
A Maximum Likelihood Framework for Integrating Taxonomies

Suju Rajan, Kunal Punera, and Joydeep Ghosh
Department of Electrical and Computer Engineering

University of Texas at Austin
Austin, Texas-78712

{rsuju, kunal, ghosh}@lans.ece.utexas.edu

Abstract

Many approaches have been proposed for the problem
of mapping categories (classes) from a source taxonomy
to classes in a master taxonomy. Most of these tech-
niques, however, ignore the hierarchical structure of the
taxonomies. In this paper, we propose a maximum like-
lihood based framework which exploits the hierarchical
structure to obtain a more natural mapping between the
source classes and the master taxonomy. Furthermore,
unlike previous work, our technique also inserts source
classes into appropriate places of the master hierarchy
creating new categories if required. We evaluate our ap-
proach on text and hyperspectral datasets.

Introduction
Hierarchical taxonomies can provide a wealth of informa-
tion about the domain they are constructed upon. Typi-
cally, the hierarchies are arranged in a general-to-specific
fashion with the root-node accounting for all the classes in
the taxonomy while the leaf-nodes correspond to specific
classes of the taxonomy. In general, taxonomies group simi-
lar classes closer together in the tree thereby revealing the in-
herent relationships between the classes or the meta-classes
(sets of classes). Gene expression analysis (Segal, Koller,
& Ormoneit 2001), hyperspectral analysis (Kumar, Ghosh,
& Crawford 2002), web directories (Dumais & Chen 2000),
and product catalogs (Agarwal & Srikant 2001) are exam-
ples of domains with well-defined hierarchical taxonomies
that not only represent the relationships between the classes
in a structured way, but also help improve the generalization
of classifiers built over those classes.

The decentralized nature of data collection and propri-
etary issues often result in multiple taxonomies being de-
fined for the same domain. For instance, the web directories
of Yahoo!1 are different from that of DMOZ2 and the prod-
uct catalogs of Amazon3 are different from that of Ebay4.
Often it might be necessary to integrate the classes from one

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1http://www.yahoo.com
2http://dmoz.org
3http://www.amazon.com
4http://www.ebay.com

taxonomy (let us call it a source taxonomy) into an existing
“master taxonomy”. In the absence of uniform labeling of
classes, this integration is non-trivial. Given a master tax-
onomy M and a source taxonomy S , defined on the same
domain, we believe any integration algorithm should be able
to handle the following four scenarios:

1. If certain classes in S have equivalent classes in M, then
they should map directly. For instance, a class called Cars
in S should map to a class called Autos in M.

2. S may contain some classes that represent concepts that
are unseen in M. For instance, S may contain the latest
cars to hit the market which do not have counterparts in
M.

3. Some class in S may be a union (superset) of some classes
in M. For instance, S may contain a class called Motor-
Vehicles, while M contains the classes Cars, Trucks, and
Bikes.

4. Multiple classes in S may belong to a single class in M.
For instance, the taxonomy S may be at a higher level
of granularity with classes like Cars, Trucks, and Bikes,
while M only contains a single Motor-Vehicles class.

Existing techniques invariably treat taxonomy integration
as the problem of finding a 1-to-1 mapping between the
classes in the two taxonomies. For each class in S they at-
tempt to find the class in M that is ‘most similar’ (Agarwal
& Srikant 2001; Sarawagi, Chakrabarti, & Godbole 2003;
Zhang & Lee 2004; Doan et al. 2002). Moreover, most
of these methods either completely ignore the hierarchical
structure of taxonomies or do not consider mappings be-
tween classes and internal nodes in the hierarchies. The
only way a more general class can be integrated into a finer
grained master taxonomy is by mapping the general class to
one of the internal nodes. Furthermore, all of the existing
techniques only seek to obtain a mapping for the source tax-
onomy classes into the master taxonomy. No guidance is
given on how best to update the master taxonomy with the
new data. For example, when handling a situation depicted
in Scenario 4, mapping certain finer-grained classes in S to a
single class in M causes one to lose the distinction between
those source classes.

In this work, we propose a framework that not only maps,
but completely integrates the classes in S into M. Given

a hierarchical master taxonomy, our framework attempts to
insert the classes of S into it, such that the resulting tree
continues to maintain ‘similar’ classes closer in the hier-
archy. The requirement of a master hierarchy is not strin-
gent as the generation of hierarchies from flat sets of classes
can be easily automated (Kumar, Ghosh, & Crawford 2002;
Vural & Dy 2004). In order to integrate source classes that
are at a higher abstraction level than the master taxonomy
classes, classes in S are split prior to integration. Thus, parts
of a source class may appear in multiple leaf-nodes of the re-
sulting hierarchy. Furthermore, when multiple classes from
S map into the same class in M, we create a new hierarchy
that maintains the distinction between these classes.

Related Work
Past work can broadly be divided into two parts, techniques
that consider the hierarchical structure of the taxonomies
and those that ignore this structure. A simple approach for
mapping the classes from S to M, while ignoring the hi-
erarchical structure of both S and M, is to build a Naı̈ve
Bayes classifier that estimates the posterior probability of
a class in M given a data-point in S. Class information
from S can then be used to form simple rules such as, if
more than x% of data-points from source class Si were clas-
sified as master class Mj then Si is ‘most similar’ to Mj ,
etc. The Enhanced Naı̈ve Bayes (E-NB) technique (Agar-
wal & Srikant 2001) works on similar principles and uses
the class information in S to shift the classification threshold
of the Naı̈ve Bayes classifier (Zhang & Lee 2004). Cross-
training (Sarawagi, Chakrabarti, & Godbole 2003) and Co-
Bootstrapping (Zhang & Lee 2004) approaches also attempt
to classify the data-points in S into M by using the data in
S to enhance the classifiers in M. These methods output
the mapping of classes from S to M, but do not provide any
clues for integrating the mapped source classes into the mas-
ter taxonomy. Our approach does not ignore the hierarchi-
cal structure of the master taxonomy and outputs an updated
master tree with the source classes placed at appropriate po-
sitions.

The GLUE framework (Doan et al. 2002) also performs
a 1-to-1 mapping between the source and master taxonomy
classes, but uses the hierarchical information to assign labels
to the nodes using the notion of ‘relaxation labeling’. The
key idea is that the label assigned to a node is influenced by
the labels of its neighboring nodes. While GLUE takes the
hierarchy into account, source classes are mapped only to
the leaf nodes of the master hierarchy. Hence, problems that
involve Scenario 3 cannot be handled by GLUE. In contrast,
our framework allows source classes to be mapped into any
node (internal or leaf) in the master tree.

Another method proposed in (Ichise, Takeda, & Honiden
2003) explicitly requires a hierarchical structure to be de-
fined on both M and S . The algorithm outputs a list of
‘alignment rules’ between the nodes in the two hierarchies
by using the κ-statistic to decide whether the amount of ob-
ject overlap between the nodes is high enough to consider
the two nodes as identical. This method requires a signif-
icant number of common data instances between the two
taxonomies being merged. However, this requirement will

be a severe drawback in those domains where such data
is unavailable. For example, when integrating taxonomies
defined on hyperspectral images, the data points are indi-
vidual pixels represented as vectors of real numbers. It is
impossible to identify a set of objects that co-occur in two
different taxonomies in this domain. Moreover, even in
discrete domains like product catalogs, it is not clear how
such data would be made available. Another limitation of
this approach is that it requires the criteria used to generate
the splits in the two hierarchies to be similar. Hence, tax-
onomies with orthogonal classifications cannot be merged
using this method. Our proposed framework considers a
model based approach to discovering similar classes in the
two taxonomies and does not require overlapping data. Fur-
ther, orthogonal classifications in the two taxonomies does
not affect our method as we integrate a flat set of source
classes into an existing master hierarchy.

Other related work lies in the domain of ‘ontology match-
ing’ in which the hierarchical structure of the ontologies are
used along with a number of heuristics to merge the ele-
ments of the ontologies. Some of the more popular ontol-
ogy matching methods are the Chimaera (McGuninness et
al. 2000), FCA-MERGE (Stumme & Maedche 2001), and
PROMPT (Noy & Musen 2000), all of which require a lot
of human interaction.

Exploiting Hierarchical Taxonomies for
Integration

A hierarchical taxonomy can be used as a classifier in which
a multi-class problem can be broken down into a set of sim-
pler problems. If the hierarchies are well-defined, each sub-
problem will be simpler than the original one and would also
typically require a smaller set of features to resolve it (Koller
& Sahami 1997). Hierarchical classifiers have been shown
to give slight improvements in classification accuracies over
using a flat set of classes (Segal, Koller, & Ormoneit 2001)
(Dumais & Chen 2000). Another advantage of using hier-
archies is that when labeled data is scarce, shrinkage tech-
niques (McCallum et al. 1998) can be used to improve
the parameter estimates at a node by using the correspond-
ing estimates of its parent nodes. Hence, it is beneficial to
preserve the hierarchical information while integrating the
source classes into the master tree.

Most real-world hierarchies have some inherent con-
straints on the relationships between its nodes. For instance,
the children of a node may be required to be ‘more similar’
to it than its siblings. Once such constraints in the hierarchy
have been identified, the problem of taxonomy integration
can be solved in two stages.

1. Mapping Stage: Given a flat set of source classes that are
to be merged into the master hierarchy, a suitable parent
node has to be identified for each source class.

2. Integration Stage: Once the parent nodes have been
identified, the source classes have to be integrated into the
existing hierarchy such that the resulting hierarchy contin-
ues to satisfy its constraints.
Let {Si}n

i=1 be the set of source classes from a source tax-
onomy S and let {Xi}n

i=1 be the corresponding set of data

points associated with each source class. Let {Mj}m
j=1 be

the set of master classes from the master taxonomy M and
let T be a hierarchy defined on these classes. T therefore
has m leaf nodes each of which corresponds to a class from
{Mj}

m
j=1. Given the data associated with the master taxon-

omy, we use it to define the set of data points (Dv) associated
with each node v of T . If v is an internal node, the set of
data points Dv at v and the pdf (pv) estimated from the Dv

can be used to place the following constraint on v:

L(Dv|pci
) > L(Dv|psj

) ∀ci ∈ Child(v) and ∀sj ∈ Sib(v)
(1)

where Child(v) and Sib(v) denote the child and sibling
nodes of v and L(Dv1

|pv2
) is the mean log-likelihood of the

data points Dv1
given the pdf pv2

, i.e.,

L(Dv1
|pv2

) =
1

|Dv1
|

∑

∀d∈Dv1

log(pv2
(d)) (2)

Constraint 1 ensures that the children of a node are
‘closer’ to it than its siblings. Given the above constraint, if
the relationships between the source and the master classes
are known apriori the mapping of each source class to a
node in T is done as detailed below. We will later present an
algorithm that can handle all the scenarios even when there
is no prior knowledge about the relationships.

Mapping Stage:
Scenarios 1 and 4: Under Scenario 1 or 4, the taxonomy
integration problem reduces to that of classification. The
only difference between the two scenarios is that, while there
is a 1-to-1 mapping between the master and source classes
under Scenario 1, Scenario 4 implies a many-to-1 mapping
from the source to the master taxonomy. In both cases, the
leaf node v∗ in T that is closest to a class Si is obtained
using:

v∗ = argmax
∀v∈TL

L(Xi|pv) (3)

where TL is the set of leaf nodes of the hierarchy.

Scenario 2: Let Si be a source class that is ‘different’ from
all the master classes. Using (3) will still identify a v∗ but
inserting Si at v∗ might violate (1). The likelihood of v∗

given its siblings is then used as a threshold to check if Si

can be inserted as a child of node v∗. Si can be inserted at
v∗ if:

L(Dv∗ |pXi
) >= max

∀v∈Sib(v∗)
L(Dv∗ |pv) (4)

pXi
represents the pdf estimated from the data associated

with the source class Si. When there are multiple v∗s, the
best one is identified by combining (3) and (4) as follows:

v∗ = argmax
∀v∈T

L(Xi|pv)

subject to the constraint

L(Dv∗ |pXi
) >= max

∀v∈Sib(v∗)
L(Dv∗ |pv) (5)

While an exhaustive search can be performed over all the
nodes in T to find the v∗ that satisfies the above constraint,
a greedy approach is to first identify a suitable v∗ using (3).
If v∗ does not satisfy (4), the parent node of v∗ is used as the
new v∗ and constraint (4) is checked again. This process is
repeated until either a v∗ that satisfies the constraint is found
or the root-node is reached. Typically, v∗ will be set to the
root-node if Si represents a class that is ‘very different’ from
all the classes in M.

Scenario 3: Finally, let Si be a source class that is a su-
perset of some of the master classes. In this case, subsets
of Xi have to be inserted at different nodes of the master
tree. A hierarchical classifier, defined on the master classes,
is first used to create subsets of Xi as follows: apply the
classifier to Xi, if more than a user-defined number (say θ)
of Xi share the same class label, flag that subset as a new
source class say S

j
i . A suitable node v∗ to insert S

j
i is then

identified by using (5). While setting θ to a very low value
might flag arbitrary subsets of Xi as new classes, setting it
to a very high value will not allow Xi to be split at all. In our
experiments, we used the size of the smallest master class to
set θ (20% of the smallest master class).

Note that extending the algorithm to find the mapping for
source classes under Scenario 3 has generalized the algo-
rithm such that it can handle all four scenarios even when
there is no prior knowledge about the relationships between
the source and the master classes. Further, since our ap-
proach merges subsets of the source classes into the master
tree, even those source taxonomies with vastly different cat-
egorization policies can be easily integrated into the existing
hierarchy. However, we still need to ensure that the subsets
created by the classifier are meaningful and are not the con-
sequence of some artifact of the classifier. The following
pseudocode provides details of our proposed framework:

Algorithm:

1. For each source class Si, apply the classifier to the corre-
sponding Xi. Let X

j
i represents the subset of data-points

of source class i that were classified into master class Mj .
Let list masteri be an empty list corresponding to Si.

2. For each j s.t., |Xj
i | > θ. Compute the mean log-

likelihood L(Xj
i |pj) where pj is the pdf associated with

the leaf-node that represents class Mj in T .

3. Starting with the subset X
j
i which has the largest mean

log-likelihood, use (5) to identify a suitable v∗ (not nec-
essarily a leaf node) to insert X

j
i into.

4. If list masteri = ∅, add v∗ to list masteri and process
the next subset of Xi.

5. If list masteri 6= ∅ and v∗ ∈ list masteri, this case
occurs when X

j
i ends up at the same node as some pre-

viously processed subset of Xi. Such a scenario implies
that subsets of Xi have been created due to some artifact
of the classifier. Hence, the current subset X

j
i of Xi is

combined with the previously seen subset of Xi that had
also arrived at v∗. A suitable v∗ is then identified for this
combined data.

6. If list masteri 6= ∅ and v∗ is not in list masteri. In this
case, the classifier implies that the subset X

j
i is distinct

from any of the previously seen subsets of Xi. To test the
validity of the split X

j
i , we define a new hierarchy Tnew

to be the same as the master hierarchy T , except that we
also insert the previously seen subsets of Xi as children of
their corresponding parent nodes in T . We then attempt
to find the suitable node (say vnew) in Tnew for X

j
i . If

vnew maps into one of the newly introduced child nodes
in Tnew we consider the split X

j
i to be an artifact of the

classifier and deal with it as in Step 5. Else if vnew = v∗,
we consider X

j
i to correspond to a new source class and

we add v∗ to list masteri.

Thus, each list masteri represents a ‘mapping’ of the
corresponding Si to a set of nodes in T . Note that, by ap-
pending the source class labels of each Si to the master tree
nodes in the corresponding list masteri, our framework
can obtain additional ‘meta-descriptors’ for the data points
at those nodes.

Integration Stage:
Once suitable parent nodes have been identified for all the
source classes, they need to be integrated into the master
hierarchy while making sure that the resulting tree structure
continues to satisfy the constraints. Let us consider a node
v∗ of the hierarchy and the set of source classes that map
into it.

v∗ is an internal node: If v∗ is an internal node having
a single source class Si associated with it, then Si is made
a child of v∗. If a set of source-classes are associated with
an internal v∗, the corresponding source classes are first ar-
ranged into a new hierarchy, the root node of which is then
made the child of v∗.

v∗ is a leaf node: If v∗ is a leaf node which has a single
source class Si associated with it, there might either be a 1-
to-1 correspondence between Si and the master class at v∗ or
Si might actually be a distinct sub-class of the master class at
v∗. To distinguish between the above two cases, we propose
partitioning {Dv∗∪Xi} into two clusters. Cluster validation
techniques (Jain & Dubes 1988) are then used to decide if
the resulting clusters are to be merged prior to being made
the children of v∗. A similar procedure is adopted if there
are multiple source classes associated with a leaf node v∗,
except that a hierarchy of the resulting clusters is generated
and inserted at v∗.

Experimental Evaluation
In this section we describe the methodology employed to
objectively evaluate the mapping stage of our algorithm. We
define test cases that cover the different possible scenarios.
After applying the algorithm on the test cases, we report the
number of test cases it passed for each scenario.

Test case generation
The first set of test cases was generated by duplicating a leaf
node v corresponding to a master class Mj as a source class

Si. In order to pass the test, the algorithm must correctly
map Si to the node v in the master hierarchy T . This means
that the algorithm besides not splitting the source class data
Xi, should also identify v as the node in the hierarchy that
satisfies the constraint (5). Obviously, the total number of
test cases that can be generated from the leaf nodes of the
master hierarchy is equal to the number of master classes.
The performance of our algorithm is evaluated by generating
all possible test cases and reporting the fraction of test cases
our algorithm passed. Note that testing our algorithm with
these test cases is equivalent to testing it under Scenario 1.

The second set of test cases was generated by removing
each node v in T and treating it as a new source class Si.
When v is an internal node, the entire subtree below it is
also moved along with it. In other words, all data points
in the subtree rooted at v are placed into Si. The test case
is passed if the algorithm identifies that Si is not present in
M and maps it to an internal node of T . The number of
possible test cases is equal to the number of non-root nodes
in the taxonomy. Generating these source classes is equiva-
lent to simulating Scenario 2. Our evaluation measure how-
ever underestimates the performance of our algorithm, since
sometimes a removed node might have been very close to its
ex-sibling. On being re-integrated into T such a node would
find its appropriate place with its ex-sibling (at a leaf node
of T), but we would count that as a mistake.

The next set of test cases was generated by duplicating a
non-leaf node v of T , as a source class Si in S. This ensures
that the class Si is a union of some master classes {Mj}

l
j=1,

that is Si falls under Scenario 3. The test is considered suc-
cessful if our approach places the appropriate parts of Si

into the correct leaf nodes in T . The number of test cases
that can be generated this way is equal to the number of non-
leaf, non-root nodes.

The final set of test cases was created by taking each non-
leaf node v in T and duplicating all the classes under the
subtree rooted at v as classes in S . Then the entire subtree is
collapsed into a leaf node v in T . In all these test cases, the
classes in S are subsets of classes in M which is equivalent
to testing our algorithm under Scenario 4. We consider each
source class Si thus generated as a separate test-case and the
test is deemed passed if each source class is integrated by
our algorithm into the subtree rooted at v.

Datasets

We evaluate our approach on a text dataset and two hyper-
spectral datasets. Once the master hierarchies are obtained
for the datasets, mixture models are used for likelihood esti-
mation at the internal nodes of the tree, with each component
of the mixture model representing a child of that node. To
cater to the possibility of a master class being a superset of
some source classes, mixture models were also used at the
leaf nodes. Thus, the data points corresponding to each mas-
ter class at the leaf node was clustered (5 clusters) and each
cluster was used as a component of the mixture model at that
leaf node. Given a set of mixture components {vk}5

k=1 that
represents a node v in the tree, the likelihood of v given a set

Figure 1: The master hierarchy created for the 10-
newsgroups dataset.

of data-points Xi is now modeled as

L(Dv |pXi
) = max

∀k
L(Dvk

|pXi
) (6)

where Dvk
is the set of data points associated with the kth

mixture component of node v.

Text Data The text data was derived from the popu-
lar 20-Newsgroup dataset (Lang 1995). This dataset con-
sists of 1000 documents in each of 20 different news-
groups. However, some of these newsgroups are on very
similar topics and have many cross-postings. For exam-
ple, groups talk.religion.misc and soc.religion.christian have
highly similar vocabularies and are very difficult to sepa-
rate. Since we did not want to evaluate our algorithm on
this artificial distinction between classes, we pruned the list
of newsgroups to obtain 10 groups on different topics. The
master taxonomy and source taxonomy each had 300 docu-
ments from each of the 10 classes.

The k-means version of the Divide-by-2 (DB2) technique
of (Vural & Dy 2004) was used to generate the master hi-
erarchy for the text dataset. Prior to calculating the means,
the dimensionality of the data points was reduced by using
the Fisher Index criterion (Chakrabarti et al. 1998). The re-
duced set of features was normalized using IDF and Spher-
ical K-Means (Dhillon, Fan, & Guan 2001) was then used
to perform the clustering. The list of classes used and the
master taxonomy generated for this dataset is shown in Fig-
ure 1. A hierarchical multi-classifier system, consisting of
SVMs (Joachims 1998) with linear kernels at each node of
the hierarchy was used as the classifier.

For the likelihood estimation, multinomial mixture mod-
els were used to represent each of the internal nodes in the
hierarchy. The mixture components at the leaf nodes were
obtained by clustering the data at that node using Spherical
K-Means after dimensionality reduction and normalization.

Hyperspectral Data The hyperspectral datasets were ob-
tained from two sites: NASA’s Kennedy Space Center

Scenario 10-Newsgroups
cases % Correct

1 10 98 ±4.4
2 18 65.6 ±11.4
3 8 100 ±0.0
4 25 76.8 ±5.2

Table 1: Text data (Avg % with Std.Dev).

Scenario KSC Botswana
cases % Correct # cases % Correct

1 10 98 ±4.4 14 100 ±0.0
2 18 68.9 ±6.1 26 68.4 ±8.3
3 8 100 ±0.0 12 100 ±0.0
4 25 69.7 ±8.3 41 90.2 ±2.4

Table 2: Hyperspectral datasets (Avg % with Std.Dev).

(KSC), Florida (Kumar, Ghosh, & Crawford 2002) and the
Okavango Delta, Botswana (Ham et al. 2005). The KSC and
Botswana datasets consist of 10 and 14 land-cover classes
respectively. For both these datasets, the data was split into
the master and source taxonomies using a 60-40% split.

The master hierarchy for the hyperspectral datasets was
generated using the Binary Hierarchical Classifier (Kumar,
Ghosh, & Crawford 2002) algorithm which creates a hierar-
chy of the master classes while simultaneously generating a
binary hierarchical classifier which can then be used to clas-
sify the data from the source taxonomy.

Likelihood estimation for the hyperspectral datasets was
performed using mixtures of Gaussians at the internal nodes
of the tree with each Gaussian representing a child of that
node. The mixture model for the leaf-nodes was obtained by
clustering the data using K-Means after reducing the dimen-
sionality of the feature space by the Best-Bases algorithm
(Kumar, Ghosh, & Crawford 2001).

Discussion
Tables 1 and 2 show the performance of the mapping stage
of our algorithm under the four different scenarios as de-
tailed in the section on test case generation. The reported
percentages and the corresponding standard deviations were
obtained by averaging over five runs. The high percentage of
correct mappings for Scenarios 1 and 3 shows that our algo-
rithm performs as expected under these scenarios. In our ex-
perimental evaluations, we found that ‘mistakes’ under Sce-
nario 2 occurred only when the test case was generated from
a leaf node of the master hierarchy. As explained earlier,
our evaluation measure underestimates the performance of
our algorithm by counting as a mistake the mapping of a
new source class to a leaf node instead of an internal one.
For instance, consider the hierarchy shown in Fig.1, and let
us assume that the class comp.windows.x is removed from
the master hierarchy and is being sent in as a new source
class. In this case, it is not unnatural for the new source
class comp.windows.x to map into the leaf node correspond-
ing to comp.os.ms.windows, so in reality our algorithm has
better mapping accuracies than what is indicated by the re-

sults. Most of the errors in Scenario 4, occurred when the
larger sub-trees were collapsed into a single node to gener-
ate the test case. Collapsing sub-trees nearer to the root of
the hierarchy creates artificial master classes that represents
several diverse ‘concepts’. The successful mapping of the
corresponding source classes to this leaf node depends on
its mixture model. However, as we do not control the type
of clusters generated at the leaf node, the resulting mixture
model might be unable to capture all the concepts at that
node resulting in wrong mappings. Using a larger number
of clusters to model the leaf nodes is a possible solution to
this problem.

Conclusion and Future Work
In this paper, we presented a maximum likelihood based ap-
proach to integrate a source taxonomy into an existing mas-
ter taxonomy. Utilizing the hierarchical structure defined
on the master taxonomy enabled us to obtain more natural
mappings between the two taxonomies as opposed to most
of the existing approaches which do not fully exploit the
master hierarchy. Our proposed framework not only maps,
but also integrates the source classes into the master hierar-
chy by defining new classes in the master taxonomy. The
efficacy of our approach was demonstrated empirically by
evaluating it on some text and hyperspectral hierarchies. A
natural extension to our current framework is enabling it to
utilize additional information in source hierarchies. We also
plan to test our approach on larger datasets with predefined
hierarchies such as web directories and product catalogs.

Acknowledgments: This work was supported by NSF
Grants IIS-0312471 and IIS-0307792. We would also like
to thank Srujana Merugu for her helpful suggestions.

References
Agarwal, R., and Srikant, R. 2001. On integrating catalogs.
In Proc. WWW8, 603–612.

Chakrabarti, S.; Dom, B.; Agrawal, R.; and Raghavan, P.
1998. Scalable feature selection, classication and signature
generation for organizing large text databases into hierar-
chical topic taxonomies. VLDB Journal 7(3):163–178.

Dhillon, I. S.; Fan, J.; and Guan, Y. 2001. Efficient clus-
tering of very large document collections. In R. Grossman,
C. Kamath, V. K., and Namburu, R., eds., Data Mining for
Scientific and Engineering Applications. Kluwer Academic
Publishers. 357–381.

Doan, A.; Madhavan, J.; Domingos, P.; and Halevy, A.
2002. Learning to map between ontologies on the semantic
web. In Proc. WWW10, 662–673.

Dumais, S. T., and Chen, H. 2000. Hierarchical classi-
fication of web content. In Proc. 23rd Intl. ACM SIGIR
Conf. on Research and Development in Information Re-
trieval, 256–263.

Ham, J.; Chen, Y.; Crawford, M. M.; and Ghosh, J. 2005.
Investigation of the random forest framework for classifi-
cation of hyperspectral data. IEEE Trans. Geoscience and
Remote Sensing 43(3):492–501.

Ichise, R.; Takeda, H.; and Honiden, S. 2003. Integrating
multiple internet directories by instance-based learning. In
IJCAI, 22–30.
Jain, A. K., and Dubes, R. C. 1988. Algorithms for Clus-
tering Data. New Jersey: Prentice Hall.
Joachims, T. 1998. Text categorization with support vector
machines: Learning with many relevant features. In Ma-
chine Learning: ECML-98, 10th European Conf. on Ma-
chine Learning, 137–142.
Koller, D., and Sahami, M. 1997. Hierarchically classify-
ing documents using very few words. In Proc. 14th Intl.
Conf. on Machine Learning (ICML), 170–178.
Kumar, S.; Ghosh, J.; and Crawford, M. M. 2001. Best-
bases feature extraction algorithms for classification of hy-
perspectral data. IEEE Trans. Geoscience and Remote
Sensing 39(7):1368–1379.
Kumar, S.; Ghosh, J.; and Crawford, M. M. 2002. Hierar-
chical fusion of multiple classifiers for hyperspectral data
analysis. Pattern Analysis and Applications, spl. Issue on
Fusion of Multiple Classifiers 5(2):210–220.
Lang, K. 1995. Newsweeder: Learning to filter netnews.
In Intl. Conf. on Machine Learning, 331–339.
McCallum, A.; Rosenfeld, R.; Mitchell, T.; and Ng, A.
1998. Improving text classification by shrinkage in a hi-
erarchy of classes. In Proc. 15th Intl. Conf. on Machine
Learning (ICML), 359–367.
McGuninness, D.; Fikes, R.; Rice, J.; and Wilder, S. 2000.
The Chimaera ontology environment. In Proceedings of
AAAI 2000, 1123–1124. AAAI Press / The MIT Press.
Noy, N. F., and Musen, M. A. 2000. Prompt: Algorithm
and tool for automated ontology merging and alignment.
In Proceedings of AAAI 2000, 450–455. AAAI Press / The
MIT Press.
Sarawagi, S.; Chakrabarti, S.; and Godbole, S. 2003.
Cross-training: Learning probabilistic mappings between
topics. In Proc. of the 9th ACM SIGKDD Intl. Conf. on
Knowledge Discovery and Data Mining, 177–186. Wash-
ington, DC: ACM Press.
Segal, E.; Koller, D.; and Ormoneit, D. 2001. Probabilis-
tic abstraction hierarchies. In In Proc. 15th Intl. Conf. on
NIPS, 2001.
Stumme, G., and Maedche, A. 2001. FCA-MERGE:
Bottom-up merging of ontologies. In IJCAI, 225–234.
Vural, V., and Dy, J. G. 2004. A hierarchical method for
multi-class support vector machines. In Proc. 21st Intl.
Conf. on Machine learning (ICML).
Zhang, D., and Lee, W. S. 2004. Web taxonomy inte-
gration through co-bootstrapping. In Proc. 27th Intl. ACM
SIGIR Conf. on Research and Development in Information
Retrieval, 410–417.

