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Preface

Cluster Ensembleis a framework for combining multiple partitionings obtathfrom sep-
arate clustering runs into a final consensus clusterings fraimework has attracted much
interest recently because of its numerous practical agiics, and a variety of approaches
including Graph Partitioning, Maximum Likelihood, Gereailgorithms, and Voting-Merging
have been proposed. The vast majority of these approacbegtdtard clusterings as input.
There are, however, many clustering algorithms such as EMumzy c-means that naturally
output soft partitionings of data, and forcibly hardenihgde partitions before obtaining a
consensus potentially involves loss of valuable infororatin this chapter we propose sev-
eral consensus algorithms that accept soft clusteringseapdriment over many real-life
datasets to show, both conceptually and empirically, thimtgusoft clusterings as input does
offer significant advantages, especially when dealing wéthically partitioned data.

The authors wish to thank Ray Mooney, Srujana Merugu, Arm&anerjee, Suju Rajan,
and Sreangsu Acharyya for helpful discussions and thoutgufigestions through the course
of this work.
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1.1 Introduction

Cluster Ensemblés a “Knowledge Reuse” framework for combining multiplestierings of

a set of objects without accessing the original featureb@bbjects. This problem was first
proposed in (Strehl and Ghosh 2002) where the authors agpfier improving the quality
and robustness of clustering, and in distributed clustenrelated problem of consensus
clustering also exists in the marketing literature (Kreigad Green 1999) where often a
set of individuals are segmented in multiple ways based ffardnt criteria (needs-based,
demographics, etc), and one is interested in obtaininggesinnified segmentation.

The idea of combining multiple models is well establishethiclassification and regres-
sion scenarios where it has led to impressive improvemenéswide variety of domains
(Breiman 1999; Freund and Schapire 1996; Ghosh 2002). Gongtlusterings is, however,
a more difficult problem than combining the results of mugiplassifiers, since clusterings
are invariant to cluster label permutations. In other wpatipartitions of a set of objects that
differ only in the cluster labeling are identical. As a reéshefore combining the clusterings
one has to identify which clusters from different clustgercorrespond to each other. This
sub-problem of identifying cluster correspondences ithiercomplicated by the fact that
the number of clusters in the individual solutions mightwsignificantly. These differences
along with wide variations in the clustering algorithms deatures of data used for underly-
ing clustering algorithms make solving cluster ensemblesrg challenging problem. Even
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2 SOFT CLUSTER ENSEMBLES

so, the ability to combine clusterings in an ensemble is usgful.
Cluster ensembles have been shown to be useful in many appticcenarios. Some of
the principal ones are:

e Knowledge reuse An important application of cluster ensembles is comlgrinowl-
edge encoded in multiple clusterings. An example of thigjdadting the knowledge in
legacy clusterings while re-clustering the data. We mightwave access to the features
that were originally used while creating the legacy clueggs; they might even have
been created manually by a domain expert. Also, in many ¢aegsumber of clusters
in the original data might have changed or new features nmight be available. In
these cases re-clustering all the data with the new featnagysnot be possible. Clus-
ter ensembles can be employed to combine multiple clugteimthese feature/object
distributed scenarios (Ghosh et al. 2002; Strehl and Gh0o8R)2

e Multi-View clustering : A set of objects can be clustered multiple times using chffie
attributes/criteria. For example, in marketing applicas, customers can be segmented
based on their needs, psycho-graphic or demographic dfitend choices, etc. Con-
sensus clustering can be used to combine all such partitilm®ne, which is often
easier to act on (Kreiger and Green 1999).

e Distributed computing: In many applications, the data to be clustered is disteithut
over many sites, and data sharing is prohibited. In the chdestibuted computing,
communication costs make sharing all the data with a cesiteaprohibitively expen-
sive, but communicating clustering results is cheaper.theocases, while sharing
actual features of data might be prohibited because of gyiv@asons, the sharing of
clustering results might be permissible, as in (Merugu ahdsh 2003). Both these
scenarios can be handled by locally clustering data preseaich site, and then trans-
ferring only the clustering solutions to a central site. siéw ensemble algorithms can
then be used to combine these clusterings into a composgteding at the central site.

e Improved quality of results: Each clustering algorithm has its own search biases and
uses different types of features. Combining the resultsufipte different clusterings
algorithms could give improvements over their individualusions, as the combined
solution would take into account all their biases. It hasnbseen that using cluster
ensembles to combine diverse clustering solutions leadsoi@ accurate results on
average (Hadjitodorov et al. 2006; Kuncheva and Hadjitod@004).

e Robust solutions Many clustering algorithms suffer from initialization gislems,
often finding local minima of their objective functions. Tbkeister ensembles frame-
work can be used to alleviate these problems of unstabléecing results. Multiple
runs of a clustering algorithm, obtained with differenti@alizations or with different
sets of features, can be combined in order to obtain a romadtdolution (Fern and
Brodley 2003; Fred and Jain 2002).

There have been several attempts to solve cluster enseimlittesrecent past. Strehl and
Ghosh (2002) proposed three graph-theoretic approachéisding the consensus cluster-
ing. A bipartite graph partitioning based approach has Imeposed by Fern and Brodley
(2004). Topchy et al. (2004) proposed the use of mixture oftinamial distributions to
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model the ensemble of labels along the lines of classicahtatlass analysis in marketing
literature. Some of these approaches will be describedtailde Section 1.2. While these
techniques are very varied in the algorithms they empl@rgetiis a common thread that they
only work with hard constituent clusterings. It is the gofthds chapter to investigat8oft
Cluster Ensembles.

1.1.1 Ensembles of Soft Clusterings

There are several clustering algorithms, such as EM (Deenpstal. 1977) and fuzzy c-
means (Bezdek and Pal 1992; Dunn 1973), that naturally vegfupartitions of data. A soft
partition assigns a value for the degree of associationaf aestance to each output cluster.
So instead of a label vector for all the instances we have axftvalues in which each
instance is associated with every cluster with some merhlperglue; often these values
are the posterior probabilities and sum upto to one. In oteolve an ensemble formed
of soft clusterings using one of the existing algorithms tieered above, we would have
to “harden” the clusterings. This process involves conghyedssigning each instance to the
cluster to which it is most associated. This process resuttee loss of the information con-
tained in the uncertainties of the cluster assignments iBhéspecially true for application
settings where underlying clustering algorithms accessgbaiews of the data, such as in
distributed data mining. A landmark work on “collaborativezzy clustering was done by
Pedrycz (2002). The author considered a vertical partitpecenario, and captured the col-
laboration between multiple partitionings via pair wistenaction coefficients. This resulted
in an extended cost function to accommodate the collalwraffect in the optimization pro-
cess. This approach is restricted in scope in many ways:patition needs to have the same
number of clusters; the difficult cluster correspondenabdlam is assumed to be already
solved; and the distances between each point and its repaése in each of the solutions
need to be known. Despite these constraints, it was illtiegtrinat, at least for simple 2 and
3 cluster problems, collaboration had a positive effect loster quality. This further moti-
vates the present study, where we propose flexible frameforkcombining multiple soft
clusterings directly without “hardening” the individuadlations first. We introduce a new
consensus function (ITK) based on the Information-Theokd¥leans algorithm (Dhillon et
al. 2003b) that is more efficient and effective than exisapgroaches. For evaluation pur-
poses, we create a large number of ensembles of varyingefegfdifficulty, and report
clustering results achieved by the various existing and algarithms on them. In order to
objectively evaluate ITK we extend existing algorithms peoate on soft cluster ensembles
as well.

1.1.2 Organization of this Chapter

In Section 1.2 we first define theard cluster ensemble problem formally, and then go on to
describe the various consensus functions that have bepoged in literature. Theoftclus-

ter ensembles are then formally introduced in Section 1l@Wed by several new consensus
functions which operate on them. The experimental setuptorextensive evaluation of
these algorithms and the empirical results then follow icti®e 1.4 and Section 1.5 respec-
tively. Finally, in Section 1.6 we conclude the chapter andfty mention possible directions
for future research.
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1.2 Cluster Ensembles

In this section, we will first define thieard clusters ensembles problem formally, and then
present graph-theoretic solutions proposed by Strehl drasks(2002) and Fern and Brod-
ley (2004). We will also present some related work on roblsttering by Fred and Jain
(2002) and on generative models for ensembles by Topchy @Qfl4). Other methods such
as Voting-Merging (Dimitriadou et al. 2001) and GA-Sear@ablentz et al. 2000) are not
presented as they are either not competitive or too restict their scope. We will end the
section with a brief discussion on past work on role of diigris the cluster ensembles
problem.

Table 1.1 A set of three Table 1.2 Hyper-graph representation of clusterings
clusterings 70 7@ [0
| AW 2@ A6 hi hy hs | hs hs he|hr hs he
1 1 2 1 nw|1 0 O0}0 1 0|1 o0 O
) 1 2 1 vw|1 O O0O}0 1 O0O|1 0 O
3 1 3 2 v/ 2 O OO0 O 1|0 1 O
T4 2 3 2 uw| O 1 00 O 1|0 1 O
5 2 3 3 vs/ O 1 00 O 1|0 0 1
T 3 1 3 w| O O 11 O 0|0 0 1
T7 3 1 3 vw| O O 111 O 0|0 0 1

1.2.1 The Hard Cluster Ensemble problem

Let X = {z1,29,...,2,} denote a set of instances/objects. Each partitioning ofdtita
(called a clustering) is represented as a vector of labelstbe data. Lex(?) € {1,2,...k(@}"

denote the label vector of thg" constituent clustering ok’; i.e. )\ff’) is the label ofx; in

example, see Table 1.1). The goalis to find a consensus duictvhich would combine the
r clusterings\(:2--7) into a single clustering/labeling

It is instructive, for presentation later in this sectiomconsider that every hard cluster-
ing can be mapped to a hyper-graph. A hyper-graph consistertites and hyper-edges.
While an edge connects two vertices of a graph, a hyper-egigea@nnect any number of
vertices. For each clustering vectd!) a binary indicator matrixZ (¢ can be defined with
n rows andk(?) columnsHi((j) is 1 if z; was placed in clustefin clustering\(?). The entire
ensemble of clusterings can hence be represented by a enatiah of individual indicator
matrices agf = (H), ..., H")). The matrixH, now, defines a hyper-graph withvertices
and 22:1 k(@) hyper-edges. Each hyper-edge connects all the verticedalve a valud
in the corresponding column. This transformatiomof2-~") to H is shown in Tables 1.1
and 1.2.
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1.2.2 Graph-Theoretic Approaches

Upon formulating the cluster ensemble problem, Strehl ahdsB (2002) proposed three
graph-theoretic approaches (CSPA, HGPA, and MCLA) for figdhe consensus clustering.
Later Fern and Brodley (2004) proposed the HBGF algorithethithbased on bipartite graph
partitioning. All these approaches use the efficient gragitpning algorithm METIS by
Karypis and Kumar (1998) to partition graphs induced by tlister ensemble and find the
consensus clustering. Note that there is implicitly an galaidl constraint in these solutions,
namely that the consensus clusters obtained be of compasiiel. We describe these and
other algorithms in the following subsections.

1.2.2.1 Cluster-based Similarity Partitioning Algorithm (CSPA)

In CSPA the similarity between two data-points is defined ¢odirectly proportional to
number of constituent clusterings of the ensemble in wHi€ly are clustered together. The
intuition is that the more similar two data-points are thghtar is the chance that constituent
clusterings will place them in the same cluster. Hence, im dipproach a x n similarity
matrix is computed a8’ = %HHT. This similarity matrix (graph) can be clustered using
any reasonable pair wise similarity based clustering @lgorto obtain the final clustering. In
CSPA the authors chose METIS to partition the similaritypdréo obtain the desired number
of clusters. Because CSPA constructs a fully connectechgtsjgomputational and storage
complexity are®(n?). Hence, it is more expensive in terms of resources thanittgos that
will be introduced next.

1.2.2.2 Hyper-Graph Partitioning Algorithm (HGPA)

The HGPA algorithm seeks to directly partition the hypesygr defined by the matrik in
Table 1.2. Hyper-graph partitioning seeks a to cluster #ia @y eliminating the minimal
number of hyper-edges. This partitioning is performed leyghckage HMETIS by Karypis
etal. (1997). In the HGPA algorithm all the vertices and hypdges are weighted equally. In
our experiments, HGPA displayed a lack of robustness antihedy performed worse than
the CSPA and MCLA algorithms. Hence, we will not discuss tidgorithm or report any
results for it in the remainder of this chapter.

1.2.2.3 Meta-CLustering Algorithm(MCLA)

The MCLA algorithm takes a slightly different approach tadfimg the consensus clustering
than the previous two methods. First, it tries to solve thistelr correspondence problem and
then uses voting to place data-points into the final consecisisters. The cluster correspon-
dence problem is solved by grouping the clusters identifiethé individual clusterings of
the ensemble.

As we have seen earlier, the matfixrepresents each clusteriagength binary vectors.
In MCLA, the similarity of cluster; andc; is computed based on the number of data-points
that are clustered into both of them, using the Jaccard melsy;, = };D:;} . This similarity
matrix (graph), with clusters as nodes, is partitioned mtta-clustersising METIS.

The final clustering of instances is produced in the follayfashion. All the clusters
in each meta-cluster are collapsed to yield a associatioctovéor the meta-cluster. This
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association vector for a meta-cluster is computed by auegape association of instances
to each of the constituent clusters of that meta-clustes.ifistance is then clustered into the
meta-cluster that it is most associated to.

The cluster similarity matrix can be computed in time quédia the number of clusters
in the ensemble. This is often significantly less thén Furthermore, the averaging and
voting operations are linear im. This makes MCLA computationally very efficient.

1.2.2.4 Hybrid Bipartite Graph Formulation (HBGF)

This method was introduced by Fern and Brodley (2004) withiemto model the instances
and clusters simultaneously in a graph. The CSPA algoritlutieis the ensemble as a graph
with the vertices representing instances in the data, wh@eViCLA algorithm models the
ensemble as a graph of clusters. The HBGF technique comthiess two ideas and repre-
sents the ensemble by a bipartite graph in which the indalidata points and the clusters of
the constituent clusterings are both vertices. The grapipartite because there are no edges
between vertices that are both either instances or clugieescomplete set of rules to assign
the weights on the edges is as follows:

e W(i,j) = 0if 4, j are both clusters or both instances
e W(i,7) = 0ifinstancei doesn’t belong to cluster

e W(i,j) = lifinstancei belongs to clustef

This bipartite graph is partitioned intb parts yielding the consensus clustering. The
clustering is performed using METIS and Spectral cluste(ivg et al. 2001). The clustersin
the consensus clustering contain both instances and thi@alrclusters. Hence, the method
yields a co-clustering solution. This method has also beevigusly used to simultaneously
cluster words and documents by Dhillon (2001).

The computational complexity of HBGF i©(n x t), wheret is the total number of
clusters in the ensemble. While this is significantly lessntiquadratic in the number of
instances (as in CSPA), in practice we observe the algorithbe fairly resource hungry
both in terms of CPU time and storage.

1.2.2.5 Evidence Accumulation Framework

Evidence Accumulation (Fred and Jain 2001, 2002) is a sirfipleework, very similar to
the cluster ensemble framework, for combining the resultsidtiple weak clusterings in
order to increase robustness of the final solution. The frareuses a K-Means type algo-
rithm to produce several clusterings each with a randonalizétion. The number of clusters
specified in each KMeans clustering is typically much latgan the true number of clusters
desired. The data instances are then mapped into the styndaace where the similarity
between two instancesand j is the fraction of clusterings in which they ended up in the
same cluster. A Minimum Spanning-Tree based clusteringrign is then used to obtain
the final clustering. In practice any appropriate clustgtécthnique could be employed. This
framework and the consensus function that it uses are vemesito the Cluster Ensemble
framework and the CSPA algorithm (Strehl and Ghosh 2002).
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A similar framework for obtaining robust clustering sotuts has been proposed by
Frossyniotis et al. (2002). The actual consensus functéea in this algorithm only works
on heavily restricted type of ensembles; each constituastering has the same number of
clusters. Also, Fern and Brodley (2003) extended this agrdo accept soft clusterings as
input. The details of this approach are presented in Sulbseki3.4.

1.2.3 Ensemble as a Mixture of Multinomials

Topchy et al. (2004) model the ensembi€, "), using a generative model and use EM to
estimate the parameters of the model. The EM procedure alithghe parameters provides
us with a soft final clustering.

In this approach, it is assumed that the ensemble has beenades from a mixture of
multi-dimensional multinomial distributions. Each datairg is generated by first picking a
multinomial distribution according to the priors. Aftercging a component of the mixture
the cluster label in each clustering is picked from a mutiined distribution over the cluster
labels. The cluster labels of different constituent cltisges are assumed to be i.i.d..

The number of parameters to be estimated increases withhmtiumber of constituent
clusterings as well as with the number of clusters in thenpdexnents in Topchy et al. (2004)
do not include experiments on datasets that have more thlaistgrs. In this chapter we will
evaluate the performance of this consensus function on ownplex real-life datasets.

One advantage of this approach is that it is easy to modeldinsaters of different sizes
using this method. Graph partitioning methods tend to yieldyhly balanced clusters. This
is a disadvantage in situations where the data distribigioot uniform. Using the priors in
the mixture model the distribution of data can be accomneatiabnveniently.

1.2.4 Diversity in Cluster Ensembles

Diversity among the classifiers in an ensemble has been shkmwmprove its accuracy
(Hansen and Salamon 1990; Melville and Mooney 2003). Heeeragount some research
on the impact of diversity on cluster ensembles.

Ghosh et al. (2002) examine the problem of combining mdtghlisters of varying res-
olution and showed that it is possible to obtain robust cosge even when the number of
clusters in each of the individual clusterings is differdritey also describe a simple scheme
for selecting a “good” number of clusters k for the conserméustering by observing the vari-
ation in average normalized mutual information with diffet k. Fern and Brodley (2003)
report on some experiments on diversity of ensembles. Thelytfiat the consensus func-
tion’s accuracy increases as the ensemble is made morselivarncheva and Hadjitodorov
(2004) study the diversity of ensembles using multiple messlike the Rand Index, Jaccard
measure etc. Based on this study they propose a variant Bifidence Accumulation frame-
work where the number of over-produced clusters is randaimbgsen. This randomization
in ensemble generation is shown to increase the diversttyeadnsembles thereby leading to
better consensus clustering. In a recent follow up work Hadiprov et al. (2006) report that
selecting constituent clusterings based on median diydesids to better ensembles.
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1.3 Soft Cluster Ensembles

In this section we will formally define the soft cluster endgeproblem and provide intuition

on why we expect soft cluster ensembles to yield better tethan their corresponding hard
versions. We will then introduce a new algorithm based oormftion Theoretic KMeans

(Dhillon et al. 2003b) to solve ensembles of soft clustesing order to objectively evaluate
our new approach, will describe changes to existing teclesgnentioned in Section 1.2 to
enable them to handle soft ensembles.

Table 1.3 A set of three Table 1.4 Ensemble of soft clusterings
clusterings (D) 5 FE)

| AL @ \G) ST So S3 | sS4 S5 S | St Ss S
1 1 2 1 x| 07 02 01/01 07 02 06 03 0.1
T 1 2 1 2 | 09 01 0.0/00 08 02 08 02 0.0
T3 1 3 2 z3 |09 00 01/01 04 0505 05 00
T4 2 3 2 x4 | 02 06 0201 02 07/02 07 01
5 2 3 3 5|01 09 0.0/00 01 09 00 05 05
Z6 3 1 3 ¢ | 0.0 0.2 0.8/ 08 01 0.1/01 0.2 0.7
7 3 1 3 rz7 {01 02 07/07 01 02 01 03 0.6

1.3.1 The Soft Cluster Ensemble Problem

In order to facilitate the explanation of various algorithiater in this section we now define
the soft cluster ensemble problem formally.

Asinthe case of hard ensembles,Xet= {z1, 1, ..., z,, } denote a set of instances/objects.
Also, let (@ € {1,2, ..k(¥}" denote the label vector of thé" clustering ofX; i.e. \!* is
the label ofz; in the¢*" clustering. This is the hard labeling defined in Subsecti@1 In
cases where the underlying clustering algorithm outputschaster Iabels)\EQ) is defined as
argmaz; P(Cjlz;), whereP(C;|xz;) is the posterior probability of instanag belonging to
clusterC);. A soft cluster ensemble is shown in Table 1.4 and its comedimg hard version
in Table 1.3.

Instead othardeningthe posterior probabilities into cluster labels we constaumatrix
S(a) representing the solution of th€" soft clustering algorithms(@) has a column for each
cluster generated in the clustering and the rows denotenitarices of data Witﬁfj‘.’) being
the probability ofz; belonging to clustej of the ¢*" clustering. Hence, the values in each
row of S(9 sum up to 1. There aresuch clusterings{(!~")) each withk(® clusters. Just
as in the hard ensemble problem, our goal is to find a consémsconT” which combines
these clusterings into a combined labelingpf the data. It should be noted that the cluster
ensemble framework doesn’t specify whether the final ctirgje should be hard or soft. In
this chapter we only work with algorithms that output haréficlusterings.
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1.3.2 Intuition behind Soft Ensembles

It is fairly obvious from the above definition that hardenangoft cluster ensemble entails a
loss of information. But, it is not at all obvious that thisditibnal information is useful. The
goal of this study is to show empirically that algorithmsigesd for soft ensembles improve
upon the accuracy of those that operate on the hardenednsisi the ensembles. Here, we
will try to intuitively explain why we expect this.

For the sake of discussion consider a cluster ensemble vitivédual clusterings are
working on vertically partitioned data. In such a scenatfie, underlying clustering algo-
rithms have access to different and often incomplete sefisabires. Incomplete data could
result from distributed computing constraints (Ghosh et2@02), random projections in
order to facilitate high dimensional clustering (Fern amddey 2003), or multi-view datasets
as used in (Kreiger and Green 1999). Under such circumsidheee is an increased chance
that the underlying clustering algorithms will not be aldetssign some objects into clusters
with much certainty. If the combining procedure were to at@nly hard clusterings, these
objects would have to be assigned to the cluster they moshfeb (one with the highest
posterior probability).

Consider the soft ensemble depicted in Table 1.4. The sol§ti?) assigns:s to clusters
s4,85, andsg with probabilities 0.1, 0.4, and 0.5 respectively. If thesensus function were
to only accept hard clusterings it would be provided with atoewherekf) is sg. The com-
bining algorithm would have no evidence that & underlying clustering algorithm was
unsure about the assignmentgf It would accept this observation with the same amount of
certainty as any other observations that assigns a datasndd a clusters; with 0.9 proba-
bility. If, however, the combining function were to accepftclusterings, it could potentially
use this information to make appropriate cluster assighmien; in the combined cluster-
ing. Since it's more likely that clustering algorithms anmesure of their assignments while
operating with incomplete set of features, it is importdrdttthe combining function have
access the cluster assignment probabilities, and notfjastdrd assignments themselves.

1.3.3 Solving Soft Ensembles with Information-Theoretic KMeans
(ITK)

Information-Theoretic KMeans was introduced by Dhillonaét(2003b) as way to cluster
words in order to reduce dimensionality in the documenttehirsg problem. This algorithm
is very similar to the KMeans algorithm, differing only ingtfact that as a measure of
distance it uses the KL-divergence (Kullback and LeiblesI)dnstead of the Euclidean dis-
tance. The reader is referred to the original paper for metaild. Here we just describe the
mapping of the soft cluster ensemble problem to the infoionatheoretic K-Means problem.
Each instance in a soft ensemble is represented by a coatiateafr posterior member-

ship probability distributions obtained from the congitticlustering algorithms (see matrix
S in Table 1.4). Hence, we can define a distance measure betwednstances using the
Kullback-Leibler (KL) divergence (Kullback and Leibler 89), which calculates the “dis-
tance” between two probability distributions. The dis&aretween two instances can be
calculated as
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k(@) (q)
ZW(Q)ZSf)Z)v ( S}’;;) (1.1)

Vpl

where,w(@ are clustering specific weights, such t@ w@ =1.
q=1
Equation (1.1) computes pairwise distance by taking anamesof the KL divergence
between the two instances in individual constituent chirsggs. Here we note that this is
equivalent to computing the KL divergence between instamepresented by a matrixin
which each row sums upto one. This normalization can be pagd by multiplying each

value inS(@ by Z“’(Q) . Now that we have a distance measure between instances based

on KL-divergence, we can use existing information-theorétMeans software mentioned
above to solve the soft ensemble.

Computing Equation (1.1) witho(?) = % assumes that all the clusterings are equally
important. We can, however, imagine a scenario where we H#fezent importance val-
ues for the constituent clusterings. These values couldn$tance, be our confidence in the
accuracy of these clusterings, possibly based on the nuaflfeatures they access. These
confidence values can be easily integrated into the costifumasing the weights)(%)

1.3.4 Soft version of CSPA (sCSPA)

The CSPA algorithm proposed by Strehl and Ghosh (2002) woykérst creating a co-
association matrix of all objects, and then using METIS (fés and Kumar 1998) to par-
tition this similarity space to produce the desired numbfeclosters. This algorithm is
described in Section 1.2.

SCSPA extends CSPA by using valuesSnto calculate the similarity matrix. If we
visualize each object as a pointE;:1 k(@ dimensional space, with each dimension cor-
responding to probability of its belonging to a cluster,itt$#S7 is the same as finding the
dot product in this new space. Thus the technique first toainss the objects into bel-
spaceand then interprets the dot product between the vectorgsepting the objects as
their similarity. In our experiments we use Euclidean dis&in the label space to obtain
our similarity measure. The dot product is highly co-refatéth the Euclidean measure, but
Euclidean distance provides for cleaner semantics. Eeatidlistance between anduvy is
calculated as

r k(@

Ay, = ZZ (Sq(;{I) 552)

q=1i=1

This can be interpreted as a measure of the difference in émharship of the objects for
each cluster. This dissimilarity metric is converted intsimilarity measure using,, ., =
eidzuv’”b.

Another distance measure can be defined on the instance®fhensemble using KL-
divergence (Kullback and Leibler 1951) as in Section 1.[3.8ur results we observed that all
versions of the sSCSPA (with Euclidean distance, KL diveggeiand cosine similarity) gave
very similar results. The results obtained while using klezn distance were sometimes
better, so here we will report results based on only thatimensf the SCSPA. sCSPA (like
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CSPA) is impractical for large datasets, and hence we wilf ogport results for datasets
with less than 2000 data-points.

Fern and Brodley (2003) proposed a variant of the Evidenaaufailation framework
that accepts soft clusterings. In this scenario, the siityilaf two instances is calculated as
the average dot product of the probability distributionsatding them. Hence,

k(@)
1
sim(vq, vp) = — Z 5 x gl
r

Vel vyt
i=1

The similarity matrix that results is then clustered usirapmplete-link agglomerative algo-
rithm. The input matrix used by this framework is essentialjuivalent to the one used by
SCSPA (using Cosine similarity). The only difference istie tombining function. Hence,
we will not experiment with this technique further in thisagdter.

1.3.5 Soft version of MCLA (sMCLA)

In MCLA each cluster is represented by a n-length binary @ation vector. The idea is
to group and collapse related clusters into meta-clusagid then assign each object to the
meta-cluster in which it belongs most strongly. The clussge grouped by graph partitioning
based clustering.

sSMCLA extends MCLA by accepting soft clusterings as inpMC4 A's working can be
divided into the following steps (similar steps are foll@hia MCLA too0).
Construct Soft Meta-Graph of Clusters: All the 2221 k(@ clusters or indicator vectors
(with weights), the hyper-edges §f can be viewed as vertices of another regular undirected
graph. The edge weights between two clustgmnds;, is setasV, , = Fuclidean_dist(sq,, sp).
The Euclidean distance is a measure of the difference of raeship of all objects to these
two clusters. As in the SCSPA algorithm, the Euclidean distds converted into a similarity
value.
Group the Clusters into Meta-Clusters The meta-graph constructed in the previous step is
partitioned using METIS to produdebalanced meta-clusters. Since each vertex in the meta-
graph represents a distinct cluster label, a meta-cluspgesents a group of corresponding
cluster labels.
Collapse Meta-Clusters using Weighting We now collapse all the clusters contained in
each meta-cluster to form its association vector. Each-clatter’s association vector con-
tains a value for every object’s association to it. This agdmn vector is computed as the
mean of the association vectors for each cluster that ispgbinto the meta-cluster. This is
a weighted form of the step performed in MCLA.
Compete for Objects Each object is assigned to the meta-cluster to which it istrasso-
ciated. This can potentially lead to a soft final clusterisigce the ratio of the winning
meta-cluster’s association value to the sum of associaidues of all final meta-clusters
can be the confidence of assignment of an object to the meséecl

There is, however, one problem with this approach. Becaesara/using soft clusterings
as inputs, the co-association graph of the clusters (negahy is almost complete. More
specifically, even clusters from the same clusterings hamezero similarity to each other.
This is not the case with MCLA since it uses a binary Jaccardsme, and for hard cluster-
ings Jaccard similarity between clusters in the same cing®is necessarily zero. We get
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better consensus clustering results after making the soc&gion matrix r-partite. Hence,
SMCLA forces the similarity of hyper-edges coming from tlean® clustering to be zero.
This is, however, only done when the number of clusters ithallconstituent clusterings is
equal to the desired final number of clusters. In ensemblesene number of clusters in
each underlying clustering vary the algorithm does notddhe co-association matrix to be
r-partite.

1.3.6 Soft version of HBGF (sHBGF)

HBGF represents the ensemble as a bipartite graph withectuahd instances as nodes, and
edges between the instances and the clusters they belofigisoapproach can be trivially
adapted to consider soft ensembles since the graph pairtigi@lgorithm METIS accepts
weights on the edges of the graph to be partitioned. In sHBG&Fgraph has + ¢ vertices,
wheret is the total number of underlying clusters. The weights @eitiges are set as follows:

e W(i,7) = 0if 4, j are both clusters or both instances

o W(; ;) = Si; otherwise, whergis the instance anglis the cluster

1.4 Experimental Setup

We empirically evaluate the various algorithms presemefkictions 1.2 and 1.3 on soft clus-
ter ensembles generated from various datasets. In thissaet describe the experimental
setup in detail.

1.4.1 Datasets Used

We perform the experimental analysis using the six realdidtasets and one artificial dataset.
Some basic properties of these datasets are summarizedla I'&. These datasets were
selected so as to present our algorithms with problems gingudegrees of difficulty — in
terms of number of desired clusters, number of attributes jumber of instances. All these
datasets, with the exception of 8D5K and HyperSpectralpait®icly accessible from the
UCI data repository (Blake and Merz 1998).

e 8D5K: This is an artificially generated dataset containing 108its. It was generated
from 5 multivariate Gaussian distributions (200 pointshgan 8-dimensional space.
The clusters all have the same variance but different médresmeans were drawn
from a uniform distribution within the unit hypercube. Thiataset was used in (Strehl
and Ghosh 2002) and can be obtained fitont p: / / www. st rehl . com

e Vowel: This dataset contains data on the pronunciation of voweésremoved some
nominal features which corresponded to the context likers@xe etc, and only retained
the 10 real valued features. There are 11 classes in the ddtaraaverage of 93
instances per class.

e Pendigits This dataset was generated for the problem of pen-basedmgon of
handwritten digits. It contains 16 spatial features foheafthe 10992 instances. There
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Table 1.5 Datasets used in experiments

Name | Type of features #features #classes #instances
8D5K real 8 5 1000
Vowel real 10 11 990
Pendigits real 16 10 10992
Glass real 9 6 214
HyperSpectral real 30 13 5211
Yeast real 8 10 1484
Vehicle real 18 4 846

are 10 classes of roughly equal sizes corresponding to gfits @ito 9. In order to get
better clustering results, we normalized the columns (fes) to sum to 1.

e Glass The instances in this dataset are samples of glass usedfferedt purposes.
Real-valued features corresponding to their chemical qutidal properties describe
the instances. There are 214 instances categorized intaséed such as tableware,
containers etc based on 9 attributes.

e HyperSpectral: This dataset contains 5211 labeled pixel from a Hyper$akstap-
shot of the Kennedy Space Center. Each data-point is desdoip a set of 30 Hyper-
Spectral signatures pruned from an initial set of 176 festuThe pruning was per-
formed by a best-basis feature extraction procedure (Kahal. 2001). The dataset
has 13 classes describing the geographical features appatkee pixel.

e Yeast The Yeast dataset contains information about proteingimviYeast cells with
the class attribute denoting the localization within thi. dehis is a fairly hard prob-
lem, and this shows in the clustering results we obtain. 4&4lnstances are each
characterized by 8 attributes, and there are 10 classes datlaset.

e Vehicle: This dataset was designed for the purpose of learning ssifyaa given sil-
houette as one of four types of vehicle, using a set of 18 featextracted from the
silhouette. The vehicle may be viewed from one of many différangles. The 846
silhouette instances are classified into 4 vehicle categ@pel, Saab, Bus, and Van.

1.4.2 Ensemble Test-set Creation

In order to compare the hard and soft ensemble methods, asasveéd evaluate the our
Information-Theoretic KMeans (ITK) based approach, wetad soft cluster ensembles of
varying degrees of difficulty. Note here that for each safstér ensemble we also stored its
corresponding hardened version to evaluate methods thaaocept hard clusterings.

The individual clusterings in our ensembles were creategjuse EM algorithm (Dempster
et al. 1977) with a mixture of Gaussian distributions model, any algorithm that outputs
soft probabilities could have been used. Further, eachitoast clustering was created using
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Table 1.6 Dataset specific options for creating ensembles

Name | # attributes  Numatts options  #clusterings/Numatts-optio
8D5K 8 3,4,5,6 10
Vowel 10 3,4,5,6,7 10
Pendigits 16 3,4,6,9,12 15
Glass 9 3,4,5,6,7 10
HyperSpectral 30 5,10,15,20,25 15
Yeast 8 2,3,4,5 10
Vehicle 18 458,11 15

vertically partitioned subsets of the datasets. This glariew of the data as well as the depen-
dence of EM on initialization resulted in the diversity iretindividual clustering solutions in
an ensemble.

As mentioned above, we wanted to evaluate our algorithmsnsembles of varying
degrees of difficulty. For this purpose we created ensentlylesrying two parameters that
controlled the degree of difficulty. The first parameter is ttumber of attributes that the
EM algorithm accesses while creating the constituent etirgjs. We expect the difficulty
of an ensemble containing clusterings created from legbutits to be higher. The second
parameter is the number of constituent clusterings in tlsemble. In general, we expect
that as the number of constituent clusterings increase dhsensus clusterings obtained
should be more accurate. For most datasets the number ¢érohgs in the ensembles is
varied from2 to 10, and in some cases i®. The entire set of options for all the datasets
is listed in Table 1.6. The second column in the table dessribe different settings for
number of features used to create clusterings. For instdoc¢he 8D5K dataset we can
obtain ensembles with constituent clusterings createtgu3i4,5, or 6 attributes. Also, for
each such setting we can select from 10 clusterings to foremaeamble. Of course, each of
these 10 clusterings is created with a randomly selecteaf s¢tributes.

Hence, while creating an ensemble we specify three paras¢ie dataset name, the
number of attributes, and the number of clusterings. Foh sat of parameter values, we
create multiple ensembles by randomly selecting the dingte to combine. Also, non-
deterministic consensus functions are run multiple tinmesrder to average out variations
in results due to initialization.

Here we must note that each individual clustering as welhasconsensus function is
given the true number of clusters to find. The use of ensenfididimding the true number of
clusters, or the effect of differertin constituent clusterings on ensemble accuracy are not
investigated in this study.

1.4.3 Evaluation Criteria

In order to evaluate the final consensus clusterings olttaireeuse two different criteria.

Both these criteria compare the obtained clustering torie labels of the instances. We
also use the Geometric Mean Ratio to present an overall $optke performance of each
algorithm.
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1.4.3.1 Normalized Mutual Information (NMI)

The first criterion we use was introduced by Strehl and Gh260Z%). and is called Normal-
ized Mutual Information (NMI).
The NMI of two labellings of instances can be measured as

I(X,Y)
H(X)H(Y)

where,/(X,Y') denotes the mutual information between two random varg&ablandY” and
H(X) denotes the entropy of . In our evaluationX will be consensus clustering whilé
will be the true labels.

NMI has some nice properties such&9\/1(X, X) =1 and if Y has only one cluster
label for all instancesV M 1(X,Y) = 0. With these properties NMI is extensively used for
evaluating clustering algorithms in literature.

Another measure of clustering accuracy is Adjusted RANDQgttiand Arabie 1985).
The Adjusted RAND compares two labellings based on whethis pf objects are placed
in the same or different clusters in them. The maximum valtekies is 1, and its expected
value is 0. We computed the Adjusted RAND score for each mmaind found it to be highly
correlated to the NMI score. Hence we will only report the Nddore in the chapter.

NMI(X,Y) = (1.2)

1.4.3.2 Classification via Clustering (CVC)

The CVC is a measure of the purity of the clusters obtained we ground truth. The CVC
is calculated by the following procedure.

e To each cluster, assign the label that corresponds to a ityapdpoints.
e Each instance is now labeled by its cluster’s label.

e CVC is the fraction of misclassified instances in such a diaagon of instances.

The CVC measure weighs the contribution of a cluster to tlezame by its size. This
ensures that very small pure clusters don’t compensataifge impure ones.

There are other issues with this measure, however. The C\&Sune is biased towards
solutions with large number of very small pure clusterssTinot an issue in our evaluation
since the number of output clusters is kept constant actbfseaconsensus functions being
compared. Also, the CVC measure is not very well defined ie cdempty clusters in the
clustering solution. Since we ignore the purity of emptystéus in our calculation of CVC,
if all the instances were clustered into one cluster, CVClaitwe the fraction of instances
that belong to the class with the largest number of instarid®f would have been zero
in such a case. This is not a problem for most datasets sinog atgorithms are based on
graph partitioning approaches and output balanced chidBeit like most existing literature
on cluster ensembles, we will use NMI as our principal measfigoodness.

1.4.3.3 Geometric Mean Ratio

Since we are varying the ensemble parameters over a veryramgge for each dataset, we
end up with a lot of different points of comparison. In orderéport some sort of overall
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score for each algorithm on all the ensembles used, we usegbmetric Mean Ratio (Webb
2000). The GMR is calculated as follows. Suppose we hagasembles that we tested our
algorithms on, andv M1, and N M I are vectors of the average NMI values w.r.t. to true
labels obtained by algorithm$ and B on these runs. GMR is calculated as

n

NMIB¢> " 13)

GMR(A, B) = <H NI,
i=1 v

In later sections we display the GMR values in tables withg@md columns repre-
senting the algorithms being compared. In these tableseglef) j) represents the value
GM R(algo(i), algo(j)), wherealgo(i) andalgo(j) are the algorithms represented in row
and columry respectively. Hence, values 1 along a column mean that the algorithm corre-
sponding to the column performs better than the other algos. Similarly, the values: 1
along the rows indicates that the algorithm correspondintipé row scores better than the
other algorithms.

1.5 Soft vs Hard Cluster Ensembles

In this section we present results from our evaluation ofallgerithms we described in ear-
lier sections using the experimental setup described@etté. In Subsection 1.5.1 we will

compare the performance of algorithms accepting soft ebksnas input and those that
run on hardened versions of the ensembles. After analybeggtexperiments we will com-
pare the Information-Theoretic KMeans (ITK) approach wiité best performing algorithms
from Subsection 1.5.1. Finally, in Subsection 1.5.3 andsBation 1.5.4, we will examine

the variation in performance of algorithms on ensemblesofing difficulty.

1.5.1 Soft Versions of Existing Algorithms

In this section we evaluate the performance of CSPA, MCLAl EIBGF, their soft coun-
terparts, and the Mixture of Multinomials method. The easibn measure we employ is the
Geometric Mean Ratio (GMR), which is calculated over all @msembles that were cre-
ated as described in Subsection 1.4.2. There were, howsmee exceptions to the direct
application of the GMR formula over all datasets. HBGF, CSiPl their soft versions were
not run on the HyperSpectral and Pendigits datasets betizese datasets are too large to
expect solutions in reasonable time. Hence, when we congperef these algorithms to the
others we do not consider ensembles of these large datAtsisin certain cases (for hard
ensembles) the consensus functions output clusteringsabee) on the NMI measure. This
would happen, for example, if all the instances were planexisingle cluster. In such cases
the GMR either become’ or oo depending on where the zero score appears. Hence, we
assign a very small nominal value (0.00001) to the NMI scdnenever it is zero. The effect
of this nominal score vanishes because we normalize bygakav.!” root of the product.
Table 1.7 shows the GMR values of the NMI measure compariaghitee original algo-
rithms as well as their soft versions. We can see that for edégbrithm the soft version
performs better than the corresponding hard version. Keepifd that algorithm with val-
ues< 1 on the rows are performing better than the others. The thio\wsthat averaged over
all the ensembles we created, the soft versions of the #hgasiare slightly better than their
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Table 1.7 Geometric mean ratio of NMI score over all ensemblehe value
table; ; indicates ratio of algorithmg/:

Dataset| CSPA sCSPA MCLA sMCLA HBGF sHBGF MixMns

CSPA 1 1.05 0.718 0.999 0.978 1.02 0.802
sCSPA | 0.94 1 0.68 0.948 0.928  0.967 0.76
MCLA | 1.163 1.22 1 117 1.136 1.18 0.913
sMCLA | 1.00 1.05 0.56 1 0.978 1.019 0.77
HBGF 1.02 1.076 0.73 1.02 1 1.04 0.82
sHBGF | 0.98 1.08 0.705 0.98 0.959 1 0.787
MixMns | 1.25 131 0.73 1.297 1.219 1.269 1

Table 1.8 Geometric mean ratio of CVC score over all ensesnblée value
table; ; indicates ratio of algorithmg/:

Dataset| CSPA sCSPA MCLA sMCLA HBGF sHBGF MixMns

CSPA 1 1.02 0.795 1.17 0.99 1.01 0.964
sCSPA | 0.976 1 0.777 1.146 0.97 0.99 0.94
MCLA | 1.015 1.039 1 1.197 1.01 1.03 0.99
sMCLA | 0.85 0.873 0.53 1 0.85 0.87 0.80
HBGF | 1.004 1.029 0.799 1.179 1 1.02 0.97
sHBGF | 0.98 1.009 0.78 1.156 0.98 1 0.95
MixMns | 1.037 1.06 0.66 1.24 1.03 1.05 1

hard counterparts. This shows that the soft versions oflfagithms are able to use the extra
information in the soft ensembles to obtain better consenkisterings.

We notice that the mixture of Multinomials algorithm (MixMpperforms worse than all
other algorithms other than MCLA. This may be because manetiatasets we used had
a large number of clusters, causing parameter estimatioolgms for the mixture model.
Topchy et al. (2004) only evaluated their algorithm on resbdets with very low number of
clusters.

Another key observation is the dramatic difference in thdggmance of the sMCLA
and MCLA algorithms. The performance improvement of SMCLy¥eloMCLA is by far
larger than the improvements by other soft versions likeP#C&nhd sHBGF. This is because
MCLA's performance is very bad when the input clusterings aot accurate. This can be
seen by its performance values over tough ensembles (Té&hlad well as ensembles with
very low number of attributes in constituent clusteringgyire 1.1). SMCLA doesn't get
misled during the meta-clustering phase because the detdetween the clusters are now
determined from soft probabilities. Hence, an error in autngdustering which assigns an
instance into the wrong cluster could be alleviated in sMGlcAse if the posterior probabil-
ities of the wrong assignment are small. This phenomenameber, needs to be investigated
further since sSMCLA performs on par with the best algorittehewn in Table 1.7.
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Table 1.9 Geometric mean ratio of NMI score over tough ensesnfihe value
table; ; indicates ratio of algorithmg/:

Dataset| CSPA sCSPA MCLA sMCLA HBGF sHBGF MixMns

CSPA 1 1.085 0.652 0.997 0.97 1.06 0.655
sCSPA | 0.92 1 0.60 0.919 0.897 0.98 0.604
MCLA 1.53 1.665 1 1.47 1.49 1.63 0.922
SMCLA | 1.003 1.088 0.46 1 0.976 1.06 0.627
HBGF | 1.028 1.113 0.67 1.025 1 1.09 0.673
sHBGF | 0.94 1.024 0.62 0.94 0.92 1 0.618
MixMns | 1.53 1.656 0.73 1.59 1.485 1.617 1

Table 1.8 shows the GMR value table for the CVC measure. Asanesee from the table
the GMR values closely correspond to the values in the TalBleSince the values in the two
tables closely agree we will henceforth only report resusgisg the NMI measure.

In order to evaluate the intuition that the information aféal from soft ensembles is
especially useful when dealing witbughensembles, we have populated the Table 1.9 with
GMR values calculated over only theughensemblesToughensembles are defined as those
comprising a small number of clusterings, each of which ateined using very few features.
In our experiments, tough ensembles contained only 2-4erings which were obtained
using the minimum Numatts option number of features for elathset shown in Table 1.6.
For example, a tough ensembles for the 8D5K dataset mighticoB clusterings, each
obtained using only 3 features. As we can see from Table dfyersions of algorithms
perform better than their hard counterparts and the difiezén their performance is slightly
higher than those in Table 1.7. The fact that the differeircperformances are higher shows
that the extra information in soft clusterings is usefulaogdh situations.

1.5.2 Information-Theoretic KMeans (ITK)

We compare the Information-Theoretic KMeans algorithmhvanly two of the best algo-
rithms from the analysis in the previous section. Table #Hiplays the GMR values for the
ITK, sHBGF, and sMCLA algorithm over all the ensembles. Asca@ see the ITK algo-
rithm performs appreciably better than both sHBGF and sMCIliAe sHBGF and sMCLA
algorithm are fairly similar to each other in overall perfance. The Geometric mean ratio
matrix for the CVC score is identical to the one for the NMIssand we don’t report those
results.

In order to find whether ITK performs better for tougher or gier ensembles we cal-
culate GMR over only the tough ensembles. Here again thehtengembles are defined as
in Subsection 1.5.1. The results of this experiment aredig Table 1.11. As we can see
from the two tables the improvement in ITK algorithm’s perfance over sHBGF/sMCLA
is higher for the subset of tougher ensembles.

In the set of datasets selected for this chapter some presggtier challenges to the
clustering algorithms than others. In terms of the NMI scofelusterings 8D5K is the
simplest dataset while Yeast is the toughest. We displayalleT1.12 and Table 1.13 the
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Table 1.10 Geometric mean ratio of NMI
score over all ensembles. The valtigle; ;
indicates ratio of algorithmg/i

Dataset | ITK 10K sHBGF sMCLA

ITK 10K 1 0.856 0.875
sHBGF 1.167 1 0.98
SMCLA 1.142 1.012 1

Table 1.11 Geometric mean ratio of NMI
score over tough ensembles. The valige; ;
indicates ratio of algorithmg/i

Dataset| ITK10K sHBGF sMCLA

ITK 10K 1 0.816 0.798
sHBGF 1.226 1 0.94
SMCLA 1.253 1.06 1

Table 1.12 Geometric mean ratio of NMI
score for only the 8d5k dataset. The value
table; ; indicates ratio of algorithmg/:

Dataset | ITK 10K sHBGF sMCLA

ITK 10K 1 1.03 0.97
sHBGF 0.968 1 0.944
SMCLA 1.025 1.05 1

GMR value matrix for ensembles of datasets 8D5K and Yeapeiwely. As we can see
from these tables, in the case of the Yeast dataset ITK isrlifidebest performing algorithm.
But for the 8D5K dataset all algorithms are fairly compaeahith sHBGF slightly better than
the rest. One reason is that for soft ensembles where mdsalpility values are close to 1
or 0, more complex algorithms like ITK do not perform betteart simple graph-theoretic
approaches.

Another explanation for ITK’s performance on the Yeast datacan be provided based
on the characteristics of the algorithms. The graph paniiig based consensus algorithms
are constrained to provide roughly balanced clusters. @dmsbe a problem in cases where
the underlying data does not have balanced classes. The 8ataket has perfectly balanced
clusters (200 instances each) while the Yeast dataset &issesl that range from 5 instances
to 463 instances in size. The ITK algorithm is not constrditeefind balanced clusters and
hence can adapt the clustering solution better to the Hatistaibution of instances in the
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Table 1.13 Geometric mean ratio of NMI
score for only the yeast dataset. The value
table; ; indicates ratio of algorithmg/:

Dataset| ITK10K sHBGF sMCLA

ITK 10K 1 0.84 0.68
SHBGF 1.18 1 0.817
SMCLA 1.454 1.222 1

data. This is why we see the ITK algorithm outperform sHBGH aWCLA on the Yeast
dataset by a large margin.

1.5.3 Performance Variation with Increasing Attributes

In this section we examine how the performances of diffecemsensus functions change
as the number of attributes used for the constituent clngtelis changed. The number of
attributes is an ad-hoc measure of the quality of clustesintgined and hence the difficulty
of the ensemble. In general, the lesser the number of attsbn the constituent clusterings
the more the confusion in the clustering solutions obtaiaad hence, the more the difficulty
of obtaining a consensus labeling using these clusterilugigns.

Figure 1.1 shows the variation in the performance of thetiexjsensemble methods and
their soft variations on two datasets. The mixture of moltial model method is not shown
since its performance was much lower than the others. Tlaselat selected for these plots
are of intermediate difficulty. As we can see, as we increlhsenumber of attributes in
the constituent clusterings the accuracy of all algoritimegeases in general. For Pendigits
Figure 1.1(a) only has curves for MCLA and sMCLA since we didirun HBGF and CSPA
onit.

Figure 1.2 displays curves for the ITK, sHBGF, and sMCLA. As gan see the ITK
algorithm outperforms the other algorithms over the whalege of attributes. But as the
number of attributes is increased the accuracies of alrittgos tend to saturate.

Fern and Brodley (2003) show experimentally that for higm&sional domains com-
bining clusterings on subspace projections of the dataesfapns clustering on the whole
data. They also found that the impact of subspace clusterimgre prominent if the number
of dimensions is higherX{ 60). We have not experimented with datasets that have very high
dimensionality, and hence we did not observe the reducti@ccuracy when using the full
set of attributes.

1.5.4 Performance Variation with Increasing Ensemble Size

In this section examine the effect of increasing the numhesterings used in the ensemble
on the accuracy of final clustering. Say, we set the numbettidbates used to create con-
stituent clusterings to some constant value. We would tixpea that as more clusterings
are added to the ensemble the combining function would hare mformation available to

create the final clustering. This has been previously setheiclassifier ensemble literature
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Different algorithms on Pendigits with ensemble size=4
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ing the number of attributes used in constituent clustering
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where increasing the size of the ensemble increases theaagauntil a saturation point is
reached (Hansen and Salamon 1990; Melville and Mooney 200Bz and Maclin 1999).

Hence, the number of clusterings in an ensemble can alsoidheécshe a measure of the
difficulty of the task of combining them.

Figure 1.3 shows the variation in accuracy as number of @lings is increased in the
ensembles. We can see that as the ensembles become easiketthe accuracy of all
algorithms increases. We can also see that the increasiageay of most algorithms reaches
a plateau once the number of clusterings grows very largpir€il.4 shows the variation
in accuracy of the ITK, sSMCLA, and sHBGF over the Pendigitd &wel dataset as we
increase the size of the ensembles. The accuracy of all gweithims rises but the ITK
algorithm performs significantly better than the others.

1.6 Conclusions and Future Work

In this chapter we presented several approaches to solvisgnebles of soft clusterings.
We introduced a new approach based on Information-Thed¢&teans, and also presented
simple extensions of existing approaches for hard ense(ble sCSPA, sMCLA, and
sHBGF), These approaches were extensively evaluated dsitasets and ensembles of
varying degrees of difficulty. Some principal conclusions made were that soft ensem-
bles contain useful information that can be exploited by algorithms to obtain better
consensus clusterings, especially in situations wheredhstituent clusterings are not very
accurate. Also, ITK significantly outperforms existing apgches over most datasets, with
the improvement in performance is especially large whelfirtgaith toughensembles.

Though the experimental results given in this chapter alase the same number of
clusters in each solution, the approaches do allow for wgryesolution in the individual
solutions. Moreover, the match of the consensus solutidiffatent resolutions with respect
to the individual solutions along the lines of (Ghosh et &l02) provides a good way of
model selection. A challenge to the readers of this bookiigdntify scenarios where the use
of soft ensembles provides significantly improved perfarogover hard ensembles, and if
needed devise specialized algorithms to deal with theseaoham

While partitioning instances we can also imagine a groupihtipe clusters into meta-
clusters. Algorithms based on MCLA and HBGF already comhiteco-clusterings, albeit
using graph partitioning based approaches. There is afis@mi body of research on Co-
clustering or Bi-clustering using other approaches (Bhikt al. 2003a; Madeira and Oliveira
2004), and it will be worthwhile to investigate specializedclustering approaches for obtain-
ing a consensus of soft clusterings.
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