since the HMA iteration cluster labels are
nested (which follows from HMA directly), and because of
Proposition 4.1, any subset of DS executions correspond-
ing to some subset of then HMA iteration clusterings also
forms a hierarchical clustering. An obvious way to produce
such a hierarchy faster would be to compute a linearly sam-
pled subset of then HMA iterations using DS. However, we
propose an alternate scheme and an algorithm as follows:

Algorithm C: We start with all thenc = n data points
in the first iteration, and at each successive iteration: (1)
“shave” (remove) a fractionrshave, 0 < rshave ≤ 1 of the
least dense of thenc points from the current set of dense
points3, (2) apply DS steps 9 through 21 (Algorithm 1) on
thesenc points. We repeat these two steps untilnc drops
below 1. As output, Algorithm C produces ann × niter

label matrixL, whereniter is the number of iterations in
Algorithm C, andL(i, j) is the cluster ID of theith point in

3Note that the geometric shaving of previous iteration’snc results in
a real number, which is then rounded off to the nearest integer to give the
valuenc. In practice, we keep the real valuednc and only round it when
using it as an input to DS. Also, if the rounded value ofnc results in the
same integer value as the last iteration, then that iteration is skipped.



thejth iteration. The parameterrshave can be viewed as the
exponent of anexponential shaving, and we refer to it as the
“shaving rate”. It can be shown that Algorithm C results in
a total number of iterations that is at most⌈− log(n)

log(1−rshave)⌉,

and that its time complexity is onlyO(n2 log(n)). The ex-
ponential shaving also gives HDS another desirable prop-
erty: its ability to find finer approximations of the smaller,
denser clusters, which matches well with our goal of finding
small, pure, dense clusters.

We also define the HDS levelflevel(nc) as the number
of shavings by fractionrshave required to obtainnc, and it
can be computed fromnc as follows:

flevel(nc) =
log(nc) − log(n)

log(1 − rshave)
(1)

More details on HDS, including an even faster version
calledRecursive HDSare describe in [5].

Extracting a smoothed HMA hierarchy: The hierar-
chy produced by HMA involves top-down “growing” clus-
ters; the algorithm starts with the densest point and then re-
peatedly merges an additional point in each iteration, either
(1) starting a new cluster, (2) merging points in an exist-
ing cluster, or (3) merging two existing clusters. Although
Algorithm C produces a subset of the full HMA iterations
(represented by then × niter label matrixL), the labels
are not based on labels in previous iterations. Hence, there
is no correspondence between the different HDS iterations.
In order to produce labels in HDS that also correspond to
the HMA labels on a hierarchical basis, a re-labeling of
the cluster labels needs to be performed. We perform the
relabeling on the labels generated by Algorithm C using a
bottom-up approach. Such a relabeling can also be viewed
as a “compaction” of the hierarchy generated by Algorithm
C.

Additionally, we introduce the notion of aparticle, a
cluster that emerges from a parent cluster but is considered
spurious due to its small size. Particles are ignored when
compactingL. We defineparticleas any cluster of size less
thannpart points. Note thatnpart = 0 results in an exact
subset of the HMA hierarchy, a larger value ofnpart has a
smoothing effect on the process of compacting the hierar-
chy, while a largernǫ has a smoothing effect on the original
HDS clustering. The effect produced bynpart > 0 is simi-
lar to that ofrunt pruningused in [10].

The relabeling proceeds as follows: (1) use the
uniquerows operation to find the unique cluster IDs at iter-
ationj−1. (2) Repeat the following for each of the clusters
found in Step 1: (2.1) If all points belonging to a cluster in
iterationj − 1 are either: (a) clustered in the same cluster
in iterationj, (b) are assigned to the don’t care setO, or
(c) are assigned to a cluster that is a particle, then we assign
the child cluster at levelj the label of the parent cluster at
level j − 1. That is, one can view the cluster on levelj as

a continuation of the corresponding cluster on levelj − 1,
barring those points which are now part ofO or a particle.
If the condition in (2.1) is not satisfied, then (2.2) a clus-
ter has split into two or more child clusters. Each of these
child clusters is assigned a new cluster ID. The relabeled
label matrixLHDS represents a smoothed HMA hierarchy,
which we refer to as theHDS hierarchy.

5 Visualization with HDS
Each row of then × niter HDS hierarchy matrixLHDS

represents the cluster label of each point in all the HDS it-
erations. We now sort the rows ofLHDS using a dictio-
nary sort, such that we give higher precedence to labels with
smaller column indices.

A simple yet powerful visualization of the HDS hierar-
chy can be achieved by plotting this sorted matrix and as-
signing separate colors to each distinct positive value in the
matrix, and a background color to the values that are 0. Fig-
ure 1, (g) shows such a visualization for the 2-D Sim-2 data,
while Figure 2 (a) shows the same for the 6,151 dimensional
Gasch data. The visualization also shows theheightof each
cluster, which is defined as the difference between the lev-
els (Equation 1) of the first and the last iterations that the
cluster existed in HDS. The visualization provides a power-
ful, compact, informative hierarchy and a spatially relevant
2-D projection of a high-dimensional density distribution.
While many visualization tools are built on top of cluster-
ing results, the HDS visualization directly corresponds to
the clustering methodology. The visual feedback provided
also allows the user to explore the clusters discovered in
the hierarchy as well as to adjust the smoothing parameters
npart andnǫ. Typically, however, the results are quite stable
over a range of parameter values.

6 Experimental Evaluation

6.1 Datasets
We tested our framework on one real and one artificial

datasets. The artificial dataset, called Sim-2, consists of
1,298 points generated from five 2-D Gaussians of different
variances (which roughly correspond to the clusters in Fig-
ure 1 (f)) and a uniform distribution. The Gasch dataset [3],
a widely used benchmark for testing clustering algorithms
on microarray data, consists of 6,151 genes of yeastSaccha-
romyces cervisiaeresponding to diverse environmental con-
ditions over 173 microarray experiments. Each of the 173
experiments have a description associated with them which
was used to categorize the experiments into 11 classes.

In order to compare our algorithms with various bench-
mark algorithms, we used Adjusted Rand Index (ARI) [6],
a metric which returns 1 for a perfect agreement between
clusters and class labels and close to 0 when the clustering
is as bad as random assignments. However, most labeled
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Figure 1. (a) to (c): Effect of DS applied with varying nc (fshave) for nǫ = 20, resulting in a hierarchy of
clusters. For nǫ = 20, npart = 5, HDS visualization after cluster identification (d), and ma nual cluster
selection (e), allowing for clusters of different densitie s (f). The numbers on clusters in (d) and (e)
represent the height of each of the clusters.

evaluation measures for clustering (including ARI) are sen-
sitive to the number of clusters discovered and the percent-
age of data clustered. To get around this problem we ensure
that the benchmark algorithms use the samenc and k as
our methods by applying the following procedure that we
call MaxBall: (1) Findk clusters, wherek is given by the
number of clusters found by DS for a particularnc. (2)
Compute the cluster center for each of thek clusters as the
mean of the cluster member points. (3) Assign each of then
points to their closest center and then picknc points closest
to their cluster center. Assign remainingn − nc points to
the “don’t care” set. UsingMaxBall, we modified K-Means
and Single-Link agglomerative clustering.

For the sake of discussion, we define coverage as the
fraction of points clustered (i.e.,nc/n). For DS, compar-
isons with other benchmarks were performed across a range
of coverages. Since varying the coverage for DS results
in varying k, the correspondingk is used as an input to
the benchmark algorithms. We also include DBSCAN as a
benchmark algorithm. Note that it is not possible to control
either the number of clustersk or the coverage in DBSCAN.
Instead, we fixMinPts to 4 as suggested by [2] and then

search forEps that results in the desired coverage, whilek
is found automatically by DBSCAN.

6.2 Results

Figure 3, (top) and (bottom) compare DS with bench-
marks on the Sim-2 and Gasch dataset using ARI over a
range of fraction of data clustered (x-axis). In general, for
lower coverages that correspond to dense regions, DS tends
to perform very well. HDS works well for detecting the
most significant dense regions in the data. The clusters also
match well with the true labels in the target classes (e.g.,
Figure 2 (b) and (c), Figure 1, (f)). It should be stressed that
sincek is discovered by our framework and is given as an
input to the MaxBall based benchmarks, they are not a vi-
able alternative to our framework for finding dense regions
automatically.

The hierarchy found by HDS on the extremely high-
dimensional Gasch dataset is quite compact and easy to in-
terpret (Figure 2(a)). Many of the clusters discovered by
HDS (e.g., Figure 2(b)) contain highly correlated experi-
mental descriptions, while others that form siblings have
closely related descriptions. For example, a particularly
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Figure 2. (a): Demonstration of HDS clustering and visualiz ation of Gasch experiments showing
the effectiveness of the 2-D projection of the 6,151 dimensi onal Gasch data; related clusters form
“siblings" that are located close to each other; their size, density and heights are easy to compare.
(b) and (c) show an example of such a sibling pair.

interesting pair of sibling clustersA andB are shown in
Figure 2, (b) and (c). Both clusters contain heat shock ex-
periments. However, the heat shock experiments in cluster
A involve a constant heat (37 degrees) and variable time,
while the heat shock experiments in clusterB involve vari-
able heat and constant time. Additional examples can be
found in an extended version of this paper [5].
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Figure 3. Comparison of DS with other meth-
ods using ARI on Gasch (left) and Sim-2
(right) datasets. Results for MaxBall K-Means
were averaged over 10 (50) trials for the Gasch
(Sim-2) dataset.
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