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ABSTRACT

In this paper, we reintroduce Hierarchical Mode Analysis(HMA), which was
first proposed in 1968, as a powerful clustering algorithm for bioinformatics.
The ability of HMA to find a compact hierarchy of a small number of dense
clusters is very important in many bioinformatics problems (for example,
when clustering genes in a set of gene-expression microarrays, where only
a small number of genes related to the experimental context cluster well,
while the rest need to be pruned). We also present two major improvements
on HMA: a faster approximation algorithm, and a novel 2-D visualization
scheme for high-dimensional datasets. These two improvements make HMA
a powerful and promising new tool for many large, high-dimensional cluster-
ing problems in bioinformatics. We present empirical results on the Gasch
dataset showing the effectiveness of our framework.

INTRODUCTION

In many real-world clustering problems, only a subset of the data actu-
ally needs to be clustered. This could be due to the fact that only a subset
of our data actually clusters well while the rest can be treated as a “don’t
care” set. In particular, many types of large, high-dimensional bioinfor-
matics datasets used for clustering genes exhibit the above property. From
this data, biologists are interested in recovering clusters formed from small
subsets of highly correlated genes.

An alternative to exhaustive clustering techniques are a class of non-
parametric clustering algorithms that cluster the densest subset of data
points in the entire dataset (e.g., [2, 1]). The first such approach was
perhaps [6] that proposed an algorithm called Hierarchical Mode Analy-

sis(HMA). In particular, the ability of HMA to automatically identify a
compact hierarchy of clusters of varying density is highly desirable for many
biological datasets. For example, gene-expression microarray datasets such
as Gasch [3] are often created in a very well-defined and narrow context
such as stress, and only the stress-related genes cluster well while the rest
need to be pruned. Furthermore, for clustering genes on such data, there is
usually no labeled data available, making model selection for clustering dif-
ficult. For such a setting, traditional clustering methods (such as K-Means
and Agglomerative clustering) are difficult to apply because they cluster all
the data, and/or require the number of clusters to be known.



In this short 1 paper, we build upon and improve the HMA algorithm
in a way that makes it suitable for large, high dimensional, biological data.
These improvements include: (1) creating a faster version of HMA appro-
priate for larger datasets; (2) the ability to use a variety of distance metrics
including Pearson Distance [4], a biologically relevant distance measure;
and (3) a novel visualization of the resulting cluster hierarchy. Our empiri-
cal results on Gasch dataset show that on high-dimensional biological data,
one can obtain a very compact hierarchy of pure clusters with interesting
sibling relationships.

SPEEDING UP HMA

Let us first describe the HMA algorithm as defined in [6]. Let X =

{xi}
n
i=1 ⊆ R

d be a set of data points that need to be clustered. We as-
sume that a relevant symmetric distance measure dS(xi, xj) is defined for
all pairs of points xi and xj in X . Let MS represent the corresponding n×n

symmetric distance matrix such that MS(i, j) = dS(xi, xj).

In addition, HMA uses the following notion of density. Given some
rǫ ∈ R : min(MS) ≤ rǫ ≤ max(MS) as an input, the density ρrǫ

(x) at any
given point x is proportional to the number of points in X that are within
rǫ of x 2: ρrǫ

(x) ∝ |{y ∈ X : dS(y,x) ≤ rǫ}

The HMA algorithm is as follows 3:

1. Select the density threshold as integer nǫ < n, compute the inter-point
distance matrix MS and the distances dnǫ from each point to its nth

ǫ

nearest point.

2. Order the distances dnǫ so that the smallest is first using the array
anǫ as an index. Thus anǫ defines the order in which the data points
become dense: point anǫ(1) has the smallest nth

ǫ distance dnǫ(1) and
is first to become dense when rǫ = dnǫ (1), point anǫ(2) is second at
dnǫ(2), and so on.

3. Select distance thresholds rǫ from successive dnǫ values, initializing a
new dense point at each cycle. As the second and each subsequent
dense point is introduced, the method tests the new point to deter-
mine one of three possible fusion phases: either (i) the new point does
not lie within rǫ of another dense point, in which case it initializes a
new cluster mode, (ii) the point lies within rǫ of dense points from one
cluster only, and therefore the point is directly fused to that cluster,
or (iii) the point falls in the saddle region, lying within rǫ of dense
points from separate clusters, and the clusters concerned are fused.

1Extended version at: http://www.lans.ece.utexas.edu/∼gunjan/annie06/readme.html
2The set of points within rǫ distance of x includes x.
3Since [6] is not easily available, the four steps below are presented exactly as in [6]

except with the substitution of notation used in this paper.



4. Finally, a note must be kept of the nearest-neighbor distance rmin

between dense points of different clusters. When rǫ exceeds rmin, the
direct fusion of the two clusters separated by rmin is indicated.

For the labeled points (i.e., the dense points) from the ith iteration of
HMA, it can be shown that two dense points x,y ∈ G (where G is the
set of dense points), belong to the same dense cluster represented as C if
d(x,y) < rǫ. That is,

∀x,y ∈ G : d(x,y) < rǫ ⇒ x,y ∈ C (1)

As a consequence of equation 1, for any two points x1 and xm ∈ G, if
there exists a chain of points x1,x2, ..., xm−1,xm ∈ G such that {dS(xi,xi−1) <

rǫ}
m
i=2, then x1 and xm also belong to the same cluster in a given iteration

of HMA.
This leads to an algorithm that can compute the cluster labels in the ith

iteration of HMA directly without the iterative process required in HMA.
We call this algorithm Density Shaving (DS). DS essentially takes two pa-
rameters as inputs: (1) fshave, the fraction of least dense points to shave

or exclude from consideration, and (2) nǫ, the number of points that must
be within a distance rǫ of a given point xi in order for xi to be considered
dense. The DS algorithm computes the corresponding rǫ using the same
approach as HMA using rǫ = dnǫ(i), where i = (⌈nfshave⌉). DS then applies
a graph traversal process to discover the clusters composed of the dense
points, where, as stated in equation 1, two dense points are in the same
cluster if the distance between them is less than rǫ. The output of the algo-
rithm consists of k clusters labeled 1 to k formed by the set G of nc densest
points and a “don’t care” set O containing the remaining points that are
labeled 0.

Unfortunately, constructing the full HMA hierarchy as described above
has a time complexity of at least O(n3). While DS can be applied as a clus-
tering algorithm, DS can also be used to construct a faster approximation
of the HMA hierarchy because of the following observation:

Proposition 1: The cluster labels in each of the n iterations of the HMA
hierarchy can be computed independently of one another.

This proposition follows as a direct consequence of the DS algorithm
that can compute the ith iteration of HMA directly without using the itera-
tive procedure originally proposed by [6]. In addition, since HMA iteration
cluster labels are nested (which follows from HMA directly), and because of
Proposition 1, any subset of DS executions corresponding to some subset of
the n HMA iteration clusterings also forms a hierarchical clustering. Thus,
instead of computing all the n levels of HMA, one can skip levels of the
full HMA hierarchy in order to approximate it. The time complexity of the
approximation is O(ln2), where l is the number of levels that one calculates
using DS.



The hierarchy produced by HMA involves top-down “growing” clusters;
the algorithm starts with the densest point and then repeatedly merges
an additional point in each iteration, either (1) starting a new cluster, (2)
merging points in an existing cluster, or (3) merging two existing clusters.
In contrast, though each of the independent iterations of DS produce an
HMA level, a point having the same cluster label in two different levels of
HMA may not have the same label when labeled using the corresponding
two runs of DS. In order to produce labels that also correspond to the HMA
labels on a hierarchical basis, a re-labeling of the cluster labels needs to be
performed as follows, proceeding from levels with higher nc to lower nc:
between two levels, for each cluster in the higher nc level, if all points in
the cluster belong to either a single cluster or the “don’t care” set in the
second level with lower nc, then the same cluster ID is assigned to both
the levels. If a cluster in the level with higher nc splits into multiple child
clusters in the level with lower nc, then new cluster IDs are assigned to the
child clusters.

VISUALIZING HMA

We now present a powerful, novel and intuitive visualization of the com-
puted HMA hierarchy. We organize the cluster labels at each level of the
hierarchy into a matrix. Each row represents a point in the dataset while
each column is a level of the hierarchy. We first perform a dictionary sort
on the rows of the n × l HMA label matrix, where the labels correspond-
ing to a higher nc level are given higher precedence. The matrix is then
plotted in 2-D, with the rows oriented along the x-axis. Each label in the
matrix is plotted in a unique color, with the “don’t care” labels plotted in
a background color (dark blue in figure 1(a)).

The visualization forms a compact, easy to understand 2-D visual rep-
resentation of the high dimensional data (such as the 6,151 dimensional
data in figure 1(a)). The x-axis corresponds to the number of dense points
clustered in an HMA level, and is plotted on a log scale to enhance the
visibility of the densest clusters. The y-axis corresponds to a projection of
the points from the original high-d space onto a 1-d space, where points
that are topologically or spatially close to each other appear close to each
other on the y-axis. The visualization shows the spatial and topological
relationship between all the HMA clusters very clearly, thus making it easy
to explore and select clusters. The visualization also allows one to identify
the clusters at any single level corresponding to a particular run of DS. Such
an exploration allows one to interactively refine the tree by first choosing a
few intermittent levels of the HMA hierarchy to create using DS, and then
going back and exploring areas of interest in the hierarchy by creating more
refined HMA levels skipped previously.

EXPERIMENTAL EVALUATION

Experimental Setup: We tested our framework on the Gasch dataset [3],
a widely used benchmark for testing clustering algorithms on microarray



data consisting of 6,151 genes of yeast Saccharomyces cervisiae responding to
diverse environmental conditions over 173 microarray experiments. Since
the labels for the experiments in the Gasch dataset were available, we per-
formed evaluation on clustering of the microarray experiments rather than
the genes.

We performed two types of evaluations on our framework. For the
HMA approximation, we evaluated individual clusters by examining the
experiment labels directly. For each of the l HMA levels produced by DS,
we used Adjusted Rand Index (ARI) [5] as our evaluation metric. Note
that the points in the background or the “don’t care” set were excluded
from the evaluation.

Most labeled evaluation measures for clustering are sensitive to the num-
ber of clusters discovered and the percentage of data clustered. To get
around this problem we ensured that the benchmark algorithms used the
same nc and k as our methods by applying the following procedure that we
call MaxBall. First, k clusters are found, where k is given by the number
of clusters found by DS for a particular nc. Second, a cluster center (the
mean of the member points) is computed for each cluster. Finally, the nc

points closest to their closest cluster center are clustered, while the remain-
ing n − nc points are assigned to the “don’t care” set. Using the MaxBall
technique, we modified K-Means and Single Link agglomerative clustering.

We performed comparisons using different values of nc. Since varying
nc for DS results in varying k, the corresponding k was used as an input to
the benchmark algorithms. That is, since k is discovered by our framework
and is given as an input to the benchmarks, they are not a viable alterna-
tive to our framework for finding dense regions automatically. Finally, the
results for MaxBall K-Means were averaged over 10 trials while the other
algorithms are deterministic. Pearson distance was used for all algorithms.

Results: Figure 1(b) compares DS with benchmarks on the Gasch data.
In general, for smaller nc that correspond to dense regions, DS tends to
perform very well. Qualitatively, the clusters discovered by our HMA ap-
proximation are quite pure and meaningful. Figure 1(c-f) shows example
experiment clusters along with the actual descriptions of the experiments.
Note that the descriptions were not used in the clustering process. In ad-
dition, the hierarchy found by HMA is quite compact and easy to interpret
(figure 1(a)). Many of the sibling clusters in the hierarchy are very interest-
ing discoveries. For example, figure 1, (c) and (d) lists two sibling clusters
that both contain a mix of hydrogen peroxide and Menadione experiments.
In one particularly striking example (figure 1, (e) and (f)), both sibling
clusters contain heat shock experiments. Interestingly, the heat shock ex-
periments in the cluster in figure 1(e) involve a constant heat (37 degrees)
and variable time, while the heat shock experiments in figure 1(f) involve
variable heat and constant time.
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(a) (b)
constant 0.32 mM H2O2 (10 min) redo 5
constant 0.32 mM H2O2 (80 min) redo 5
constant 0.32 mM H2O2 (100 min) redo 5
constant 0.32 mM H2O2 (120 min) redo 5
constant 0.32 mM H2O2 (160 min) redo 5

1 mM Menadione (10 min)redo 6
1 mM Menadione (120 min)redo 6
1 mM Menadione (160 min) redo 6

constant 0.32 mM H2O2 (50 min) redo 5
constant 0.32 mM H2O2 (60 min) redo 5

1 mM Menadione (30 min) redo 6
1mM Menadione (40 min) redo 6
1 mM Menadione (50 min)redo 6
1 mM Menadione (80 min) redo 6
1 mM Menadione (105 min) redo 6

(c) Cluster 17 in figure (a) (d) Cluster 18 in figure (a)

Heat Shock 05 minutes hs-1 1
Heat Shock 10 minutes hs-1 1
Heat Shock 15 minutes hs-1 1
Heat Shock 20 minutes hs-1 1
Heat Shock 30 minutes hs-1 1
Heat Shock 40 minutes hs-1 1
Heat Shock 60 minutes hs-1 1
Heat Shock 80 minutes hs-1 1

Heat Shock 17 to 37, 20 minutes 1
Heat Shock 21 to 37, 20 minutes 1
Heat Shock 25 to 37, 20 minutes 1
Heat Shock 29 to 37, 20 minutes 1
Heat Shock 33 to 37, 20 minutes 1

DBY7286 37degree heat - 20 min 12
DBYyap1-37degree heat-20 min(redo)9
DBY7286 + 0.3 mM H2O2 (20 min) 9
DBYyap1- + 0.3 mM H2O2 (20 min) 9

(e) Cluster 7 in figure (a) (f) Cluster 8 in figure (a)

Figure 1: (a): Visualization of HDS hierarchy on Gasch data using the sorted HMA
label matrix. The x-axis, shows the number of dense points clustered at each HMA level,
and the y-axis are the sorted rows. (b): ARI comparisons of DS on Gasch data. (c-f):
examples of sibling clusters found (pair 1: (c) and (d); pair 2: (e) and (f)
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