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Abstract. Obtaining ground truth for hyperspectral data is an expen-
sive task. In addition, a number of factors cause the spectral signatures of
the same class to vary with location and/or time. Therefore, adapting a
classifier designed from available labeled data to classify new hyperspec-
tral images is difficult, but invaluable to the remote sensing community.
In this paper, we use the Binary Hierarchical Classifier to propose a
knowledge transfer framework that leverages the information gathered
from existing labeled data to classify the data obtained from a spatially
separate test area. Experimental results show that in the absence of any
labeled data in the new area, our approach is better than a direct applica-
tion of the old classifier on the new data. Moreover, when small amounts
of labeled data are available from the new area, our framework offers
further improvements through semi-supervised learning mechanisms.

1 Introduction

The deployment of hyperspectral sensors on-board the earth observing satellites
has generated large amounts of remotely sensed data, providing detailed hyper-
spectral images over extensive regions of the earth. A typical application is to
determine the land cover types corresponding to the spectral signatures in the
hyperspectral image, which can then be used, for example, to monitor changes
in the ecosystem over large geographic areas. However, while large quantities of
hyperspectral data are now available, obtaining reliable and accurate class labels
for each ‘pixel’ is a non-trivial task, involving either expensive field campaigns or
time-consuming manual interpretation of the hyperspectral images. Currently,
researchers obtain the class labels for a few pixels in an image (which typically
have 100,000+ pixels) and then attempt to label some other pixels in that same
image. Characterizing a new image is treated as a separate, independent clas-
sification problem. Note that factors such as atmospheric and light conditions,
topographic variations, etc., alter the spectral signatures corresponding to the
same land cover type over images acquired at different times and/or different
regions. Hence, näıve use of a classifier trained on data from one area to either
spatially or temporally different data without accounting for the variability of
the class signatures results in poor classification accuracies [2] [4]. Theoretically,



an ideal approach would be to pool all images of interest and then extract train-
ing data sampled uniformly at random from this pool to form a classifier that
works on all these images. But a host of real-life issues such as non-availability
of all the data at a given time, ownership, poor performance due to spatial vari-
ability of class signatures, size of data, etc., currently prevent researchers from
being able to follow this path.

In this paper, we study a more feasible middle ground of how to exploit
the knowledge inherent in a classifier trained over one area to help classify the
data obtained (perhaps at a later time) from a spatially separate area. Our
framework exploits additional knowledge from existing classifiers. Specifically,
we use a multi-classifier system called Binary Hierarchical Classifier (BHC) [8]
for this purpose. The BHC automatically derives a hierarchy of the target classes
based on their mutual affinities. This hierarchy, along with the knowledge of
the features extracted at each node of the BHC tree, can be used to facilitate
the unsupervised classification of new data from the spatially separate area.
Besides the unsupervised setting, the framework presented can also be employed
in a semi-supervised scenario when very small quantities of labeled data are
available from the spatially separate area. We present results of experiments
that demonstrate the advantages of our proposed framework over other powerful
multi-classifier systems, such as the ECOC [3], for the purposes of knowledge
transfer for hyperspectral data.

2 Related Work

Given that obtaining labeled data, especially for remote-sensing applications is
difficult and time-consuming especially for remote areas, any scheme that can
leverage existing labeled data even from an area other than the one under con-
sideration, is very desirable. The advantages of using unlabeled data in a semi-
supervised setting to mitigate the sample size problems for hyperspectral data
was first studied in [16]. In this work both the labeled and the unlabeled data
samples came from the same image, i.e. from a common underlying distribution.

A related problem was addressed in the context of temporally varying remote
sensing images in [2]. Given an image t1 of a certain land area with a labeled
training set, the problem was to classify another image t2 of the same land area
obtained at a different time. A maximum likelihood classifier was first trained on
the labeled data from t1, assuming normal distribution of the class-conditional
density functions. The mean vector and the covariance matrix of the classes from
t1 were used as initial approximations to the parameter values of the same classes
from t2. These initial estimates to the classes from t2 were then improved via
EM using the corresponding unlabeled data. Experimental results on a couple of
multispectral images acquired at different times showed that utilizing the labeled
data from t1 yielded comparable classification accuracy with that of a maximum
likelihood classifier trained on the labeled data from t2.

Several online-learning algorithms [1] have also been proposed to deal with
the problem of temporally varying data distributions. Various possibilities of



applying such online techniques in a multi-classifier setting are outlined in [9].
Most approaches to the problem of population drift design the classifier as a
feedback system, in which it is assumed that there is a steady stream of objects
whose true labels are revealed immediately after classification by the existing
classifier. This additional knowledge of the true class labels may then cause
a change in the existing classifier [6]. While hyperspectral data obtained over
extensive regions (or different times) also faces a similar problem of ‘population
drift’, unlike the on-line frameworks, one does not have access to a streaming
set of labeled data samples.

While [2] demonstrates the advantage of using previously acquired knowledge
in classifying a novel image, the amount of knowledge transferred was restricted
by the classifier under consideration, namely the maximum likelihood classifier.
The only knowledge from the training data that was transferred in that frame-
work, were the estimates of the distributions of the class density functions in
the original feature space. Using other classifier systems might enable one to
extract and transfer more information from the available training data. It is in
this context that we propose using the BHC as the classifier in our knowledge
transfer framework.

2.1 Binary Hierarchical Classifier

The BHC [8] is a multi-classifier system that was developed primarily to deal with
multi-class hyperspectral data. The BHC involves recursively decomposing a
multi-class (C-classes) problem into (C-1) binary meta-class problems, resulting
in (C-1) classifiers arranged as a binary tree. The given set of classes is first
partitioned into two disjoint meta-classes, and each meta-class thus obtained
is partitioned recursively until it contains only one of the original classes. The
number of leaf nodes in the tree is, thus, equal to the number of classes in
the output space. The partitioning of a parent set of classes into two-meta-
classes is not arbitrary, but is obtained through a deterministic annealing process,
which encourages similar classes to remain in the same partition. Thus, as a
direct consequence of the BHC algorithm, classes that are similar in the input
feature space are lumped into the same meta-class higher in the tree. Interested
readers are referred to [8] for details of the algorithm. Each internal node of
the BHC utilizes a Fisher discriminant and a Bayesian classifier. To combat the
small sample size problems, the dimensionality of the feature space is reduced
by recursively combining highly, correlated adjacent hyperspectral bands [7].
This best-bases method of feature extraction makes use of class information,
as the correlation between bands varies among the classes, thereby yielding an
interpretable feature space.

Recent empirical evaluations have shown that the BHC offers comparable
classification accuracies with that of other multi-classifier systems such as the
ECOC [15]. Moreover, the BHC also reveals a lot of knowledge inherent in the
training data. The hierarchy of classes, for instance, might be useful as the rela-
tionships between classes in one area might still hold in another new area. Fur-
ther, since the best-bases feature extraction method makes use of class-specific



information in deciding the set of adjacent bands that are to be merged, this in-
formation can also be exploited in the new area. Finally, the Fisher discriminant
makes use of both within-class and between-class covariances, which can also be
helpful as we might expect similar correlations between the classes in the new
area.

3 Knowledge Transfer Framework

Let us assume that we have hyperspectral data from two spatially separate areas,
area 1 and 2. Let us also suppose that for area 1, there is an adequate amount
of labeled data to build a supervised classifier. We first consider the situation
where all the data from area 2 is unlabeled (unsupervised case). Subsequently, the
impact on design and performance of the proposed framework is studied when
labels are provided for a small part of the data from area 2 (semi-supervised
case).

3.1 Unsupervised Case

In the absence of any labeled data from area 2, the first step in the knowledge
transfer framework is to use the training data from area 1 to generate the cor-
responding BHC tree. We then attempt to transfer the knowledge in this BHC
to area 2.

The first approach was to use the hierarchy of classes and the best bases
feature extractors of the area 1 solution, but modify the binary classifiers in this
multiclassifier system to account for the changed statistics of the spatially sep-
arate data. This was achieved via the EM framework [14] in which the training
data was used to initialize the EM algorithm and the spatially separate data
from area 2 was treated as the unlabeled data. Mixtures of Gaussians were used
at each node of the BHC tree, with the number of Gaussians corresponding to
the number of classes at each node. Each Gaussian was initialized with the mean
and the covariance of the corresponding class in the training data. The initial
estimates were then used to determine the posterior probabilities of the corre-
sponding classes in the spatially separate area. EM iterations were performed
until the average change in the posteriors between two iterations fell below a
threshold [2] [14]. Thus, an updated Fisher-m feature extractor was computed
at each node based on the statistics of the meta-classes at that iteration.

An analysis of the results showed that, while this approach was somewhat
better than a direct application of the old classifier, the errors were mostly
concentrated in a few classes. A closer inspection revealed that the spectral sig-
natures of these classes had changed sufficiently enough for them to be grouped
differently in the BHC hierarchies if there had been adequate amounts of labeled
data from area 2. This suggested that we should have obtained multiple trees
from area 1 so that some of them would be more suitable for the new area.

Thus our second approach was to introduce different randomizations into
the training data and generate a BHC tree for each such randomization. The



design space for the BHC tree also offers a lot of possibilities for randomizing its
tree generation process. Some of the factors that were varied are the percentage
of available training data, the number of features available at each node and
also the process of generating meta-classes (top-down versus bottom-up) [8]. To
account for the possibility of changing priors of classes, another set of BHC
trees was generated by randomly altering the priors of the classes in the training
data. Bagging - a popular method for generating classifier ensembles was also
used to generate a set of BHC trees. Finally, in an attempt to account for the
changes in class spectral signatures, a fourth set of classifiers was generated by
randomly switching the labels of a small percentage of the data-points for each
class. Note that in the absence of any labeled data from area 2, there is no way
of evaluating which of the randomly generated BHC trees best suits the spatially
separate data. Hence, we can only generate an ensemble of classifiers using the
training data, hoping that the ensemble contains some classifiers that are better
suited to area 2.

The Q-diversity measure [10], which indicates the degree of correlation be-
tween a pair of classifiers, was used to ensure the diversity of our classifier ensem-
ble. Each tree in the classifier ensemble was made to label the data from area 2
and these labels were then used to obtain the Q- diversity measure between each
pair of classifiers. The classification results of a smaller set of classifiers with the
lowest average pairwise Q-measure (i.e., higher diversity) were then combined
via simple majority voting.

3.2 Semi-supervised Case

If there are adequate amounts of labeled data from area 2, one can just train
a classifier using the available labeled data. But for small amounts of labeled
data, we would expect the two knowledge transfer mechanisms discussed earlier
to be superior especially if they exploit this added information. In this section,
we generalize both knowledge transfer methods in order to leverage the labeled
data, and also determine how much labeled data is required from the spatially
separate area before the advantages of transferring information from the old
solution disappear.

The EM-based method was modified to perform constrained EM instead.
Simply stated, in this technique, the E step only updates the posterior proba-
bilities (memberships) for the unlabeled data, while fixing the memberships of
the labeled instances according to the known class assignments.

The ensemble based approach was modified in two stages. First, after the
set of classifiers was pruned to improve the diversity of the ensemble by using
the Q-diversity measure, we went through another round of pruning to include
only those classifiers with higher classification accuracies on the labeled data.
A scheme similar to the on-line weighted majority algorithm as detailed in [11]
was used to weight the different classifiers. In the weighted majority algorithm,
all classifiers are assigned a weight. Prior to learning, the weights of all the clas-
sifiers are the same, and then as each data sample is presented to the ensemble,
a classifier’s weight is reduced if it misclassifies that example. At the end of



this learning, all those classifiers that have better classification accuracies on the
incoming data will have higher weights. Then for each new example, the ensem-
ble returns the class that gets the maximum total weighted vote over all the
classifiers. This weighted majority scheme ensures that the performance of the
ensemble is not much worse than that of the best individual predictor, regardless
of the dependence between the members of the ensemble [11].

The labeled data was also used to initialize the mean vectors and the co-
variance matrices of the meta-classes, at the nodes of the binary trees in the
Q-diversity measure pruned ensemble. The labeled and the unlabeled data from
area 2 were then used for constrained EM in each of the binary trees. The classi-
fication results of the resulting ensemble were then combined using the weighted
majority algorithm as detailed above.

4 Experimental evaluation

In this section, we provide empirical evidence that in the absence of labeled
data from the spatially separate area, using knowledge transfer is better than
the direct application of existing classifiers to this new area. We also present
results showing that with small amounts of labeled data from the new area,
our framework performs better than the current state-of-the-art ECOC multi-
classifier system [3] with SVMs [5] as the binary classifiers.

4.1 Datasets

The knowledge transfer approaches described above were tested on hyperspectral
datasets obtained from two sites: NASA’s John F. Kennedy Space Center (KSC),
Florida [12] and the Okavango Delta, Botswana [4]. In both these datasets, the
labeled data (area 1) was subsampled such that 75% of the data was used for
training and 25% as the test set. For both cases, a second test set was also
acquired from a spatially separate region (area 2). Since the spatially separate
test set comes from a different geographic location, various factors such as the
sun angle, shadow and other temporal factors cause a natural variation of the
hyperspectral signatures. This variation in spectral signatures along with the
changes in the apriori probabilities of the landcover classes offers an ideal setting
to test the knowledge transfer framework. While the numbers of classes in the
two regions vary, we restrict ourselves to those classes that are present in both
regions.

4.2 Experimental Methodology

For our experiments, we used a BHC based on the Fisher-m feature extractor
and the posterior probabilities were obtained by soft combining. Adjacent hy-
perspectral bands that were highly correlated were merged using the best bases
feature extraction technique [7] prior to applying the Fisher feature extractor.



Baselines Knowledge Transfer Approaches

Name Old BHC Old ECOC Ensemble BHC Old BHC Ensemble BHC
+SVM +Maj. Vote + EM +EM +Maj. Vote

KSC 61.84 (0.60) 64.27 (0.27) 64.4 (0.10) 65.82 (2.86) 65.12(1.97)

Botswana 73.04 (2.25) 75.22(0.65) 74.82(0.75) 79.13 (1.96) 79.8 (1.8)
Table 1. Average unsupervised classification accuracies for the spatially separate test
sets .

Adjacent bands were merged until the ratio of the training samples to the num-
ber of dimensions was at least five at each node of the classifier tree [13]. For
both the unsupervised and the semi-supervised cases, the classification accura-
cies were obtained by averaging over 5 different samples of the training data
(from area 1) or the labeled spatially separate data (from area 2) as the case
may be.

The ensemble of BHC trees was generated by varying the percentages of
available training data (5 different rates), the number of features available at
each node (10 different subsets), the top-down and bottom-up generation of the
BHC tree, by randomly altering the priors of the classes in the training data
(40 such randomizations), bagging (40 samplings with replacement) and by ran-
domly switching the labels of a small percentage (10%) of the data-points for
each class (40 such randomizations). Thus, a total of 220 different randomiza-
tions of the BHC were generated from the original training data. The Q-diversity
measure was then used to prune the existing ensemble such that the final en-
semble contained the 10 classifiers with the lowest average pairwise Q-measure.

For the ECOC system, the code matrix was generated using the technique
proposed in [3]. SVMs with Gaussian kernels were trained for each binary prob-
lem induced by the code matrix. The The implementation and the tuning of the
SVM classifiers followed the same method as in [15] with 40% of the available
labeled data as the validation data.

4.3 Results and Discussion

Unsupervised Case: First, the BHC, the ECOC-SVM and the BHC-Ensemble
built on the training data from area 1 were used without any modification to clas-
sify the data from the spatially separate area 2. Table 1 shows the classification
accuracies obtained by the baseline and the knowledge transfer approaches on
the area 2 data. As a frame of reference, the classification accuracies on the area
1 test set for the BHC and the ECOC-SVM are 93.05%(±1.17) and 93%(±1.03)
for the KSC dataset. For the Botswana dataset the corresponding classification
accuracies are and 94.52%(±0.79) and 95.63%(±0.95) respectively.

It can be seen from Table 1 that when the unlabeled data from area 2 is
used via EM to update the statistics of the meta-classes in the BHC tree, the
resulting BHC tree performs better than the old BHC. However, updating the
BHC ensemble via semi-supervised learning does not provide any additional
gains.
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Fig. 1. Average semi-supervised classification accuracies for the KSC dataset.

The Botswana dataset benefits a lot more from the information in area 1
than the KSC. While the area 1 and area 2 data of the Botswana dataset were
obtained from the same flightline [4], the area 2 data for the KSC was obtained
from a different subset of the flightline [12]. Therefore, the greater disparity in
the spectral signatures of the classes between the two areas in the KSC dataset
limits the amount of knowledge that can be transferred from one area to another.

Semi-supervised Case: Fig. 1 and Fig. 2 show the learning curves for the
KSC and the Botswana dataset when labeled data is available from area 2. It can
be observed from Fig.1 and Fig.2 that the ensemble with the weighted majority
vote does not offer any advantage over the other classification systems, especially
when there is an adequate amount of labeled data. For both the KSC and the
Botswana datasets, an examination of the weights assigned to the classifiers
of the ensemble showed that when the number of labeled samples per class
(> 10) was high, the classifiers in the ensemble had almost equal weights. Hence,
the accuracy of the ensemble was limited by the classification accuracies of its
constituent classifiers.

Similar to the unsupervised scenario, using the data (labeled and unlabeled)
from area 2 with EM to update the statistics of the classifiers improved the
classification accuracy of the old BHC for the KSC dataset (Fig. 1). For the
Botswana dataset the old BHC with EM showed an improvement only when a
sufficient number of labeled samples per class (> 10) were available from the
spatially separate area. This may be due to the complexity of the classification
problem (14 classes as opposed to 10 in the KSC) or due to a poor choice of the
labeled data samples. The high values of standard deviation seem to hint at the
latter reason.

By adapting the BHC ensemble components via constrained EM some of
them became more effective for the new area. The weighted majority algorithm
was then able to exploit this differentiation to produce a knowledge transfer
framework that proved a clear winner for small amounts of labeled data. As
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Fig. 2. Average semi-supervised classification accuracies for the Botswana dataset.

more labeled data becomes available from area 2, classifiers trained on that
data will perform at least as well if not better than the updated classifiers from
area 1. The amount of labeled data from area 2 required for this cross-over is
surprisingly a lot especially for the Botswana dataset where knowledge transfer
is more effective because of the reason mentioned earlier.

5 Summary and Conclusions

We initially thought that the BHC would be particularly well-suited for knowl-
edge transfer since it provides not only a class hierarchy but also the feature ex-
tractors that are suitable for resolving the dichotomies involved at the different
stages of the hierarchy. In particular, it would be more effective than alterna-
tive classifiers, including the maximum likelihood based approach investigated
earlier. However, in this application the data characteristics change fairly sub-
stantially from area to area, demanding more elaborate adjustments. The best
suited class hierarchies as well as the most appropriate feature extractors change
at least incrementally as one moves to a new area. We were able to cater to both
these needs by (i) using the weighted majority combining approach on an ensem-
ble of trees so that trees more suitable for the new area get higher weights, and
(ii) using constrained, semi-supervised EM that can adjust the feature spaces as
well as classification boundaries based on both labeled/unlabeled data acquired
from the new area. Against this combination, the alternative of building a new
classifier from scratch using a powerful and suitable method (ECOC-SVM) was
advantageous only when over 30 labeled samples/class were available from the
new area for KSC. For Botswana, where the two areas are more similar, the
composite knowledge transfer approach was superior even when 80 labeled sam-
ples/class were available from the new area. In addition, our approaches provide
computational advantages since fewer iterations are required for model parame-
ters to converge because of good initialization based on prior knowledge.
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