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Abstract: Many classification problems involve high dimensional inputs and a large number of classes. Multiclassifier fusion approaches to
such difficult problems typically centre around smart feature extraction, input resampling methods, or input space partitioning to exploit
modular learning. In this paper, we investigate how partitioning of the output space (i.e. the set of class labels) can be exploited in a
multiclassifier fusion framework to simplify such problems and to yield better solutions. Specifically, we introduce a hierarchical technique
to recursively decompose a C-class problem into C�1 two-(meta) class problems. A generalised modular learning framework is used to
partition a set of classes into two disjoint groups called meta-classes. The coupled problems of finding a good partition and of searching
for a linear feature extractor that best discriminates the resulting two meta-classes are solved simultaneously at each stage of the recursive
algorithm. This results in a binary tree whose leaf nodes represent the original C classes. The proposed hierarchical multiclassifier framework
is particularly effective for difficult classification problems involving a moderately large number of classes. The proposed method is
illustrated on a problem related to classification of landcover using hyperspectral data: a 12-class AVIRIS subset with 180 bands. For this
problem, the classification accuracies obtained were superior to most other techniques developed for hyperspectral classification. Moreover,
the class hierarchies that were automatically discovered conformed very well with human domain experts’ opinions, which demonstrates
the potential of using such a modular learning approach for discovering domain knowledge automatically from data.
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1. INTRODUCTION

Many real world classification problems are characterised by
a large number of inputs and a moderately large number
of class labels that can be assigned to any input. Two popular
simplifications have been considered for such problems: (i)
feature extraction, where the input space is projected into
a smaller feature space, thereby addressing the curse of
dimensionality issue [1,2]; and (ii) modular learning, where
instead of using a single classifier, a number of classifiers,
each focusing on a specific aspect of the problem, are
developed. Several methods for feature extraction and modu-
lar learning have been proposed in the pattern recognition
and computational intelligence communities [3,4].

Discrimination among different landcover types using
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remotely sensed data is an important application of pattern
classification. Advances in sensor technology have made poss-
ible the simultaneous acquisition of hyperspectral data in
more than 200 individual bands, where each spectral band
covers a fixed range of wavelengths. Although hyperspectral
data are becoming more widely available, computationally
tractable algorithms that exploit the potential of the higher
spectral resolution provided by the narrow bands are needed.
In addition to the problem of high input dimensionality,
there is typically a moderately large number of classes in
each scene. As the number of classes increases, the signatures
of individual classes typically have greater overlap. Hence,
the overall classification becomes more difficult. In our
previous papers [5,6], we addressed the high input dimen-
sionality problem by extracting features based on best bases
algorithms. These features were used by our pairwise clas-
sifier architecture [7,8], wherein a C-class problem is exhaus-
tively decomposed into a set of �C

2� two-class problems. Even

though this approach yielded results for these data sets
that are superior to all previously reported methods for
classification of hyperspectral data, we noted that this frame-
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work requires O(C2) pairwise classifiers, and therefore might
not be as attractive if a large number of classes were
involved. Further, combining the results of the �C

2� two-class

classifiers might lead to coupling problems.
In this paper, we propose a novel modular learning system

comprised of an automatically generated binary hierarchy of
classifiers, each solving a two-class problem and having its
own feature space. The set � of C classes is first partitioned
into two disjoint subsets, referred to as ‘meta-classes’. The
most appropriate partitioning, together with the linear fea-
ture extractor that best discriminates the two resulting meta-
classes, is automatically learned. The meta-classes are further
partitioned recursively until each meta-class is reduced to
one of the C original classes. The resulting binary tree has
C leaf nodes, one for each class, and C�1 internal nodes,
each associated with a Bayesian classifier and a linear feature
extractor. We illustrate the methodology by applying a hier-
archical multiclassifier to data sets that involve classification
of various landcover types using high dimensional hyperspec-
tral data. The problem is a 12-class landcover prediction
problem, where the input is a 180 band subset of the 224
bands (excluding water absorption bands) acquired by the
NASA’s Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor over Kennedy Space Center in Florida.

Apart from a significant improvement in classification
accuracy, the proposed architecture also provided important
domain knowledge that was consistent with a human expert’s
assessments in terms of the class hierarchy that was auto-
matically discovered. A significant reduction in the number
of features, as well as a reduction in the number of two-
class classifiers from �C

2� to only C�1, was also obtained

using the hierarchical multiclassifier framework.

2. BACKGROUND AND RELATED WORK

The proposed hierarchical framework involves three major
areas in which substantial research has been completed. We
first review the relevant work in extraction of features as it
is related to hyperspectral data analysis. Our algorithm
utilized the Fisher discriminant and modular learning, so
we also review the formulation of these approaches herein.

2.1. Feature Extraction from Hyperspectral Data

Hyperspectral sensors simultaneously acquire information in
hundreds of spectral bands. A hyperspectral image is essen-
tially a three-dimensional array I(p,q,d), where (p,q) denotes
a pixel location in the image, and d denotes a spectral band
(wavelength). The value stored at I(p,q,d) is the response
(reflected or emitted energy) from the pixel (p,q) at a
wavelength corresponding to spectral band d. The input
space for a hyperspectral data classification problem is an
ordered vector of real numbers of length D, the number of
spectral bands, wherein the response of bands that are
spectrally ‘near’ each other tend to be highly correlated.

Analysis of hundreds of simultaneous channels of data
necessitates the use of either feature selection or extraction

algorithms prior to classification. Feature selection algorithms
for hyperspectral data classification are costly, while feature
extraction methods based on KL-transforms, Fisher’s discri-
minant or Bhattacharya distance cannot be used directly in
the input space because the covariance matrices required by
all these approaches are highly unreliable, given the ratio of
the amount of training data to the number of input dimen-
sions. The results are also difficult to analyse in terms of
the physical characteristics of the individual classes and are
not generalisable to other images.

Several authors have proposed approaches for extracting
features from remotely sensed hyperspectral data. Lee and
Landgrebe [9] proposed methods for feature extraction based
on decision boundaries for both Bayesian and neural network
based classifiers. In these methods, a classifier is first learned
for a two-class problem in the input space. A decision
boundary is computed by moving along the closest samples
in the two classes, and a vector normal to the decision
boundary is noted. Eigenvectors of the decision boundary
feature matrix formed by collection of these normal vectors
yields the direction of projection for the two-class problem.

Another feature extraction technique, which is based on
Segmented Principal Components Transformation (SPCT) for
two-class problems involving hyperspectral data, was pro-
posed recently by Jia and Richards [10,11]. All the bands in
the hyperspectral data are first partitioned into groups of
highly correlated adjacent bands by applying an edge detector
to the correlation matrix of the hyperspectral data. PCT is
applied to each group of bands separately, and the first few
eigenvectors (with the highest eigenvalues) are retained. This
set of eigenvectors is subsequently pruned by applying feature
selection using Bhattacharya distance as the measure of
discrimination between the two classes.

The three key desirable properties of a feature extraction
technique for hyperspectral data, as identified in Kumar et al
[5], are:

1. Class dependence: different subsets of classes are best
distinguished by different feature sets. Hence, feature
extractors for specific groups of classes should be deter-
mined separately. Most classifiers seek only one set of
features that distinguishes among all the classes simul-
taneously. This not only increases the complexity of the
potential decision boundary, but also requires a large
number of features and reduces the interpretability of the
resulting features.

2. Ordering constraint: the characteristics that bands are
ordered and adjacent bands are correlated should be
exploited by the feature extraction algorithm. A Fisher or
KL-transform on all the bands does not treat the input
vector as a signal, and hence is not ideal for hyperspectral
data feature extraction. Both the SPCT based feature
extractor [10] and the projection pursuit based algorithm
[12] utilise the ordering and locality properties of hyper-
spectral data. In general, any transformation should
involve adjacent groups of bands.

3. Discriminating transforms: the transformations should
try to maximise discrimination among classes, and thus
use class label information. The KL-transform is suited
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for preserving the variance in the data, but does not
necessarily increase the discriminatory capacity of the
feature space. Use of Fisher discriminant or Bhattacharya
distance is therefore more desirable for feature extraction.

Recently, we developed a set of best bases algorithms [5,6]
for feature extraction in hyperspectral data sets for two-class
problems. The best-bases algorithms combined the highly
correlated adjacent bands and extended the Local Discrimin-
ant Bases (LDB) approach [13], developed for signal and
image classification. These algorithms satisfy the three
properties desired of a feature extraction technique for hyp-
erspectral data.

2.2. Fisher’s Discriminant

Fisher’s linear discriminant [14] is a classical feature extrac-
tion technique that linearly projects a D-dimensional Eucli-
dean input space into a min{C�1, D}-dimensional feature
space in which the discrimination among the C classes is
maximum. In the binary hierarchical multiclassifier
developed in Section 3, only two-class problems are solved
at each internal node. Hence, we consider Fisher discrimin-
ant for two-class problems. Let �� and �� denote the two
classes with D-dimensional mean vectors �� and �� and D
� D covariance matrices �� and ��, respectively. Let P(��)
and P(��) denote the prior probabilities of the two classes.
For this two-class problem, the Fisher discriminant projects
the D-dimensional space onto a one-dimensional feature
space. This projection is defined in terms of the WITHIN CLASS

covariance matrix W, a weighted sum of the covariances of
the two classes and is given by:

W = P(��)�� + P(��)��, (1)

and the BETWEEN CLASS covariance matrix B given by:

B = (�� − ��) (�� − ��)T. (2)

The Fisher projection w̃ that maximises the discriminant

T(w) =
wTBw
wTWw

(3)

is given by:

w̃ = W−1 (�� − ��) (4)

In the hierarchical multiclassifier architecture presented in
this paper, the first and third properties are satisfied. Features
for each group of classes are extracted independently, and
the features are discriminating in nature as they are based
on the Fisher’s discriminant. Property 2 is not satisfied in
the current version of the algorithm as the Fisher’s discrimin-
ant is applied over all the bands. However, the method can
be applied after preprocessing the data to combine highly
correlated adjacent bands (using SPCT or a type of best
bases algorithm, for example), in which case the overall
system will also satisfy Property 2.

2.3. Modular Learning

Recently, there has been considerable interest in modular
learning approaches where, instead of computing parameters
for only one classifier, an ‘ensemble’ of classifiers is
developed and applied, and their results are combined [3,4].
Inspired by the divide and conquer precept, modular learn-
ing has been found to learn concepts more effectively (better
performance) and more efficiently (faster learning) because
learning a large number of simple local concepts is both easier
and more useful than learning a single complex global concept
[15]. Modular learning, therefore, is a two-stage process
wherein the first stage deals with a useful decomposition of
the problem into simpler subproblems, and the second stage
deals with solving the subproblems and finding a means of
combining their solutions to yield the final solution. Advan-
tages of problem decomposition include the ease and
efficiency in learning, scalability, interpretability, and trans-
parency [3,16–19].

Different ways of dividing a problem into simpler sub-
problems have been investigated by the pattern recognition
and computational intelligence communities. Each sub-prob-
lem, for example, could focus on a different subset of input
features (e.g. input decimation [20]), different parts of the
input space (e.g. mixture of experts and its hierarchical
versions [21]), or different training samples (e.g. boosting
[22] and bagging [23]). Various approaches of modifying
the output space have also been investigated. In error cor-
recting output codes [24,25], for example, each class is
assigned a unique binary code with additional error cor-
recting bits, making it robust for a few bit errors. For each
bit position of this code, we have a two meta-class problem
to separate the classes with that bit being set to 1 from the
rest. One problem with this is that the grouping of classes
may not be natural, since it is not based on any similarity
between them, but purely dependent on the codes assigned.
The intermediate two-class problems can then become diffi-
cult to solve. We also note that discriminant analysis
methods such as Linear Discriminant Analysis (LDA) [26],
Quadratic Discriminant Analysis (QDA) [27,28] and Kernel
Discriminant Analysis (KDA) [29–31] learn a ‘discriminant
function’ for each class. Building C models, one each for
discriminating a specific class from all the rest, has been
shown to outperform a single complex model for discrimi-
nating all the classes at the same time [32].

Given a situation with both a large number of features
and many classes, a hierarchical approach to partitioning
classes has an extra benefit that the number of features
required to realize a specific partition may be much lower
than that required to partition the entire dataset into C
classes simultaneously. This astute observation was first made
in the context of hyperspectral classification by Kim and
Landgrebe [33], who proposed a hierarchical classifier design
algorithm that alternates between the bottom-up agglomer-
ation of the entire dataset into two subgroups and then
redividing the classes in each subgroup into two ‘clusters’
by a top-down approach. Another example that effectively
employs classifiers and feature selectors in a hierarchical
framework is provided in Chakrabarti et al [34], where a
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hierarchical topic taxonomy is used to organise large text
databases.

Decomposing a C-class problem into �C

2� two-class prob-

lems, one for each unique pair of classes, has also been
proposed previously. Friedman [35] and Tibshirani [36]
proposed different methods to combine the outputs of the
two-class models to yield an overall C-class system. We have
investigated the pairwise classifier framework [37] in detail,
and applied it to several remote sensing [8,38,6] and machine
learning problems [7]. Such architectures are convenient
when built using classifiers such as support vector machines
that are better suited for two-class problems [39], and for
feature extraction/evaluation methods such as Bhattacharya
distance, KL-distance, etc., that are more meaningful for
two-class problems. Even though good results have been
obtained with such a framework, it suffers from one notable
drawback: the number of pairwise classifiers required grows
quadratically with the number of classes, so it is practical
only for a moderate number of classes.

In this paper, a hierarchical multiclassifier is developed
that recursively decomposes the output space into a binary
tree, instead of the flat ensemble of �C

2� classifiers used in

the pairwise-classifier architecture described previously. Such
a hierarchical ensemble is built using a top-down approach
based on our Generalised Associative Modular Learning Sys-
tem (GAMLS) [15], in which modularity is introduced
through soft association of each training sample with every
module. GAMLS can be seen as a generalisation of the fuzzy
c-means clustering, and can be applied to both supervised
and unsupervised learning problems. Initially, a data point
is equally associated with all the modules. The learning
phase in GAMLS is comprised of two alternate steps: (i) for
the current associations, update all the module parameters;
and (ii) for the current module parameters, update the
associations of all the training samples with each module.
Using ideas from deterministic annealing, a temperature
parameter is used to slowly converge the associations to
hard partitions in order to induce specialisation and decoup-
ling among the modules. A growing and pruning mechanism
is also proposed for GAMLS that automatically leads to the
right number of modules required for the data set. The
GAMLS framework has previously been applied to unsuper-
vised learning problems (e.g. clustering, density estimation
using mixture of Gaussians, etc.) and supervised learning
problems (e.g. mixture of experts). In building the class
hierarchy, we utilise the basic ideas in GAMLS as follows.
Instead of softly associating a data point with a module, a
class is softly associated with one of the two meta-classes at
each stage. These associations are updated over several iter-
ations, and are hardened so that the set of classes is com-
pletely partitioned into two disjoint subsets.

The proposed hierarchical multiclassifier architecture is
presented in Section 3. The new hierarchical multiclassifier
requires only C�1 two-(meta)class classifiers. The resulting
hierarchically arranged two-(meta)class classifiers are com-
bined easily, and there is often automatic discovery of
domain knowledge pertaining to the relationship among

various classes, i.e. discovery of a class taxonomy for the
domain.

3. THE HIERARCHICAL MULTICLASSIFIER
ARCHITECTURE

In this section we describe a new hierarchical multiclassifier
architecture that requires only C�1 pairwise classifiers
arranged as a binary tree with C leaf nodes, one for each
class, and C�1 internal nodes, each with its own feature
space. The root node (indexed 1) of the binary tree rep-
resents the original C-class problem with its ‘class-set’ �1 =
�. The two children of an internal node with index n are
indexed 2n and 2n 	 1, and its class-set is denoted by �n.
Figure 1 shows an example of a Binary Hierarchical Classifier
(BHC) for a C = 5 class problem. Each of the four internal
nodes consists of a two-(meta)class classifier and a feature
extractor specific to these two meta-classes.

The binary tree can be built via either a bottom-up or
top-down approach [37]. The bottom-up method is similar
to an ‘agglomerative clustering’ algorithm, in which the two
‘closest’ clusters2 in the current set are merged at each stage
until all data points are merged. The distance between any
two (meta)classes, defined in the most discriminating feature
space, is used to merge two classes and build the BHC. This
approach requires computation of the distance between all
pairs of classes at the very first stage, leading to the time
complexity of the bottom-up approach at least O(C2). In

Fig. 1. An example of a BINARY HIERARCHICAL CLASSIFIER for a C
= 5 class problem with 4 internal nodes and 5 leaf nodes. Each
internal node n is comprised of a feature extractor 
n and a classifier
�n. Each node n is associated with a set of classes �n. The left
and right children of internal node n are indexed 2n and 2n +
1, respectively.

2 In this case, a cluster is a collection of classes instead of a collection of
data points. A cluster of classes is also referred to as a meta-class.
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this paper, a top-down approach for building the BHC is
presented. Here, the tree construction starts at the root node
with all C classes, and tries to partition this set into two
disjoint subsets in such a way that the classes that are
assigned to one set are more similar to each other than to the
classes in the other set. The process is recursively repeated at
each resulting leaf node of the tree until all leaf nodes
contain only one of the original C classes. The top-level
recursive partitioning algorithm is:

BUILD TREE(�n)

1. Partition �n into two subsets: (�2n, �2n	1) ←
PARTITION NODE(�n)

2. Recurse on each child:

� if ��2n� � 1 then BUILD TREE(�2n)

� if ��2n	1� � 1 then BUILD TREE(�2n	1)

The PARTITION NODE function and node n finds a partition
of the set of classes �n into two disjoint subsets such that
the discrimination between the two meta-classes �2n and
�2n	1 is high. It also finds a linear projection of the original
D-dimensional space onto a one-dimensional space in which
such discrimination is maximum. The two problems of
finding a class-based partition and determining the feature
extractor that maximises discrimination between the meta-
classes obtained as a result of this partition are coupled.
Moreover, the problem of optimally partitioning ��n� classes
into two disjoint subsets is an NP time complexity problem.
Soft partitioning using the GAMLS approach and simulated
annealing, together with a deterministic initialisation of the
initial partition are used in the PARTITION NODE algorithm
described next.

3.1. Partitioning a Set of Classes

Let � be any class set with K = ��� � 2 classes that needs
to be partitioned into two meta-classes, �� and ��. The
‘association’ between a class � � � and a meta-class �,
( � (�, �}) is interpreted as the posterior probability of
� belonging to �, and is denoted by P(���):

P(����) + P(����) = 1, ∀� � �. (5)

Let �� and �� denote the estimated sample mean vectors
and covariance matrices, respectively, of the classes � � �.
Let �� denote the training set comprised of N� = � ���
examples of class �. Given the current settings for the
associations of classes to meta-classes (i.e. {P(���),  �
{�, �}}���, the mean � and covariance � ( � {�, �})
of the meta-classes are computed. These meta-classes are
then projected along the Fisher direction, and the associ-
ations are updated in this one dimensional projected space.
Given the updated associations, a lower temperature is used
in the next iteration of re-estimating the means and covari-
ance of the meta-classes so the associations obtained in the
next iteration are sharper.

The detailed steps of the partitioning algorithm for the
set of classes � is as follows:

1. Initialise P(����1) = 1 for some �1 � � and P�(���) =

0.5, ∀� � � − �1. Temperature T = T0 (user defined
parameter).

2. Compute the means and covariances of the meta-classes:

� = �
���

P(���)��,  � {�, �} (6)

� = �
���

P(���)

N�
� �

x���

(x − �) (x − �)T�, (7)

 � {�, �}.

Note that Eq. (7) is O(N) but can be reduced to O(���)
by a simple manipulation, leading to:

� = �
���

P(���) [�� + (�� − �) (�� − �)T], (8)

 � {�, �}.

The probabilities P(���) are computed using Bayes rule:

P(���) =
P(�)P(���)

P(�)
,  � {�, �}, and the meta-class

priors P(�) are given by: P(�) = ����P(���)P(���),
 � (�, �}, where the conditional class priors P(���)

are given by: P(���) =
P(�)

P(�)
=

P(�)

����P(�)
, since � � �.

The class priors P(�) =
N�

N
, where N = ����N�.

3. Compute the Fisher projection vector w using Eq. (4)
with the sample mean and covariance of the meta-classes
for the parameters in Eqs (6) and (8).

4. Compute the mean log-likelihood of meta-classes �(
� {�, �}):

L(���) =
1

N�
�

x���

log p(wTx��), (9)

 � {�, �}, ∀ � � �

where the pdf of each � in the one dimensional
projected space is modelled as Gaussian:

p(wTx��) = N(wTx; wT�, wT�w),  � {�, �} (10)

5. Update the meta-class posteriors:

P(����) =
exp(L(����)/T)

exp(L(����)/T) + exp(L(����)/T)
,

(11)

6. Repeat Steps 2 through 4 until the incremental increase
in T(w) (Eq. (3)) is insignificant (e.g. less than 5%).

7. Compute the entropy of meta-class posteriors:

H = −
1

��� �
���

[P(����) log2P(���) (12)

+ P(����) log2P(����)].

8. If H � �H (user defined threshold) stop, otherwise:

� Cool temperature: T ← T�T (�T � 1 is a user defined
cooling parameter)

� Go to Step 2.

Each internal node n of the binary tree contains a projec-
tion vector w(n), and the estimates of parameters (�k, �k,
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k � {2n, 2n 	 1}). The pairwise classifier at node n can
be either a soft or a hard classifier. The soft classifier
�S

n: RD → [0, 1] generates the posterior probability P(�2n�x,
�n). The posterior P(�2n	1�x, �n) = 1 � �s

n(x). The hard
classifier �H

n : RD → {�2n, �2n+1} maps the input x into one
of the two class labels corresponding to the two child nodes
of class �n. Essentially, the output of the soft classifier is
thresholded to obtain the hard classifier:

�H
n (x) = ��2n if �S

n(x) � �n

�2n+1 otherwise
(13)

where �n is the threshold based on misclassification costs
and the priors P(�2n) and P(�2n	1) [40].

3.2. Generalisation

A novel test example is classified by the hierarchical multi-
classifier by pushing it from the root node to the leaf
node(s). Depending on the nature of internal classifiers. (i.e.
hard or soft), there are two ways of assigning a class label
to a novel input x.

1. Hard classification: the output of the hard classifier at
internal node n, �H

n (x), is a class label. In this case, at
each internal node, the point is pushed to one of the
two children. More specifically, the hard classification
algorithm can be written as:

(i) Initialise n = 1 (start at root node)
(ii) while node n is an internal node, do

Push point x to the appropriate child:

n ← �2n if �H
n (x) = �2n

2n + 1 if �H
n (x) = �2n+1

(14)

(iii) Assign the (unique) class label �n at the leaf node
n to x.

2. Soft classification: if a soft classifier is used at each
internal node, the results of these hierarchically arranged
classifiers can be combined by first computing the overall
posteriors P(��x), and then applying the Maximum Apos-
terior Probability (MAP) rule:

�(x) = arg max
���

P(��x), (15)

to assign the class label �(x) to x. The posteriors P(��x)
can be computed from product of the posterior prob-
abilities of all the internal node classifiers on the path to
the corresponding leaf node (Theorem 1).

Theorem 1. The posterior probability P(��x) for any input
x is the product of the posterior probabilities of all the
internal classifiers along the unique path from the root node
to the leaf node n(�) containing the class �, i.e.

P(��x) = �D(�)−1

�=0

P(�(�+1)
n(�) �x, �(�)

n(�)), (16)

where D(�) is the depth of n(�) (depth of the root node
is 0), �(�)

n is the meta-class at depth � in the path from

the root node to n(�), such that �(D(�)
n(�) = {�} and

�(0)
n(�) = �1 = root node.

Proof. See Appendix A.

4. EXPERIMENTAL RESULTS

The efficacy of the proposed multiclassifier architecture for
hyperspectral data analysis is demonstrated by an experiment
on a hyperspectral data set acquired over Kennedy Space
Center, Florida. The wetlands located on the west shore of
Kennedy Space Center (KSC) and the Indian River are
critical habitats for several species of water fowl and aquatic
life. Mapping the landcover and its response to wetland
management practices using remotely sensed data from a
variety of sensors is the focus of a multi-year project between
NASA and The University of Texas at Austin. In 1996
hyperspectral data were acquired by NASA JPL at 20 m
spatial resolution using the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS). The test site for this study consists of
a series of impounded marshes with vegetation communities
ranging from low, halophyte marshes to high, graminoid
savannahs to forested wetlands. Discrimination between indi-
vidual species of marsh vegetation and of woodland veg-
etation types is quite difficult due to similarity of spectral sig-
natures.

The hierarchical multiclassifier was applied to a D = 180
band subset of the 224 bands (excluding water absorption
bands) of the AVIRIS data set. The seven upland and five
wetland cover types identified for classification are listed in
Table 1: Classes 3–7 [cabbage palm hammock (3), cabbage
palm/oak hammock (4), slash pine (5), broadleaf/oak ham-
mock (6), and hardwood swamp (7)] are all trees. Class 4
is a mixture of Class 3 and oak hammock. Class 6 is a
mixture of broadleaf trees (maples and laurels) and oak

Table 1. The twelve landcover classes in the KSC/AVIRIS
hyperspectral data

Num Class name

Upland classes

1 Scrub
2 Willow Swamp
3 Cabbage palm hammock
4 Cabbage oak hammock
5 Slash pine
6 Broadleaf/oak hammock
7 Hardwood swamp

Wetland classes

8 Graminoid marsh
9 Spartina marsh

19 Cattail marsh
11 Salt marsh
12 Mud flats
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hammock. Class 7 is also a broadleaf tree. These classes
have similar spectral signatures and are very difficult to
discriminate in multispectral and even hyperspectral data
using traditional methods.

There were typically 350 examples for each class,3 hand
labelled by a domain expert. These were randomly par-
titioned into 50% training and 50% test sets. If the number
of data points in the training set was less than 180, then
additional examples were randomly selected from the
samples so that there were at least 180 examples per class
in the training set. The hierarchical tree shown in Fig. 2
was obtained independently, in 8 out of 10 experiments.
The 12 classes were also grouped by a human expert based
on traditional characterisation of vegetation into seven
upland and five wetland classes (Table 1). Classes 1, 3, 4, 5
and 6 are all trees that grow in an upland environment.
Classes 2 and 7 are also trees, but the soil is saturated if
not inundated much of the time. Classes 8–12 are generally
characterised as marsh grasses. Here, the soil is usually
saturated and periodically inundated. Even though willow
swamp (Class 2) and hardwood swamp (Class 7) are actually
wetland species, they were designated as members of the
uplands group by the expert due to their biomass. In light
of these observations, the class partitioning shown in Fig. 2
obtained by the proposed multiclassifier architecture from
the training data is remarkable as it not only conforms to
the expert’s opinions, but is also able to designate Classes
2 and 7 as members of the same group.

The meta-class associated with the root node contains all
12 classes. It is then split into two meta-classes. Figure 3
shows the changes in the association of each of the 12
classes at the root node with the meta-class of its right
child. As per the initialisation step in the PARTITION NODE

algorithm, the association of Class 1 with the right child
meta-class is fixed at 1 (for all iterations), while the associ-
ation of all other classes is 0.5. As the iterations progress,

Fig. 2. Multiclassifier binary tree for AVIRIS data: The 12 classes
are listed in Table (1). Each leaf node in the binary tree is labeled
with one of the 12 classes it represents. The numbers on an internal
node represent the classification accuracy of the two-class classifier
at that node on the training data and the test data respectively.

3 For some classes less than 200 labeled examples were available causing
severe data sparsity for the 180-dimensional space.

Fig. 3. Split diagram for the root node in the multiclassifier tree of
the AVIRIS dataset shown in Figure (2). Starting from associations
of 0.5 (except for class 1), the classes align themselves either with
the right child (top) containing class 1 or with the left child
(bottom). The only phase transition, i.e., change in temperature,
was at iteration 6.

Class 6 immediately moves towards Class 1 while all other
classes move away. Then, Classes 3, 4 and 5 also move
toward Class 1 or the right child, while the other seven
classes (i.e. Class 2 and Classes 6–12) continue to move
toward the left child. The vertical line (at Iteration 6) denotes
the ‘phase transition’ [41] or decrease in temperature from
T0 = 1 to 0.9 (�T = 0.9 in Step 7 of the PARTITION NODE

algorithm). Figure 4 shows the changes in the value of
Fisher discriminant (top) and entropy of the association (Eq.
(15) (bottom) as the 12 classes are progressively split into
two meta-classes by the PARTITION NODE algorithm at the first
(root node) split in the tree. The Fisher discriminant

Fig. 4. (a) (top) the Fisher discriminant between the two meta-
classes at the two children nodes of the root node. (b) (bottom)
Corresponding change in the entropy of the associations.
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increases, indicating that the separation between the two
meta-classes increases. The entropy H of the association of
all 12 classes with the two meta-classes decreases to less
than .05 (�H) in 13 iterations. As the entropy decreases, the
association of each class with either of the two meta-classes
becomes ‘harder’ (i.e. 0 or 1) after starting at 0.5.

Using the hard and soft combining techniques described
in Section 3.2, novel examples from the test were classified
using the new hierarchical approach and compared to results
from other algorithms. The overall classification accuracy on
the test set averaged over the 10 experiments using hard
combining was 94.7% while it was 96.8% using soft combin-
ing. This was a significant improvement over the 93%
classification accuracy obtained by our previously developed
Bayesian pairwise classifier architecture that uses class pair
dependent feature selection and a maximum likelihood clas-
sifier4 for each pair of classes. The pairwise classifier with
best-bases features had previously yielded the best classi-
fication accuracies, and its results are also compared to those
obtained here. To compare with a single classifier approach,
an MLP with 50 hidden units, 183 inputs and 12 output
units was trained until the change in training accuracy was
insignificant. The test accuracy averaged over 10 experiments
was found to be only 74.5%. This performance can be
attributed at least partially to the lack of sufficient labelled
examples for the complexity of the model. An ensemble of
C ‘1 vs rest’ MLP’s, each with six hidden units and one
output unit was also trained to compare such a modular
learning architecture with the hierarchical architecture.
Referred to as MLPC classifier in Table 2, this architecture
yielded an accuracy of 84.8%, a significant improvement
over the single MLP classifier.

Additionally, the classification accuracy of the hierarchical
multiclassifier was at least 10% higher than that of traditional
feature extraction methods based on principal component
analysis [10] and MNF transforms [42]. Table 2 shows the
comparative accuracies of the various classifiers, including
the traditional Maximum Likelihood Classifiers (MLC).
These classifiers use a Gaussian distribution with full covari-
ance matrix to model the probability density function for
each class and assume equal class priors. However, due to
the high dimensionality of the data, a small constant that
is proportional to the trace of the covariance matrix is added
to the diagonal elements of the covariance matrix whenever
the covariance matrices are ill-conditioned due to the small
amount of training data in some classes.

The BHC is the binary hierarchical classifier proposed
herein. The GLDB-BU and GLDB-TD are the bottom-up
and top-down algorithms for best bases feature extraction
used with the pairwise classifier architecture. LDB and SPCT
are the local discriminant bases [13] and segmented principal
components transform [10], also used with the pairwise
classifier architecture. Classification accuracies of the GLDB-
BU and BHC approaches were comparable, but the compu-
tational requirements and model complexity of the BHC

4 In this, the probability density function of each class is modelled by a full
covariance Gaussian over all the selected features.

Table 2. Mean classification accuracies and standard devi-
ations over 10 experiments for the KSC hyperspectral data
sets on (i) Maximum Likelihood Classifier (MLC), (ii) Multi-
layered perceptron (MLP), (iii) Ensemble of 12 Multilayered
perceptrons a 1 vs. the other 11 class modular architecture
(MLPC), (iv) Local Discriminant Bases (LDB), (v) Seg-
mented Principal Components Transform (SPCT), the two
best-bases algorithms; (vi) Generalised local discriminant
bases – top-down (GLDB-TD), (vii) GLDB-Bottom-Up
(GLDB-BU), and (viii) Binary Hierarchical Classifier (BHC)
using both soft (BHC-soft) and hard (BHC-hard) combining

Algorithm Accuracy (Standard Deviation)

MLC 72.7% (3.11)
MLP 74.5% (2.87)
MLPC 84.8% (3.34)
LDB 79.3% (2.20)
SPCT 78.7% (2.45)
GLDB-TD 86.2% (2.71)
GLDB-BU 95.3% (2.22)
BHC-hard 94.7% (1.96)
BHC-soft 96.8% (2.17)

algorithm are significantly lower. Note that the GLDB-BU
and GLDB-TD classifiers have two potential advantages over
the proposed BHC classifier: (i) the features extracted in the
GLDB classifiers are more suited to hyperspectral data than
simple Fisher discriminants that are currently used in BHC.
Moreover, in GLDB, some class pairs utilise more than 1-
dimensional features, while the features in BHC are all 1-
dimensional; and (ii) the data sparsity problem for high
dimensional data is better addressed by the GLDB algorithms
as they employ subsets of adjacent bands. The Fisher discri-
minant used in the BHC classifiers use all 180 dimensions
simultaneously, and therefore require more data. In spite of
all these advantages, the BHC classifiers perform comparable
to the GLDB classifiers in terms of classification accuracy.

The data sparsity issue we encountered in our experiments
due to high input dimensionality and lack of sufficient
ground truth data for some classes was addressed by using
‘enough’ examples for each class for training. Here we
mention two possible ways of addressing this problem
more systematically:

� Regularised covariance matrices: Friedman proposed Regu-
larised Discriminant Analysis (RDA) [43] to ‘smooth out’
the effect of ill-conditioned covariance estimates due to
sparse data. In RDA, instead of using the class covariance
matrix, a linear combination of the class covariance matrix
(based on sparse data) and the overall covariance of the
data is used. If �̂c is the class covariance for some class
c and �̂ is the overall covariance of the data then RDA
proposes the following estimate:

�̂c(�) =
(1 − �)N�̂ + �Nc�̂c

(1 − �)N + �Nc

(17)
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where, � � [0, 1] is a user defined parameter, N is the
total number of samples in all the classes, and Nc is the
number of samples in the class c. The BHC framework
built in a top-down fashion provides an opportunity to
fine-tune the RDA approach into a hierarchical regularised
discriminant analysis. Such an approach, referred to as
‘Shrinkage’, has been applied by McCallum et al [44] for
improving text classification in a hierarchy of classes.
Another regularisation of covariance matrices is proposed
by Tadjudin and Landgrebe [45]. This method is based
on inverted Wishart distributions with leave-one-out aver-
age log likelihood criteria to estimate covariances with
limited training samples, especially for the cases when the
number of samples is less than dimensionality of the data.

� Using localised bases: the second method for dealing with
sparsity, especially for hyperspectral data, is to use local-
ised bases, i.e. bases that depend on small subsets of
adjacent spectral bands. The SPCT algorithm and the
GLDB algorithms are examples of such an approach.

The use of these techniques on BHC architecture will be
investigated in the future because data sparsity problem is
common in hyperspectral remote sensing. The original data
scene and the classified maps obtained by various classifiers
can be viewed at http://www.csr.utexas.edu/rs/research/
hyper.html.

Apart from automatic discovery of class taxonomy and
significant improvement in classification accuracy, the hier-
archical multiclassifier also reduces the number of features
significantly since, only a one-dimensional feature space is
used to solve a two-class problem at each internal node. As
compared to the pairwise classifier that requires �C

2� two-

class classifiers, the hierarchical classifier requires only C−1
two-class classifiers, although these classifiers try to discrimi-
nate ‘meta-classes’ as opposed to the original classes. For
difficult classification problems with a large number of
classes, this reduction in the number of two-class classifiers
could be significant. Both the pairwise and hierarchical
approaches are novel alternatives of decomposing a C-class
problem into simpler two-class problems. The two-class
problem at each internal node in the hierarchical tree is
more complex than the two-class problems in the pairwise
classifiers. Thus, an inherent trade-off between the number
of classifiers and their complexity and the nature of domain
knowledge that can be extracted from both these architec-
tures make them equally interesting.

5. CONCLUSIONS

A hierarchical multiclassifier architecture is proposed for the
analysis of hyperspectral data in problems where there is a
moderately large number of classes, C. An algorithm using
the generalized associative modular learning paradigm was
developed for recursively partitioning a set of classes into
two groups and simultaneously finding the best feature
projection that distinguishes the two groups. Much simpler
features and classifiers are needed for each partitioning in
the hierarchy as compared to solutions that attempt to solve

the C-class problem in one step. In terms of classification
accuracy, the results obtained on a 180-dimensional hyper-
spectral dataset for a 12-class problem were both significantly
better than approaches based on other feature extraction
and problem decomposition techniques. Moreover, the auto-
matically discovered class taxonomy conforms well to expert
opinion and therefore provides significant domain knowledge
about the relationships between different classes.
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A: Proof of Theorem 1

Theorem 1. The posterior probability P(��x) for any input
x is the product of the posterior probabilities of all the
internal classifiers along a unique path from the root node
to the leaf node n(�) containing the class �, i.e.

P(��x) = �D(�)−1

�=0

P(�(�+1)
n(�) �x, �(�)

n(�)), (18)

where D(�) is the depth of n(�) (depth of the root node
is 0), �(�)

n is the meta-class at depth � in the path from the
root node to n(�), such that �(D(�))

n(�) = {�} and
�(0)

n(�) = �1 = root node.

Proof: Applying Bayes theorem to each internal node:

P(�(�+1)
n(�) �x, �(�)

n(�)) =
p(x��(�+1)

n(�) , �(�)
n(�) P(�(�+1)

n(�) ��(�)
n(�))

p(x��(�)
n(�))

, (19)

∀� = 0, %, D(�) − 1.

Because the probability density functions are computed at
each internal node for the two child nodes locally,

p(x��(�+1)
n(�) , �(�)

n(�) = p(x��(�+1)
n(�) ). (20)

Also, the conditional prior of a child node meta-class, given
its parent node meta-class, i.e. P(�(�+1)

n(�) ��(�)
n(�)) is:

P(�(�+1)
n(�) ��(�)

n(�)) =
P(�(�+1)

n(�) )

P(�(�)
n(�))

=
����

(�+1)
n(�)

P(�)

����
(�)
n(�)

P(�)
. (21)

Applying the simplifications (20) and (21) in (19), this
is then

P(�(�+1)
n(�) �x, �(�)

n(�)) =
p(x��(�+1)

n(�) ) P(�(�+1)
n(�) )

p(x��(�)
n(�)) P(�(�)

n(�))
. (22)

Substituting (22), the product on the right-hand side of
(18) becomes

�D(�)−1

�=0
�p(x��(�+1)

n(�) )

p(x��(�)
n(�))

� �D(�)−1

�=0
�P(�(�+1)

n(�) )

P(�(�)
n(�))

� (23)

Cancelling common factors in the numerators and denomi-
nators, the expression in (23) reduces to

�p(x��(D(�))
n(�) )

p(x��(0)
n(�))

� �P(�(D(�))
n(�) )

P(�(0)
n(�))

� (24)

Since �(D(�))
n(�) is the leaf node containing only class �,

(25)p(x��(D(�))
n(�) ) 	 p(x��)

and

P(�(D(�))
n(�) ) 	 P(�). (26)

Also, since �(0)
n(�) is the meta-class at the root node containing

all the classes,

p(x��(0)
n(�)) 	 p(x) (27)

and

P(�(0)
n(�)) = �

���

P(�) = 1. (28)

Applying (25) through (28), the expression in (24), which
is the product term in the right-hand side of (18), reduces to:

�D(�)−1

�=0

P(�(�+1)
n(�) �x, �(�)

n(�)) =
p(x��) P(�)

p(x)
= P(��x) (29)

QED.


