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Abstract

We propose a generative model for high dimensional data
consisting of intrinsically low dimensional clusters that are
noisily sampled. The proposed model is a mixture of proba-
bilistic principal surfaces (MiPPS) optimized using expecta-
tion maximization. We use a Bayesian prior on the model pa-
rameters to maximize the corresponding marginal likelihood.
We also show empirically that this optimization can be biased
towards a good local optimum by using our prior intuition to
guide the initialization phase. The proposed unsupervised al-
gorithm naturally handles cases where the data lies on multi-
ple connected components of a single manifold and where the
component manifolds intersect. In addition to clustering, we
learn a functional model for the underlying structure of each
component cluster as a parameterized hyper-surface in ambi-
ent noise. This model is used to learn a global embedding that
we use for visualization of the entire dataset. We demonstrate
the performance of MiPPS in separating and visualizing land
cover types in a hyperspectral dataset.

1. Introduction
Consider a data set consisting of images of various objects
from all possible orientations. With all other conditions
fixed, there are two degrees of freedom for a given object
in this dataset; the elevation and rotation of its correspond-
ing images. This implies that the set of all images in our
database is likely to be well represented as some two dimen-
sional non-linear manifold in the image space with multiple
connected components corresponding to each object. This
property is not unique to object pose images. Other com-
mon examples include images of faces, handwritten digits
and shapes.

Now, suppose one would like to partition the image data
set in an unsupervised manner, for example, to separate the
data by object with each cluster containing all poses of the
object in question. Special care should be taken when the
data is generated from one or more non-linear manifolds.
Common methods for data clustering such as k-means or
a mixture of Gaussians are unlikely to find the correct par-
titions as these methods assume that the data clusters are
convex; an assumption that is often untrue in complicated
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datasets. Further, one might be interested in learning a para-
metric model of each manifold for compression, dimension-
ality reduction, visualization, generating novel samples or
other post-processing. This motivates studying special para-
metric methods for multi-manifold clustering.

When the data samples are generated from separated clus-
ters on a connected manifold, embedding techniques such
as ISOMAP and LLE can be used to unwrap the manifold;
creating a low dimensional embedding where the data can
be clustered more easily (Yankov and Keogh 2006). The
quality of the embedding and subsequent clustering found
by these methods is very sensitive to noise and parameter
selection. Further, ISOMAP and LLE will fail to find to find
an embedding when there is a large separation between the
clusters1. Statistical embedding and data visualization ap-
proaches such as the co-ordinated mixture of probabilistic
principal component analyzers (PPCA) (Verbeek, Vlassis,
and Kröse 2002) and the generative topographic mapping
(GTM) (Bishop, Svensen, and Williams 1998b) are more ro-
bust to noise. In both methods, the data can be mapped to a
low dimensional latent space. The mapped points can then
be partitioned to estimate the data clusters. This technique
loosely corresponds to a generative model. However, the re-
sulting heuristic does not necessarily optimize the model.

Tino and Nabney describe a supervised visualization
model based on hierarchical mixtures of GTM (Tino and
Nabney 2002). At each layer, the user initializes the lo-
cal GTM using interesting points. However, the model is
not designed to learn data clusters in an unsupervised man-
ner. Further, our experiments suggest that our base model is
superior to the GTM as a parametric non-linear manifold
model in terms of modelling and clustering performance.
The algorithm most related to ours is the k-manifolds al-
gorithm proposed by (Souvenir 2006) for estimating and
clustering data generated from intersecting non-linear man-
ifolds. The algorithm uses approximate geodesic distances
similar to ISOMAP, then a node-weighted MDS mapping is
used to estimate local embeddings. These local embeddings
are used to update weights for each data point proportional
to the distance between the point and the estimated mani-
fold. The weights and the embeddings are computed iter-

1This failure mode is addressed to some extent by (Hadid and
Pietikinen 2003) and others.
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atively until convergence. The estimation of geodesic dis-
tances fails when the clusters are widely separated. For this
reason, k-manifolds is primarily motivated for intersecting
manifolds. In this paper, we focus on the non-linear mani-
fold case. For this reason, we will not discuss linear multi-
manifold methods.

A good model for a dataset generated from a connected
low dimensional manifold is the principal surface (Hastie
1984); a non-parametric non-linear manifold that passes
through the middle of the data. The principal surface can
also be described as a non-linear generalization of the prin-
cipal subspace. However, computing principal surfaces of
more than one dimension is computationally expensive. To
address this difficulty, (Chang and Ghosh 2001) proposed
the probabilistic principal surface (PPS); the basis of our
model.

In this paper, we seek a principled algorithm for simulta-
neously learning a soft partition of high dimensional data
and a local parametric model for the clusters where each
cluster is a low dimensional non-linear manifold. In our pro-
posed model (MiPPS), each cluster is described using a PPS
and the entire dataset is modeled as a probabilistic mixture
of these components. By analyzing the resulting complete
log-likelihood, we learn soft cluster assignments and para-
metric models for each cluster.

2. Model Description
Our model is based on the assumption that the generating
manifold of each cluster has a dimensionality Qm 6 D
where D is the dimensionality of the data space Y . We as-
sume that this manifold can be described as the image of a
smooth function fm(x) that maps a latent space Xm 7→ Y .
This assumption is valid for a large class of manifolds. A
new sample is generated in four steps:

• One of the M clusters is selected with a probability
p(m) = νm.

• A sample x is generated from the selected latent space
Xm where x ∼ p(x|m).

• The latent sample is mapped to the data space via some
non-linear smooth function fm(x).

• The resulting data sample is corrupted by noise εm.

Using zero mean Gaussian noise, the distribution of each
data sample yn given a cluster selection m, the correspond-
ing model parameters θm and a latent sample x is:

p(yn|x,θm) = N (yn|fm(x),Σm(x)), (1)

where N (y|µ,Σ) represents a Gaussian distribution with
mean µ and covariance Σ.

The PPS uses a radial basis function (RBF) network
fm(x) = Wmφ(x) to define the mapping between the la-
tent space and the data space. The weight matrix, Wm has
dimension D × L and φ(x) = [1 φ1(x) · · ·φL−1(x)]

T is
a vector of L latent basis functions: φl(x) : RQm 7→ R.
We use isotropic Gaussian radial basis functions; φl(x) =
exp(−‖x−cl‖2

σ ) given some centroid cl and a length scale

σ which we fix for all l. The topographic constraints en-
forced by this model are discussed in (Bishop, Svensen, and
Williams 1998b).

The latent variable distribution p(x|m) must be prop-
agated to the data space through the non-linear mapping
fm(x) to describe the data distribution. The resulting data
distribution is computed by marginalizing (1) over the latent
space. Unfortunately, for general non-linear mappings, this
integration is intractable. One solution is a discrete approxi-
mation of the integration by sampling over a uniform grid of
Km points in the latent space. The resulting distribution is a
constrained mixture:

p(yn|θm) =
Km∑
k=1

p(yn|xk,θm)p(xk|m). (2)

The approximation can be computed to arbitrary accuracy
by increasing the number of latent points with a correspond-
ing increase in the computational cost.

The PPS model separates the noise variance into sub-
spaces parallel and orthogonal to the data manifold with
variances given by am and bm respectively, where:

am =
αm
βm

bm =
D − αmQm
βm(D −Qm)

.

The parameter αm ∈ (0, D/Qm) controls the amount of
manifold alignment in the noise covariance while βm con-
trols the noise variance. When αm ∈ (0, 1) the noise
has a higher variance orthogonal to the manifold. As
αm → 0, the model satisfies the self consistency prop-
erty for principal surfaces (Chang and Ghosh 2001). When
αm ∈ (1, D/Qm), the noise has a higher variance parallel
to the manifold, corresponding to the manifold aligned GTM
model (Bishop, Svensen, and Williams 1998a). This is use-
ful when one suspects that much of the sampling noise is
tangential to the manifold. Finally, when αm = 1, the noise
variance is isotropic and the GTM with Σm(x) = β−1

m I is
recovered. Chang and Ghosh showed that the PPS learns a
more representative model than the GTM in many cases.

The subspaces parallel and orthogonal to the manifold are
given by the orthonormal matrices E//m(x) and E⊥m(x)
respectively. These can easily be computed using the partial
derivatives of the the manifold mapping with respect to each
latent dimension:

E//m(x) =
[
∂fm(x)
∂x1

· · · ∂fm(x)
∂xQm

]
= WmTm(x),

E⊥m(x) = [E//m(x)]⊥ = WmOm(x), (3)

where Tm(x) = [∂φ(x)
∂x1

· · · ∂φ(x)
∂xQm

] ∈ RL× Qm . The
matrices Tm(x) and Om(x) are constant and only
need to be computed at initialization. Further, because
[Tm(x) Om(x)] are a basis for RD, only Tm(x) is required
to completely describe the model. Unfortunately, neither the
rows of Wm nor the columns of Tm(x) are guaranteed to be
orthonormal and so a further orthonormalization step such as
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the Gram-Schmidt procedure must be applied to E//m(x).
Now, the oriented covariance can be computed as:

Σm(x) = amE//m(x)ET
//m(x) + bmE⊥m(x)ET

⊥m(x).
(4)

Note that the total noise variance measured as the sum of the
eigenvalues of Σm(x) remains constant equal to D

βm
regard-

less of varying values of αm or the local covariance orienta-
tion.

For the remainder of this paper, we assume that all the
data points are independent and identically distributed. The
corresponding log likelihood is then a product over the like-
lihood of each data point:

LD(Θ) = ln
N∏
n=1

p(yn|X,Θ)p(X|Θ)

=
∑
n

ln
∑
m,k

p(m,xk)N (yn|Wmφ(xk),Σm(xk)) , (5)

where Θ = {θm}Mm=1. This assumption can be relaxed to
model dependent realizations such as a time series.

We also introduce a Bayesian prior over the weight pa-
rameter Wm. For simplicity, we use a radially symmetric
Gaussian prior of the form:

p(W|{λm}) =
M∑
i=1

p(Wm|λm)δ(i−m), where

p(Wm|λm) =
(
λm
2π

)MD/2

exp
{
−λm

2
‖wm‖2

}
. (6)

λm is a hyper-parameter and wm is the vectorized form of
Wm (i.e. the matrix stacked column-wise into a single vec-
tor). Intuitively, this means we place an independent prior
over each Wm. This prior enforces our smoothness assump-
tions on the weight matrix by effectively regularizing the
matrix norm. In summary, the full set of model parameters
are: {θm} = {Wm, λm, αm, βm, νm}.

3. Optimizing the Model Parameters
The form of the mapping and the likelihood cost function
suggest optimization using the expectation maximization
(EM) optimization technique; a co-ordinate ascent algorithm
for maximizing data likelihood (Dempster, Laird, and Rubin
1977). The optimization proceeds by alternately comput-
ing the expected complete log-likelihood (E-step) then max-
imizing the expected complete log-likelihood with respect to
the parameter selections (M-step) till convergence. The EM
algorithm is guaranteed to increase the objective function at
each iteration unless it is at a local optimum.

E-step
For the E step, the expectation of the complete log-
likelihood is computed with respect to the distribution of
the hidden variables given the data. Given a current param-
eter estimate Θ, the expected log-likelihood is given by ,
〈Lc(Θ)〉 = 〈LD(Θ)〉 + 〈LW (Θ)〉 where LD is the data

likelihood and LW is the weight parameter log-likelihood
given by the log of (6). 〈LD(Θ)〉 can be expressed as:∑
n,m,k

rnm,k {ln p(yn|θm,xk) + ln νm + ln p(xk|m)} , (7)

where rnm,k is posterior probability (also called the respon-
sibility) that the data sample yn is generated from cluster m
and latent variable xk. Using Bayes theorem,

rnm,k = p(m,xk|yn)

=
p(m,xk)p(yn|θm,xk)∑

m′,k′ p(m′,xk′)p(yn|θm′ ,xk′)
. (8)

In order to compute these probabilities, the determinant
and inverse of the corresponding Gaussian covariances must
be computed. The PPS model simplifies this computation
((Chang and Ghosh 2001), Proposition 2):

|Σm(x)| = aQm
m bD−Qm

m

Σ−1
m (x) =

1
bm

I− (am − bm)
bmam

E//m(x)ET
//m(x).

Hence, the cost of computing |Σm(x)| is reduced to a sin-
gle product, while the cost of computing Σ−1

m (x) is reduced
from O(D3) to O(QmD2).

M-step
The M-step involves computing the parameter values Θ∗
that maximize the expected log-likelihood. This maximiza-
tion generally involves the derivatives of the expected log-
likelihood with respect to each of the parameters. We dis-
cuss the parameters in the order that they are updated.

Updating ν : First, differentiating the log likelihood with
respect to νm and setting it to zero, νm is updated as:

ν∗m =
1
N

∑
n,k

rnm,k, (9)

Updating p(xk|m) (Optional): Differentiating the log
likelihood with respect to p(xk|m) and setting it to zero:

p(xk|m)∗ =
1
N

∑
n

rnm,k. (10)

In our implementation, we assume that the manifold is uni-
formly sampled. For this reason, we uniformly sample the
latent space as well by fixing p(xk|m) = 1

Km
without up-

date. This helps to avoid overfitting.
Updating W: We approximate W∗

m as the weight ma-
trix that locally maximizes the complete log likelihood. The
derivative ∂〈LC(Θ)〉

∂Wm
is:

∑
n,k

rnm,k

{[
1
bm

I− am − bm
bmam

WmΨm
k WT

m

]
qnm,kφ(xk)T

+
am − bm
bmam

[
qnm,kq

n T
m,kWmΨm

k

]
− λmWm

}
, (11)
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where qnm,k = yn−Wmφ(xk),Ψm
k = Tm(xk)Tm(xk)T .

This derivative is a non-linear function of the weight matrix.
For this reason, the updated weight matrix cannot be com-
puted in closed form. Here we provide two approximations
as suggested by (Chang and Ghosh 2001). The first option is
to iteratively update Wm using steepest ascent with learning
rate η to find a local maximum. At each iteration i,

Wi+1
m = Wi

m + η
∂〈LC(Θ)〉
∂Wm

. (12)

This formulation fits into the generalized EM (GEM) frame-
work, and convergence to a local optimum is guaranteed
(Dempster, Laird, and Rubin 1977). However, there is a high
computational cost involved. The second option is to ap-
proximate the weighting matrix in the M-step by the weight-
ing matrix obtained using a GTM i.e. assuming that the co-
variance: Σm(x) = β−1

m I for the weight update. Setting
αm = 1, (11) simplifies considerably to:∑
n,k

rnm,k
{
−βm [Wmφ(xk)− yn] φ(xk)T − λmWm

}
.

(13)
This can be solved for a fixed point to obtain the updated
weight matrices {W∗

m}Mm=1 by least squares:(
ΦTGmΦ +

λm
βm

I
)

W∗T
m = ΦRmY. (14)

where Y is theN×D data matrix with each row Yn,: = yTn ,
Φ is a Km × L matrix with elements Φk,l = φl(xk), Rm

is a Km × N matrix with elements Rm(k′, n′) = rn
′

m,k′

corresponding to the responsibility matrix for a fixed clus-
ter m, and Gm is a Km × Km diagonal matrix with ele-
ments Gm(k′, k′) =

∑N
n=1 r

n
m,k′ . This approximation is

no longer guaranteed to increase the likelihood, but it yields
good results in practice.

Log Evidence Approximation: Incorporating the
Bayesian prior over the weights (6), the marginal data like-
lihood is computed by integrating over the weight matrix:

p({yn}|Θ′) =
∫
p({yn}|Θ)p(W|{λm}). (15)

Where Θ′ = {θ′}Mm=1 is the set of parameters without
{Wm}. This integration is intractable, however, we employ
a quadratic approximation as suggested by (MacKay 1991).
The idea is to approximate the full posterior using a Gaus-
sian approximation about some mode, W∗. We define the
function:

S(θ′m,w) = − log{p({yn}|θm)p(Wm|λm)}. (16)

This can be used to approximate (15) as:

p({yn}|θ′m) =
∫
e{−S(θ′m,w)}dw

≈ e{−S(θ′m,w
∗)}
∫
e{−

1
2 (wm−w∗m)T Hm(wm−w∗m)}dw

= e{−S(θ′m,w
∗)}(2π)MD/2|Hm|−

1
2 (17)

using a second order Taylor expansion of the log of the in-
tegrand. The Hessian matrix Hm is given by the second
derivative of S with respect to wm. The derivative involves
computing terms that are quadratic in wm which makes the
computation expensive. For this reason, we employ a GTM
approximation once more as described in (Bishop, Svensen,
and Williams 1998a) . The resulting Hm matrix is block di-
agonal with each block of the form βmΦTGmΦ. Now the
log evidence, log p({yn}|θm) for each m can be computed
as:

LD(θm)|
W∗m
− λm

2
‖w∗m‖2−

1
2
|Hm|+

MD

2
log λm. (18)

Updating λ and β: Next, we use (18) to update the pa-
rameters λm and βm by finding fixed points of the corre-
sponding derivatives. Assuming some constant w∗m, the up-
dates are given by:

λm =
γ

‖w∗m‖2
, (19)

1
β∗m

=
1
ν∗m

1
ND − γ

∑
n,k

rnm,k{
D −Qm

(D − αmQm)
dn,1m,k −

(αm − 1)D
αm(D − αm)Qm

dn,2m,k

}
,

(20)

where dn,1m,k = ‖qnm,k‖2, dn,2m,k = qn Tm,kW
∗
mΨm

k W∗T
m qnm,k.

The parameter γ can be interpreted as the effective number
of parameters and is given by:

γ =
MD∑
i=1

ζi − αm
ζi

, (21)

where ζi are the eigenvalues of Hm.
Updating α: The derivative of the log likelihood with

respect to αm leads to a cubic function in αm given by:

α3
mx3 + α2

mx2 + αmx1 + x0 = 0, (22)

with coefficients:

x3 = ν∗mNQ
2
mD,

x2 =− ν∗mNQmD(D +Qm)
− β∗m(D −Qm)v1,m − β∗mDQmv2,m,

x1 = νmNQmD
2 + 2β∗mDQmv2,m,

x0 = −β∗mDv2,m,

where v1,m =
∑
n,k

rnm,kd
n,1
m,k and v2,m =

∑
n,k

rnm,kd
n,2
m,k.

Ideally, the likelihood should be evaluated for each possible
solution of the cubic polynomial. However, this is expen-
sive. In practice, we pick the solution α∗mthat is closest 1.
By automatically updating αm, we are able to avoid a po-
tentially more expensive cross validation as used by (Chang
and Ghosh 2001).
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The E-Step and M-step are alternated until the expected
log-likelihood or the parameter estimates do not change sig-
nificantly over consecutive iterations. At convergence, the
data manifolds are given by the learned parameters Θ and
the soft clustering is encoded in the resulting responsibility
(8). A hard clustering can be computed by selecting the most
likely cluster:

m∗ = arg max
m∈{1...M}

∑
k

rnm,k . (23)

One advantage of the EM algorithm is that it can be trained
incrementally by feeding data samples in batches or one at
a time (Dempster, Laird, and Rubin 1977). This is useful
when dealing with large data-sets.

Initialization and parameter selection
The EM algorithm is guaranteed to locally maximize the
log-likelihood, however, there is no guarantee of finding a
global maximum. For this reason, initialization of the model
parameters is critical to the success of the algorithm. In our
experiments, we used our prior assumptions to bias the opti-
mization close to a good optimum. We also noticed that the
parameters {αm, λm} that were automatically updated were
less sensitive to initialization. Thus we were able to avoid
more expensive cross validation.

First we found a hard clustering of the data using our prior
assumptions about the form of the final clusters. For in-
stance, when the clusters were expected to be approximately
convex, we found that k-means found a good initial cluster
estimate. For more complicated clusters, we initialized us-
ing hierarchical clustering. Other initial clustering methods
that satisfy prior assumptions can also be used. The proba-
bility of each cluster, νm was then initialized as the quotient
of the number of points in cluster m and N .

The manifold estimates were initialized based on the
amount of non-linearity assumed in each generating man-
ifold. If the generating manifold was expected to have a
low curvature, we initialized our estimate of the manifold to
approximate PCA in each cluster by solving a simple least
squares problem (Bishop, Svensen, and Williams 1998b).
When the manifold was assumed to have a high curvature,
each cluster was embedded using some non-linear dimen-
sionality reduction algorithm; in our case, ISOMAP. The
weights were then initialized approximate the mapping from
the embedded points to the data space.

The noise inverse variance βm was initialized as the mini-
mum of the inverse variance lost in the initial clustering and
average spacing of the projected grid. For PCA, the variance
lost can be approximated by the Qm + 1 eigenvalue of the
data covariance matrix. The parameter αm was initialized
to 1 and λm was initialized to 0.01 though in practice, we
found that the initial values were not critical.

The latent space was selected as aQm dimensional hyper-
cube [−1, 1]Qm . However, when the manifold was expected
to be closed, we modelled the latent space as a unit hyper-
sphere SQm ∈ RQm+1. Km latent points were generated by
sampling uniformly over this latent space. The number of
latent points is only limited by computational constraints. A
largeKm improves the modeling performance. On the other

hand, if the latent space is insufficiently sampled, the PPS
centers in the data space will lie too far away from one an-
other and the mapping loses the topological constraints. The
centers of the RBF were sampled on a grid over Xm. We
initialized both Km and L to 0.05N , suitably rounded. The
length scale of the RBF; σ was the only cross validation pa-
rameter we used in our experiments. This parameter was set
to a small multiple of the distance between the RBF means.

MiPPS assumes that the dimensions of all the local clus-
ters Qm are known. We used the estimate of Qm learned by
the maximum likelihood method described in (Levina and
Bickel 2005) which we found agreed with our prior intuition
about the dimensionality of the component manifolds.

4. Local and Global Visualization
A functional model for the component manifolds can be
found directly using the learned RBF mapping from a con-
tinuous latent space: Wmφ(x) ∀x ∈ Xm. An alternative
is to model the component manifolds using linear interpola-
tion between the mapped latent points {Wmφ(xk)}Km

k=1. If
desired, splines or other non-linear interpolation techniques
can also be used.

If the latent space is one or two dimensional, the data set
can be visualized by projections to each local manifold using
the posterior distribution:

p(xk|yn,m) =
p(xk|m)p(yn|m,xk)∑Km

k′=1 p(xk′ |m)p(yn|m,xk′)
. (24)

The mean of the projected point is:

〈x|yn,m〉 =
Km∑
k=1

xkp(xk|yn,m). (25)

The mode can also be used if the posterior is expected to be
multi-modal. This projection method gives m local visual-
izations.

The PPS can be interpreted as a constrained Mixture of
Factor Analyzers (MFA) model (Tipping and Bishop 1999)
where each of the MFA means are constrained to lie on some
non-linear manifold, and the noise covariances are given by
gradients and globally shared parameters. This is in contrast
to the general MFA where each local subspace is computed
to approximate the local principal components of the data.
The effect of this constraint is that the local subspaces are
computed using the mapping function as E//m(x) avoiding
several singular vector computations. The noise variance pa-
rameters are also shared along the entire manifold. This can
be a useful property when the data is high dimensional and
sparse as we will discuss in Section 5.. The use of gradients
to define the subspaces also naturally aligns the subspaces
avoiding the degeneracies addressed by (Verbeek, Vlassis,
and Kröse 2002). We will exploit this MFA interpretation to
define a global embedding.

Teh and Roweis developed an alignment algorithm for
manifolds described using several local linear projections
called the local linear co-ordination (LLC) algorithm (Teh
and Roweis 2003). First the model learns a mixture of factor
analyzers to describe the data manifold. Next the algorithm
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finds a global embedding of these local representations us-
ing only linear transformations of the local projections and
the computed responsibilities. By interpreting the learned
MiPPS model as a MFA, the LLC algorithm can be applied
directly to find a global embedding for visualization. MiPPS
local co-ordinates are given by the projection of the data to
each local subspace. zn,k,m = E//m(xk)yn and the re-
sponsibilities are given by (8). We omit the details of the
algorithm implementation due to space constraints. We also
note that LLC does not require that the local projections
zn,k,m be two dimensional in order to find a global two-
dimensional embedding. Intuitively, MiPPS and LLC can
be used to learn an unsupervised embedding of the dataset
guided by the clustering. This leads to a visualization that
respects the topology of the data, but is also biased to pre-
serve the learned clusters.

5. Results
We now present results applying MiPPS to three toy data
sets. In all the synthetic data experiments, the manifolds
are sampled in Gaussian noise and are represented by lin-
early interpolating the MiPPS means. MiPPS was used
to learn the partitioned S-curve randomly sampled in high
noise (Fig. 1). The algorithm was initialized using k-means
to find two clusters. The weights were initialized to approx-
imate PCA on each cluster. The noisy double helix (Fig. 2)
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Figure 1: Clustering the partitioned S-curve.

was more challenging because of the intertwined manifolds.
Initialization using k-means led to the top and bottom halves
being separated and learned as the component manifolds and
MiPPS was not able to escape this local maximum. In-
stead, we used hierarchical clustering to learn a more rep-
resentative partition. The weights were initialized to ap-
proximate the ISOMAP embedding. We also attempted to
learn two intersecting manifolds for the intersecting spirals
data set (Souvenir 2006). Here, the prior information given
was that the manifolds intersect. An initial clustering step
could be used to estimate the intersecting clusters. How-
ever, we found that the clustering step was not necessary for
good results. The model shown in Fig. 3 was learned when
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Figure 2: Clustering the double helix.

the weights were initialized to approximate each of the two
principal components of the entire data set.
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Figure 3: Clustering two intersecting spirals.

Hyperspectral Data
Hyperspectral data consists of sensor measurements by
satellites or measurement aircraft measured over various lo-
cations in some region. Each feature vector consists of hun-
dreds of frequency bands providing fine spectral information
about the measured area. In our experiments, we used Hy-
perion data acquired by the NASA EO-1 satellite over the
Okavango Delta, Botswana in May 2001. Each data point
consists of D = 145 bands. The land cover is classified into
9 types by domain experts.

We selected three of the most populous classes as shown
in Table 1. The total number of data samples wasN = 1239
so this dataset is high dimensional but sparse. The measured
classes are known to vary over location, so intuitively, there
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Class Number of samples
Primary floodplain 437

Riparian 448
Firescar. 354

Table 1: Class Descriptions.

should be two degrees of freedom in the data corresponding
to the location of the measurement. The maximum likeli-
hood dimension estimate (Levina and Bickel 2005) of the
data was 2.3589 matching our intuition. Correspondingly,
we set Qm = 2 for each cluster. MiPPS was initialized us-
ing the clusters found by a mixture of PPCA. The weights
were learned to approximate PCA in each cluster.

We separated the data randomly into training/test pairs
with the percentage of training data between 10% and 100%.
We recorded the performance of each model on the test set
over 200 iterations using test error and average negative con-
ditional log likelihood (ANCLL) as performance metrics.
ANCLL is computed as − 1

N

∑
log p(ĉ|yn) where ĉ is the

true class of yn. The ANCLL is a good metric for proba-
bilistic algorithms as it gives a sense of how far the model
strays from the correct cluster selection. For 100% training
data, we report the results from the training data only. For
both metrics, lower values indicate better performance. The
RBF length scale parameter was selected by cross valida-
tion using 6 values over a logarithmic scale from 10−0.5 to
100.8 multiplied by the average distance between the latent
nodes. We report the results for the length scale with the
lowest training error averaged over all iterations.

We compared the performance of MiPPS to related un-
supervised algorithms. For co-located measurements, the
multivariate Gaussian distribution is often used by domain
experts as a good class dependent feature model for hyper-
spectral data (Manolakis et al. 2001). However, as the mea-
surement locations are varied, the Gaussian model becomes
less accurate. This motivated the use of a Gaussian mix-
ture model as the base model for unsupervised clustering of
the data. Unfortunately, we were unable to learn a Gaus-
sian mixture model as the data is sparse. Instead, we used a
mixture of two dimensional factor analyzers. We also com-
pared the algorithm performance to a mixture of GTM ini-
tialized identically to MiPPS. This was achieved by fixing
each αm = 1. We attempted to cluster the dataset using
k-manifolds algorithm. Unfortunately, the training process
failed to converge due to widely separated cluster manifolds.
This suggests that the clusters did not clearly intersect as as-
sumed by k-manifolds.

All three algorithms performed well in clustering the data
set using test error and ANCLL as the performance metrics.
The results reported are the average performance over 200
iterations. As shown in Fig. 4 and Fig. 5, MiPPS outper-
formed the MFA and mixture of GTM algorithm. It was
also clear that the mixture of GTM algorithm gave a high
probability to the correct clusters while the MFA model was
less certain about the selections. Surprisingly, the MFA out-
performed the mixture of GTM in terms of test error until
about 60% of the data was used for training.
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Figure 4: Average Test error
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Figure 5: Average ANCLL

Finally, we applied the LLC algorithm to find a global em-
bedding. LLC requires a nearest neighbor parameter which
we set as 10 though we found that the parameter did not
have much effect on the global embedding learned. Fig. 6
shows one embedding learned for the dataset. The embed-
ding shows good separation by class. The model learned
had a likelihood of −1.04 × 106, a test error of 0.03 and
an ANCLL of 1.638 with α = [.6144 .6315 .6374] suggest-
ing that much of the noise was orthogonal to the estimated
generating manifold.

In contrast, the LLC algorithm initialized by MFA learned
the embedding shown in Fig. 7. The LLC visualization
was unable to separate the Primary Floodplain and Firescar
classes. We were only able to fit up to 20 MFA’s to the data
due to sparsity. This highlights another advantage of the
MiPPS model combined with LLC for data visualization as
it can facilitate learning a detailed model even when the data
is too sparse for less constrained models.
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Figure 6: Global embedding learned by MiPPS and LLC.

6. Conclusion
In this paper, we discussed the multi-manifold clustering
problem. We described MiPPS: a principled probabilistic
technique for manifold clustering. We derived the data like-
lihood and showed that this model can be trained using an
EM algorithm. We showed the use of a Bayesian prior and
showed that the resulting model can be optimized using sim-
ple approximations. We also showed how one can bias the
algorithm towards a good optimum by initializing based on
prior intuition on the form of the data clusters while min-
imizing the amount of cross validation required to choose
parameters.

We explored the versatility of the model to show that we
can model a large class of manifolds in a principled man-
ner. The use of a probabilistic model allowed us to learn
in uncertainty such as when the component manifolds in-
tersected or were sampled in high noise. We also explic-
itly computed a model for the manifold clusters which we
used lo learn a global two dimensional visualization of the
dataset. We demonstrated this technique in separating and
visualizing land cover types in hyperspectral data.

Acknowledgments: This research was supported in part
by NSF (Grant IIS-0705836).

References
Bishop, C. M.; Svensen, M.; and Williams, C. K. I.
1998a. Developments of the generative topographic map-
ping. Neurocomputing 21:203–224.
Bishop, C. M.; Svensen, M.; and Williams, C. K. I. 1998b.
GTM: The generative topographic mapping. Neural Com-
putation 10:215–234.
Chang, K., and Ghosh, J. 2001. A unified model for prob-
abilistic principal surfaces. IEEE Transactions on Pattern
Analysis and Machine Intelligence 23:22–41.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977.
Maximum likelihood from incomplete data via the EM al-

−2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

5

6

7

 

 
Primary Floodplain
Riparian
Firescar

Figure 7: Global embedding learned by MFA and LLC.

gorithm. Journal of the Royal Statistical Society B(39):1–
38.
Hadid, A., and Pietikinen, M. 2003. Efficient locally linear
embeddings of imperfect manifolds. In Machine Learning
and Data Mining in Pattern Recognition, volume 2734 of
Lecture Notes in Computer Science.
Hastie, T. 1984. Principal curves and Surfaces. Ph.D.
Dissertation, Department of Statistics, Stanford University.
Levina, E., and Bickel, P. J. 2005. Maximum likelihood
estimation of intrinsic dimension. In NIPS 17. Cambridge,
MA: MIT Press. 777–784.
MacKay, D. J. 1991. Bayesian interpolation. Neural Com-
putation 4:415–447.
Manolakis, D. G.; Marden, D.; Kerekes, J. P.; and Shaw,
G. A. 2001. Statistics of hyperspectral imaging data. In So-
ciety of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, volume 4381, 308–316.
Souvenir, R. M. 2006. Manifold learning for natural image
sets. Ph.D. Dissertation, Department of Computer Science,
Washington University.
Teh, Y. W., and Roweis, S. 2003. Automatic alignment of
local representations. NIPS 15:841–848.
Tino, P., and Nabney, I. 2002. Hierarchical GTM: Con-
structing localized nonlinear projection manifolds in a prin-
cipled way. IEEE Transactions on Pattern Analysis Ma-
chine Intelligence 24(5):639–656.
Tipping, M. E., and Bishop, C. M. 1999. Mixtures of
probabilistic principal component analyzers. Neural Com-
putation 11:443–482.
Verbeek, J.; Vlassis, N.; and Kröse, B. 2002. Coordinat-
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