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Preface

Cluster Ensemblesis a framework for combining multiple partitionings obtained from sep-
arate clustering runs into a final consensus clustering. This framework has attracted much
interest recently because of its numerous practical applications, and a variety of approaches
including Graph Partitioning, Maximum Likelihood, Genetic algorithms, and Voting-Merging
have been proposed. The vast majority of these approaches accept hard clusterings as input.
There are, however, many clustering algorithms such as EM and fuzzy c-means that naturally
output soft partitionings of data, and forcibly hardening these partitions before obtaining a
consensus potentially involves loss of valuable information. In this chapter we propose sev-
eral consensus algorithms that accept soft clusterings andexperiment over many real-life
datasets to show, both conceptually and empirically, that using soft clusterings as input does
offer significant advantages, especially when dealing withvertically partitioned data.

The authors wish to thank Ray Mooney, Srujana Merugu, Arindam Banerjee, Suju Rajan,
and Sreangsu Acharyya for helpful discussions and thoughtful suggestions through the course
of this work.
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1.1 Introduction

Cluster Ensemblesis a “Knowledge Reuse” framework for combining multiple clusterings of
a set of objects without accessing the original features of the objects. This problem was first
proposed in (Strehl and Ghosh 2002) where the authors applied it for improving the quality
and robustness of clustering, and in distributed clustering. A related problem of consensus
clustering also exists in the marketing literature (Kreiger and Green 1999) where often a
set of individuals are segmented in multiple ways based on different criteria (needs-based,
demographics, etc), and one is interested in obtaining a single, unified segmentation.

The idea of combining multiple models is well established inthe classification and regres-
sion scenarios where it has led to impressive improvements in a wide variety of domains
(Breiman 1999; Freund and Schapire 1996; Ghosh 2002). Combining clusterings is, however,
a more difficult problem than combining the results of multiple classifiers, since clusterings
are invariant to cluster label permutations. In other words, all partitions of a set of objects that
differ only in the cluster labeling are identical. As a result, before combining the clusterings
one has to identify which clusters from different clusterings correspond to each other. This
sub-problem of identifying cluster correspondences is further complicated by the fact that
the number of clusters in the individual solutions might vary significantly. These differences
along with wide variations in the clustering algorithms andfeatures of data used for underly-
ing clustering algorithms make solving cluster ensembles avery challenging problem. Even

Advances in Fuzzy Clustering and Its Applications. Edited by J. Valente de Oliveira and W. Pedrycz
c© 2001 John Wiley & Sons, Ltd

This is a Book Title Name of the Author/Editor
c© XXXX John Wiley & Sons, Ltd



2 SOFT CLUSTER ENSEMBLES

so, the ability to combine clusterings in an ensemble is veryuseful.
Cluster ensembles have been shown to be useful in many application scenarios. Some of

the principal ones are:

• Knowledge reuse: An important application of cluster ensembles is combining knowl-
edge encoded in multiple clusterings. An example of this is exploiting the knowledge in
legacy clusterings while re-clustering the data. We might not have access to the features
that were originally used while creating the legacy clusterings; they might even have
been created manually by a domain expert. Also, in many casesthe number of clusters
in the original data might have changed or new features mightnow be available. In
these cases re-clustering all the data with the new featuresmay not be possible. Clus-
ter ensembles can be employed to combine multiple clusterings in these feature/object
distributed scenarios (Ghosh et al. 2002; Strehl and Ghosh 2002).

• Multi-View clustering : A set of objects can be clustered multiple times using different
attributes/criteria. For example, in marketing applications, customers can be segmented
based on their needs, psycho-graphic or demographic profiles, brand choices, etc. Con-
sensus clustering can be used to combine all such partitionsinto one, which is often
easier to act on (Kreiger and Green 1999).

• Distributed computing: In many applications, the data to be clustered is distributed
over many sites, and data sharing is prohibited. In the case of distributed computing,
communication costs make sharing all the data with a centralsite prohibitively expen-
sive, but communicating clustering results is cheaper. In other cases, while sharing
actual features of data might be prohibited because of privacy reasons, the sharing of
clustering results might be permissible, as in (Merugu and Ghosh 2003). Both these
scenarios can be handled by locally clustering data presentat each site, and then trans-
ferring only the clustering solutions to a central site. Cluster ensemble algorithms can
then be used to combine these clusterings into a composite clustering at the central site.

• Improved quality of results: Each clustering algorithm has its own search biases and
uses different types of features. Combining the results of multiple different clusterings
algorithms could give improvements over their individual solutions, as the combined
solution would take into account all their biases. It has been seen that using cluster
ensembles to combine diverse clustering solutions leads tomore accurate results on
average (Hadjitodorov et al. 2006; Kuncheva and Hadjitodorov 2004).

• Robust solutions: Many clustering algorithms suffer from initialization problems,
often finding local minima of their objective functions. Thecluster ensembles frame-
work can be used to alleviate these problems of unstable clustering results. Multiple
runs of a clustering algorithm, obtained with different initializations or with different
sets of features, can be combined in order to obtain a robust final solution (Fern and
Brodley 2003; Fred and Jain 2002).

There have been several attempts to solve cluster ensemblesin the recent past. Strehl and
Ghosh (2002) proposed three graph-theoretic approaches for finding the consensus cluster-
ing. A bipartite graph partitioning based approach has beenproposed by Fern and Brodley
(2004). Topchy et al. (2004) proposed the use of mixture of multinomial distributions to
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model the ensemble of labels along the lines of classical latent class analysis in marketing
literature. Some of these approaches will be described in detail in Section 1.2. While these
techniques are very varied in the algorithms they employ, there is a common thread that they
only work with hard constituent clusterings. It is the goal of this chapter to investigateSoft
Cluster Ensembles.

1.1.1 Ensembles of Soft Clusterings

There are several clustering algorithms, such as EM (Dempster et al. 1977) and fuzzy c-
means (Bezdek and Pal 1992; Dunn 1973), that naturally output soft partitions of data. A soft
partition assigns a value for the degree of association of each instance to each output cluster.
So instead of a label vector for all the instances we have a matrix of values in which each
instance is associated with every cluster with some membership value; often these values
are the posterior probabilities and sum upto to one. In orderto solve an ensemble formed
of soft clusterings using one of the existing algorithms mentioned above, we would have
to “harden” the clusterings. This process involves completely assigning each instance to the
cluster to which it is most associated. This process resultsin the loss of the information con-
tained in the uncertainties of the cluster assignments. This is especially true for application
settings where underlying clustering algorithms access partial views of the data, such as in
distributed data mining. A landmark work on “collaborative” fuzzy clustering was done by
Pedrycz (2002). The author considered a vertical partitioning scenario, and captured the col-
laboration between multiple partitionings via pair wise interaction coefficients. This resulted
in an extended cost function to accommodate the collaboration effect in the optimization pro-
cess. This approach is restricted in scope in many ways: eachpartition needs to have the same
number of clusters; the difficult cluster correspondence problem is assumed to be already
solved; and the distances between each point and its representative in each of the solutions
need to be known. Despite these constraints, it was illustrated that, at least for simple 2 and
3 cluster problems, collaboration had a positive effect on cluster quality. This further moti-
vates the present study, where we propose flexible frameworks for combining multiple soft
clusterings directly without “hardening” the individual solutions first. We introduce a new
consensus function (ITK) based on the Information-Theoretic KMeans algorithm (Dhillon et
al. 2003b) that is more efficient and effective than existingapproaches. For evaluation pur-
poses, we create a large number of ensembles of varying degrees of difficulty, and report
clustering results achieved by the various existing and newalgorithms on them. In order to
objectively evaluate ITK we extend existing algorithms to operate on soft cluster ensembles
as well.

1.1.2 Organization of this Chapter

In Section 1.2 we first define thehardcluster ensemble problem formally, and then go on to
describe the various consensus functions that have been proposed in literature. Thesoftclus-
ter ensembles are then formally introduced in Section 1.3 followed by several new consensus
functions which operate on them. The experimental setup forour extensive evaluation of
these algorithms and the empirical results then follow in Section 1.4 and Section 1.5 respec-
tively. Finally, in Section 1.6 we conclude the chapter and briefly mention possible directions
for future research.
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1.2 Cluster Ensembles

In this section, we will first define thehard clusters ensembles problem formally, and then
present graph-theoretic solutions proposed by Strehl and Ghosh (2002) and Fern and Brod-
ley (2004). We will also present some related work on robust clustering by Fred and Jain
(2002) and on generative models for ensembles by Topchy et al. (2004). Other methods such
as Voting-Merging (Dimitriadou et al. 2001) and GA-Search (Gablentz et al. 2000) are not
presented as they are either not competitive or too restrictive in their scope. We will end the
section with a brief discussion on past work on role of diversity in the cluster ensembles
problem.

Table 1.1 A set of three
clusterings

λ(1) λ(2) λ(3)

x1 1 2 1
x2 1 2 1
x3 1 3 2
x4 2 3 2
x5 2 3 3
x6 3 1 3
x7 3 1 3

Table 1.2 Hyper-graph representation of clusterings

H(1) H(2) H(3)

h1 h2 h3 h4 h5 h6 h7 h8 h9

v1 1 0 0 0 1 0 1 0 0
v2 1 0 0 0 1 0 1 0 0
v3 1 0 0 0 0 1 0 1 0
v4 0 1 0 0 0 1 0 1 0
v5 0 1 0 0 0 1 0 0 1
v6 0 0 1 1 0 0 0 0 1
v7 0 0 1 1 0 0 0 0 1

1.2.1 The Hard Cluster Ensemble problem

Let X = {x1, x2, ..., xn} denote a set of instances/objects. Each partitioning of thedata
(called a clustering) is represented as a vector of labels over the data. Letλ(q) ∈ {1, 2, ...k(q)}n

denote the label vector of theqth constituent clustering ofX ; i.e. λ(q)
i is the label ofxi in

theqth partitioning. A set ofr such clusteringsλ(1,2,...,r) is called a cluster ensemble (for an
example, see Table 1.1). The goal is to find a consensus functionΓ which would combine the
r clusteringsλ(1,2,...,r) into a single clustering/labelingλ.

It is instructive, for presentation later in this section, to consider that every hard cluster-
ing can be mapped to a hyper-graph. A hyper-graph consists ofvertices and hyper-edges.
While an edge connects two vertices of a graph, a hyper-edge can connect any number of
vertices. For each clustering vectorλ(q) a binary indicator matrixH(q) can be defined with
n rows andk(q) columns.H(q)

i,j is 1 if xi was placed in clusterj in clusteringλ(q). The entire
ensemble of clusterings can hence be represented by a concatenation of individual indicator
matrices asH = (H(1), ..., H(r)). The matrixH , now, defines a hyper-graph withn vertices
and

∑r
q=1 k(q) hyper-edges. Each hyper-edge connects all the vertices that have a value1

in the corresponding column. This transformation ofλ(1,2,...,r) to H is shown in Tables 1.1
and 1.2.
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1.2.2 Graph-Theoretic Approaches

Upon formulating the cluster ensemble problem, Strehl and Ghosh (2002) proposed three
graph-theoretic approaches (CSPA, HGPA, and MCLA) for finding the consensus clustering.
Later Fern and Brodley (2004) proposed the HBGF algorithm that is based on bipartite graph
partitioning. All these approaches use the efficient graph partitioning algorithm METIS by
Karypis and Kumar (1998) to partition graphs induced by the cluster ensemble and find the
consensus clustering. Note that there is implicitly an additional constraint in these solutions,
namely that the consensus clusters obtained be of comparable size. We describe these and
other algorithms in the following subsections.

1.2.2.1 Cluster-based Similarity Partitioning Algorithm (CSPA)

In CSPA the similarity between two data-points is defined to be directly proportional to
number of constituent clusterings of the ensemble in which they are clustered together. The
intuition is that the more similar two data-points are the higher is the chance that constituent
clusterings will place them in the same cluster. Hence, in this approach an × n similarity
matrix is computed asW = 1

r
HHT . This similarity matrix (graph) can be clustered using

any reasonable pair wise similarity based clustering algorithm to obtain the final clustering. In
CSPA the authors chose METIS to partition the similarity graph to obtain the desired number
of clusters. Because CSPA constructs a fully connected graph its computational and storage
complexity areO(n2). Hence, it is more expensive in terms of resources than algorithms that
will be introduced next.

1.2.2.2 Hyper-Graph Partitioning Algorithm (HGPA)

The HGPA algorithm seeks to directly partition the hyper-graph defined by the matrixH in
Table 1.2. Hyper-graph partitioning seeks a to cluster the data by eliminating the minimal
number of hyper-edges. This partitioning is performed by the package HMETIS by Karypis
et al. (1997). In the HGPA algorithm all the vertices and hyper-edges are weighted equally. In
our experiments, HGPA displayed a lack of robustness and routinely performed worse than
the CSPA and MCLA algorithms. Hence, we will not discuss thisalgorithm or report any
results for it in the remainder of this chapter.

1.2.2.3 Meta-CLustering Algorithm(MCLA)

The MCLA algorithm takes a slightly different approach to finding the consensus clustering
than the previous two methods. First, it tries to solve the cluster correspondence problem and
then uses voting to place data-points into the final consensus clusters. The cluster correspon-
dence problem is solved by grouping the clusters identified in the individual clusterings of
the ensemble.

As we have seen earlier, the matrixH represents each cluster asn-length binary vectors.
In MCLA, the similarity of clusterci andcj is computed based on the number of data-points
that are clustered into both of them, using the Jaccard measureWi,j =

|ci∩cj|
|ci∪cj|

. This similarity
matrix (graph), with clusters as nodes, is partitioned intometa-clustersusing METIS.

The final clustering of instances is produced in the following fashion. All the clusters
in each meta-cluster are collapsed to yield a association vector for the meta-cluster. This
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association vector for a meta-cluster is computed by averaging the association of instances
to each of the constituent clusters of that meta-cluster. The instance is then clustered into the
meta-cluster that it is most associated to.

The cluster similarity matrix can be computed in time quadratic in the number of clusters
in the ensemble. This is often significantly less thann2. Furthermore, the averaging and
voting operations are linear inn. This makes MCLA computationally very efficient.

1.2.2.4 Hybrid Bipartite Graph Formulation (HBGF)

This method was introduced by Fern and Brodley (2004) with anaim to model the instances
and clusters simultaneously in a graph. The CSPA algorithm models the ensemble as a graph
with the vertices representing instances in the data, whilethe MCLA algorithm models the
ensemble as a graph of clusters. The HBGF technique combinesthese two ideas and repre-
sents the ensemble by a bipartite graph in which the individual data points and the clusters of
the constituent clusterings are both vertices. The graph isbipartite because there are no edges
between vertices that are both either instances or clusters. The complete set of rules to assign
the weights on the edges is as follows:

• W (i, j) = 0 if i, j are both clusters or both instances

• W (i, j) = 0 if instancei doesn’t belong to clusterj

• W (i, j) = 1 if instancei belongs to clusterj

This bipartite graph is partitioned intok parts yielding the consensus clustering. The
clustering is performed using METIS and Spectral clustering (Ng et al. 2001). The clusters in
the consensus clustering contain both instances and the original clusters. Hence, the method
yields a co-clustering solution. This method has also been previously used to simultaneously
cluster words and documents by Dhillon (2001).

The computational complexity of HBGF isO(n × t), wheret is the total number of
clusters in the ensemble. While this is significantly less than quadratic in the number of
instances (as in CSPA), in practice we observe the algorithmto be fairly resource hungry
both in terms of CPU time and storage.

1.2.2.5 Evidence Accumulation Framework

Evidence Accumulation (Fred and Jain 2001, 2002) is a simpleframework, very similar to
the cluster ensemble framework, for combining the results of multiple weak clusterings in
order to increase robustness of the final solution. The framework uses a K-Means type algo-
rithm to produce several clusterings each with a random initialization. The number of clusters
specified in each KMeans clustering is typically much largerthan the true number of clusters
desired. The data instances are then mapped into the similarity space where the similarity
between two instancesi andj is the fraction of clusterings in which they ended up in the
same cluster. A Minimum Spanning-Tree based clustering algorithm is then used to obtain
the final clustering. In practice any appropriate clustering technique could be employed. This
framework and the consensus function that it uses are very similar to the Cluster Ensemble
framework and the CSPA algorithm (Strehl and Ghosh 2002).
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A similar framework for obtaining robust clustering solutions has been proposed by
Frossyniotis et al. (2002). The actual consensus function used in this algorithm only works
on heavily restricted type of ensembles; each constituent clustering has the same number of
clusters. Also, Fern and Brodley (2003) extended this approach to accept soft clusterings as
input. The details of this approach are presented in Subsection 1.3.4.

1.2.3 Ensemble as a Mixture of Multinomials

Topchy et al. (2004) model the ensemble,λ(1,2,...,r), using a generative model and use EM to
estimate the parameters of the model. The EM procedure alongwith the parameters provides
us with a soft final clustering.

In this approach, it is assumed that the ensemble has been generated from a mixture of
multi-dimensional multinomial distributions. Each data point is generated by first picking a
multinomial distribution according to the priors. After picking a component of the mixture
the cluster label in each clustering is picked from a multinomial distribution over the cluster
labels. The cluster labels of different constituent clusterings are assumed to be i.i.d..

The number of parameters to be estimated increases with boththe number of constituent
clusterings as well as with the number of clusters in them. Experiments in Topchy et al. (2004)
do not include experiments on datasets that have more than 3 clusters. In this chapter we will
evaluate the performance of this consensus function on morecomplex real-life datasets.

One advantage of this approach is that it is easy to model finalclusters of different sizes
using this method. Graph partitioning methods tend to yieldroughly balanced clusters. This
is a disadvantage in situations where the data distributionis not uniform. Using the priors in
the mixture model the distribution of data can be accommodated conveniently.

1.2.4 Diversity in Cluster Ensembles

Diversity among the classifiers in an ensemble has been shownto improve its accuracy
(Hansen and Salamon 1990; Melville and Mooney 2003). Here, we recount some research
on the impact of diversity on cluster ensembles.

Ghosh et al. (2002) examine the problem of combining multiple clusters of varying res-
olution and showed that it is possible to obtain robust consensus even when the number of
clusters in each of the individual clusterings is different. They also describe a simple scheme
for selecting a “good” number of clusters k for the consensusclustering by observing the vari-
ation in average normalized mutual information with different k. Fern and Brodley (2003)
report on some experiments on diversity of ensembles. They find that the consensus func-
tion’s accuracy increases as the ensemble is made more diverse. Kuncheva and Hadjitodorov
(2004) study the diversity of ensembles using multiple measures like the Rand Index, Jaccard
measure etc. Based on this study they propose a variant of theEvidence Accumulation frame-
work where the number of over-produced clusters is randomlychosen. This randomization
in ensemble generation is shown to increase the diversity ofthe ensembles thereby leading to
better consensus clustering. In a recent follow up work Hadjitodorov et al. (2006) report that
selecting constituent clusterings based on median diversity leads to better ensembles.
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1.3 Soft Cluster Ensembles

In this section we will formally define the soft cluster ensemble problem and provide intuition
on why we expect soft cluster ensembles to yield better results than their corresponding hard
versions. We will then introduce a new algorithm based on Information Theoretic KMeans
(Dhillon et al. 2003b) to solve ensembles of soft clusterings. In order to objectively evaluate
our new approach, will describe changes to existing techniques mentioned in Section 1.2 to
enable them to handle soft ensembles.

Table 1.3 A set of three
clusterings

λ(1) λ(2) λ(3)

x1 1 2 1
x2 1 2 1
x3 1 3 2
x4 2 3 2
x5 2 3 3
x6 3 1 3
x7 3 1 3

Table 1.4 Ensemble of soft clusterings

S(1) S(2) S(3)

s1 s2 s3 s4 s5 s6 s7 s8 s9

x1 0.7 0.2 0.1 0.1 0.7 0.2 0.6 0.3 0.1
x2 0.9 0.1 0.0 0.0 0.8 0.2 0.8 0.2 0.0
x3 0.9 0.0 0.1 0.1 0.4 0.5 0.5 0.5 0.0
x4 0.2 0.6 0.2 0.1 0.2 0.7 0.2 0.7 0.1
x5 0.1 0.9 0.0 0.0 0.1 0.9 0.0 0.5 0.5
x6 0.0 0.2 0.8 0.8 0.1 0.1 0.1 0.2 0.7
x7 0.1 0.2 0.7 0.7 0.1 0.2 0.1 0.3 0.6

1.3.1 The Soft Cluster Ensemble Problem

In order to facilitate the explanation of various algorithms later in this section we now define
the soft cluster ensemble problem formally.

As in the case of hard ensembles, letX = {x1, x2, ..., xn} denote a set of instances/objects.
Also, letλ(q) ∈ {1, 2, ...k(q)}n denote the label vector of theqth clustering ofX ; i.e.λ(q)

i is
the label ofxi in theqth clustering. This is the hard labeling defined in Subsection 1.2.1. In
cases where the underlying clustering algorithm outputs soft cluster labels,λ(q)

i is defined as
argmaxjP (Cj |xi), whereP (Cj |xi) is the posterior probability of instancexi belonging to
clusterCj . A soft cluster ensemble is shown in Table 1.4 and its corresponding hard version
in Table 1.3.

Instead ofhardeningthe posterior probabilities into cluster labels we construct a matrix
S(q) representing the solution of theqth soft clustering algorithm.S(q) has a column for each
cluster generated in the clustering and the rows denote the instances of data withS(q)

ij being
the probability ofxi belonging to clusterj of theqth clustering. Hence, the values in each
row of S(q) sum up to 1. There arer such clusterings (S(1,...,r)) each withk(q) clusters. Just
as in the hard ensemble problem, our goal is to find a consensusfunctionΓ which combines
these clusterings into a combined labeling,λ, of the data. It should be noted that the cluster
ensemble framework doesn’t specify whether the final clusterings should be hard or soft. In
this chapter we only work with algorithms that output hard final clusterings.
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1.3.2 Intuition behind Soft Ensembles

It is fairly obvious from the above definition that hardeninga soft cluster ensemble entails a
loss of information. But, it is not at all obvious that this additional information is useful. The
goal of this study is to show empirically that algorithms designed for soft ensembles improve
upon the accuracy of those that operate on the hardened versions of the ensembles. Here, we
will try to intuitively explain why we expect this.

For the sake of discussion consider a cluster ensemble whereindividual clusterings are
working on vertically partitioned data. In such a scenario,the underlying clustering algo-
rithms have access to different and often incomplete sets offeatures. Incomplete data could
result from distributed computing constraints (Ghosh et al. 2002), random projections in
order to facilitate high dimensional clustering (Fern and Brodley 2003), or multi-view datasets
as used in (Kreiger and Green 1999). Under such circumstances there is an increased chance
that the underlying clustering algorithms will not be able to assign some objects into clusters
with much certainty. If the combining procedure were to accept only hard clusterings, these
objects would have to be assigned to the cluster they most belong to (one with the highest
posterior probability).

Consider the soft ensemble depicted in Table 1.4. The solutionS(2) assignsx3 to clusters
s4,s5, ands6 with probabilities 0.1, 0.4, and 0.5 respectively. If the consensus function were
to only accept hard clusterings it would be provided with a vector whereλ(2)

i is s6. The com-
bining algorithm would have no evidence that the2nd underlying clustering algorithm was
unsure about the assignment ofx3. It would accept this observation with the same amount of
certainty as any other observations that assigns a data-pointxi to a clustersj with 0.9 proba-
bility. If, however, the combining function were to accept soft clusterings, it could potentially
use this information to make appropriate cluster assignment of x3 in the combined cluster-
ing. Since it’s more likely that clustering algorithms are unsure of their assignments while
operating with incomplete set of features, it is important that the combining function have
access the cluster assignment probabilities, and not just the hard assignments themselves.

1.3.3 Solving Soft Ensembles with Information-Theoretic KMeans
(ITK)

Information-Theoretic KMeans was introduced by Dhillon etal. (2003b) as way to cluster
words in order to reduce dimensionality in the document clustering problem. This algorithm
is very similar to the KMeans algorithm, differing only in the fact that as a measure of
distance it uses the KL-divergence (Kullback and Leibler 1951) instead of the Euclidean dis-
tance. The reader is referred to the original paper for more details. Here we just describe the
mapping of the soft cluster ensemble problem to the information-theoretic K-Means problem.

Each instance in a soft ensemble is represented by a concatenation ofr posterior member-
ship probability distributions obtained from the constituent clustering algorithms (see matrix
S in Table 1.4). Hence, we can define a distance measure betweentwo instances using the
Kullback-Leibler (KL) divergence (Kullback and Leibler 1951), which calculates the “dis-
tance” between two probability distributions. The distance between two instances can be
calculated as
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KLva,vb
=

r
∑

q=1

w(q)
k(q)
∑

i=1

S
(q)
vailog

(

S
(q)
vai

S
(q)
vbi

)

(1.1)

where,w(q) are clustering specific weights, such that
r
∑

q=1

w(q) = 1.

Equation (1.1) computes pairwise distance by taking an average of the KL divergence
between the two instances in individual constituent clusterings. Here we note that this is
equivalent to computing the KL divergence between instances represented by a matrixS in
which each row sums upto one. This normalization can be performed by multiplying each
value inS(q) by w(q)

∑

r

q=1
w(q)

. Now that we have a distance measure between instances based

on KL-divergence, we can use existing information-theoretic K-Means software mentioned
above to solve the soft ensemble.

Computing Equation (1.1) withw(q) = 1
r

assumes that all the clusterings are equally
important. We can, however, imagine a scenario where we havedifferent importance val-
ues for the constituent clusterings. These values could, for instance, be our confidence in the
accuracy of these clusterings, possibly based on the numberof features they access. These
confidence values can be easily integrated into the cost function using the weightsw(q).

1.3.4 Soft version of CSPA (sCSPA)

The CSPA algorithm proposed by Strehl and Ghosh (2002) worksby first creating a co-
association matrix of all objects, and then using METIS (Karypis and Kumar 1998) to par-
tition this similarity space to produce the desired number of clusters. This algorithm is
described in Section 1.2.

sCSPA extends CSPA by using values inS to calculate the similarity matrix. If we
visualize each object as a point in

∑r

q=1 k(q) dimensional space, with each dimension cor-
responding to probability of its belonging to a cluster, then SST is the same as finding the
dot product in this new space. Thus the technique first transforms the objects into alabel-
spaceand then interprets the dot product between the vectors representing the objects as
their similarity. In our experiments we use Euclidean distance in the label space to obtain
our similarity measure. The dot product is highly co-related with the Euclidean measure, but
Euclidean distance provides for cleaner semantics. Euclidean distance betweenva andvb is
calculated as

dva,vb
=

√

√

√

√

r
∑

q=1

k(q)
∑

i=1

(

S
(q)
vai − S

(q)
vbi

)2

This can be interpreted as a measure of the difference in the membership of the objects for
each cluster. This dissimilarity metric is converted into asimilarity measure usingsva,vb

=

e−d2
va,vb .
Another distance measure can be defined on the instances in a soft ensemble using KL-

divergence (Kullback and Leibler 1951) as in Section 1.3.3.In our results we observed that all
versions of the sCSPA (with Euclidean distance, KL divergence, and cosine similarity) gave
very similar results. The results obtained while using Euclidean distance were sometimes
better, so here we will report results based on only that version of the sCSPA. sCSPA (like
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CSPA) is impractical for large datasets, and hence we will only report results for datasets
with less than 2000 data-points.

Fern and Brodley (2003) proposed a variant of the Evidence Accumulation framework
that accepts soft clusterings. In this scenario, the similarity of two instances is calculated as
the average dot product of the probability distributions describing them. Hence,

sim(va, vb) =
1

r

k(q)
∑

i=1

S
(q)
vai × S

(q)
vbi

The similarity matrix that results is then clustered using acomplete-link agglomerative algo-
rithm. The input matrix used by this framework is essentially equivalent to the one used by
sCSPA (using Cosine similarity). The only difference is in the combining function. Hence,
we will not experiment with this technique further in this chapter.

1.3.5 Soft version of MCLA (sMCLA)

In MCLA each cluster is represented by a n-length binary association vector. The idea is
to group and collapse related clusters into meta-clusters,and then assign each object to the
meta-cluster in which it belongs most strongly. The clusters are grouped by graph partitioning
based clustering.

sMCLA extends MCLA by accepting soft clusterings as input. sMCLA’s working can be
divided into the following steps (similar steps are followed in MCLA too).
Construct Soft Meta-Graph of Clusters: All the

∑r

q=1 k(q) clusters or indicator vectorssj

(with weights), the hyper-edges ofS, can be viewed as vertices of another regular undirected
graph. The edge weights between two clusterssa andsb is set asWa,b = Euclidean dist(sa, sb).
The Euclidean distance is a measure of the difference of membership of all objects to these
two clusters. As in the sCSPA algorithm, the Euclidean distance is converted into a similarity
value.
Group the Clusters into Meta-Clusters: The meta-graph constructed in the previous step is
partitioned using METIS to producek balanced meta-clusters. Since each vertex in the meta-
graph represents a distinct cluster label, a meta-cluster represents a group of corresponding
cluster labels.
Collapse Meta-Clusters using Weighting: We now collapse all the clusters contained in
each meta-cluster to form its association vector. Each meta-cluster’s association vector con-
tains a value for every object’s association to it. This association vector is computed as the
mean of the association vectors for each cluster that is grouped into the meta-cluster. This is
a weighted form of the step performed in MCLA.
Compete for Objects: Each object is assigned to the meta-cluster to which it is most asso-
ciated. This can potentially lead to a soft final clustering,since the ratio of the winning
meta-cluster’s association value to the sum of associationvalues of all final meta-clusters
can be the confidence of assignment of an object to the meta-cluster.

There is, however, one problem with this approach. Because we are using soft clusterings
as inputs, the co-association graph of the clusters (meta-graph) is almost complete. More
specifically, even clusters from the same clusterings have non-zero similarity to each other.
This is not the case with MCLA since it uses a binary Jaccard measure, and for hard cluster-
ings Jaccard similarity between clusters in the same clusterings is necessarily zero. We get
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better consensus clustering results after making the co-association matrix r-partite. Hence,
sMCLA forces the similarity of hyper-edges coming from the same clustering to be zero.
This is, however, only done when the number of clusters in allthe constituent clusterings is
equal to the desired final number of clusters. In ensembles where the number of clusters in
each underlying clustering vary the algorithm does not force the co-association matrix to be
r-partite.

1.3.6 Soft version of HBGF (sHBGF)

HBGF represents the ensemble as a bipartite graph with clusters and instances as nodes, and
edges between the instances and the clusters they belong to.This approach can be trivially
adapted to consider soft ensembles since the graph partitioning algorithm METIS accepts
weights on the edges of the graph to be partitioned. In sHBGF,the graph hasn + t vertices,
wheret is the total number of underlying clusters. The weights on the edges are set as follows:

• W (i, j) = 0 if i, j are both clusters or both instances

• W(i,j) = Si,j otherwise, wherei is the instance andj is the cluster

1.4 Experimental Setup

We empirically evaluate the various algorithms presented in Sections 1.2 and 1.3 on soft clus-
ter ensembles generated from various datasets. In this section we describe the experimental
setup in detail.

1.4.1 Datasets Used

We perform the experimental analysis using the six real-life datasets and one artificial dataset.
Some basic properties of these datasets are summarized in Table 1.5. These datasets were
selected so as to present our algorithms with problems of varying degrees of difficulty – in
terms of number of desired clusters, number of attributes, and number of instances. All these
datasets, with the exception of 8D5K and HyperSpectral, arepublicly accessible from the
UCI data repository (Blake and Merz 1998).

• 8D5K: This is an artificially generated dataset containing 1000 points. It was generated
from 5 multivariate Gaussian distributions (200 points each) in 8-dimensional space.
The clusters all have the same variance but different means.The means were drawn
from a uniform distribution within the unit hypercube. Thisdataset was used in (Strehl
and Ghosh 2002) and can be obtained fromhttp://www.strehl.com.

• Vowel: This dataset contains data on the pronunciation of vowels.We removed some
nominal features which corresponded to the context like sex, name etc, and only retained
the 10 real valued features. There are 11 classes in the data and an average of 93
instances per class.

• Pendigits: This dataset was generated for the problem of pen-based recognition of
handwritten digits. It contains 16 spatial features for each of the 10992 instances. There
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Table 1.5 Datasets used in experiments

Name Type of features #features #classes #instances

8D5K real 8 5 1000
Vowel real 10 11 990

Pendigits real 16 10 10992
Glass real 9 6 214

HyperSpectral real 30 13 5211
Yeast real 8 10 1484

Vehicle real 18 4 846

are 10 classes of roughly equal sizes corresponding to the digits 0 to 9. In order to get
better clustering results, we normalized the columns (features) to sum to 1.

• Glass: The instances in this dataset are samples of glass used for different purposes.
Real-valued features corresponding to their chemical and optical properties describe
the instances. There are 214 instances categorized into 6 classes such as tableware,
containers etc based on 9 attributes.

• HyperSpectral: This dataset contains 5211 labeled pixel from a HyperSpectral snap-
shot of the Kennedy Space Center. Each data-point is described by a set of 30 Hyper-
Spectral signatures pruned from an initial set of 176 features. The pruning was per-
formed by a best-basis feature extraction procedure (Kumaret al. 2001). The dataset
has 13 classes describing the geographical features apparent in the pixel.

• Yeast: The Yeast dataset contains information about proteins within Yeast cells with
the class attribute denoting the localization within the cell. This is a fairly hard prob-
lem, and this shows in the clustering results we obtain. The 1484 instances are each
characterized by 8 attributes, and there are 10 classes in the dataset.

• Vehicle: This dataset was designed for the purpose of learning to classify a given sil-
houette as one of four types of vehicle, using a set of 18 features extracted from the
silhouette. The vehicle may be viewed from one of many different angles. The 846
silhouette instances are classified into 4 vehicle categories Opel, Saab, Bus, and Van.

1.4.2 Ensemble Test-set Creation

In order to compare the hard and soft ensemble methods, as well as to evaluate the our
Information-Theoretic KMeans (ITK) based approach, we created soft cluster ensembles of
varying degrees of difficulty. Note here that for each soft cluster ensemble we also stored its
corresponding hardened version to evaluate methods that only accept hard clusterings.

The individual clusterings in our ensembles were created using the EM algorithm (Dempster
et al. 1977) with a mixture of Gaussian distributions model,but any algorithm that outputs
soft probabilities could have been used. Further, each constituent clustering was created using



14 SOFT CLUSTER ENSEMBLES

Table 1.6 Dataset specific options for creating ensembles

Name # attributes Numatts options #clusterings/Numatts-option

8D5K 8 3,4,5,6 10
Vowel 10 3,4,5,6,7 10

Pendigits 16 3,4,6,9,12 15
Glass 9 3,4,5,6,7 10

HyperSpectral 30 5,10,15,20,25 15
Yeast 8 2,3,4,5 10

Vehicle 18 4,5,8,11 15

vertically partitioned subsets of the datasets. This partial view of the data as well as the depen-
dence of EM on initialization resulted in the diversity in the individual clustering solutions in
an ensemble.

As mentioned above, we wanted to evaluate our algorithms on ensembles of varying
degrees of difficulty. For this purpose we created ensemblesby varying two parameters that
controlled the degree of difficulty. The first parameter is the number of attributes that the
EM algorithm accesses while creating the constituent clusterings. We expect the difficulty
of an ensemble containing clusterings created from less attributes to be higher. The second
parameter is the number of constituent clusterings in the ensemble. In general, we expect
that as the number of constituent clusterings increase the consensus clusterings obtained
should be more accurate. For most datasets the number of clusterings in the ensembles is
varied from2 to 10, and in some cases to15. The entire set of options for all the datasets
is listed in Table 1.6. The second column in the table describes the different settings for
number of features used to create clusterings. For instance, for the 8D5K dataset we can
obtain ensembles with constituent clusterings created using 3,4,5, or 6 attributes. Also, for
each such setting we can select from 10 clusterings to form anensemble. Of course, each of
these 10 clusterings is created with a randomly selected setof attributes.

Hence, while creating an ensemble we specify three parameters: the dataset name, the
number of attributes, and the number of clusterings. For each set of parameter values, we
create multiple ensembles by randomly selecting the clusterings to combine. Also, non-
deterministic consensus functions are run multiple times in order to average out variations
in results due to initialization.

Here we must note that each individual clustering as well as the consensus function is
given the true number of clusters to find. The use of ensemblesfor finding the true number of
clusters, or the effect of differentk in constituent clusterings on ensemble accuracy are not
investigated in this study.

1.4.3 Evaluation Criteria

In order to evaluate the final consensus clusterings obtained we use two different criteria.
Both these criteria compare the obtained clustering to the true labels of the instances. We
also use the Geometric Mean Ratio to present an overall scorefor the performance of each
algorithm.
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1.4.3.1 Normalized Mutual Information (NMI)

The first criterion we use was introduced by Strehl and Ghosh (2002). and is called Normal-
ized Mutual Information (NMI).

The NMI of two labellings of instances can be measured as

NMI(X, Y ) =
I(X, Y )

√

H(X)H(Y )
(1.2)

where,I(X, Y ) denotes the mutual information between two random variablesX andY and
H(X) denotes the entropy ofX . In our evaluation,X will be consensus clustering whileY
will be the true labels.

NMI has some nice properties such asNMI(X, X) = 1 and if Y has only one cluster
label for all instancesNMI(X, Y ) = 0. With these properties NMI is extensively used for
evaluating clustering algorithms in literature.

Another measure of clustering accuracy is Adjusted RAND (Hubert and Arabie 1985).
The Adjusted RAND compares two labellings based on whether pairs of objects are placed
in the same or different clusters in them. The maximum value it takes is 1, and its expected
value is 0. We computed the Adjusted RAND score for each solution and found it to be highly
correlated to the NMI score. Hence we will only report the NMIscore in the chapter.

1.4.3.2 Classification via Clustering (CVC)

The CVC is a measure of the purity of the clusters obtained w.r.t. the ground truth. The CVC
is calculated by the following procedure.

• To each cluster, assign the label that corresponds to a majority of points.

• Each instance is now labeled by its cluster’s label.

• CVC is the fraction of misclassified instances in such a classification of instances.

The CVC measure weighs the contribution of a cluster to the average by its size. This
ensures that very small pure clusters don’t compensate for large impure ones.

There are other issues with this measure, however. The CVC measure is biased towards
solutions with large number of very small pure clusters. This is not an issue in our evaluation
since the number of output clusters is kept constant across all the consensus functions being
compared. Also, the CVC measure is not very well defined in case of empty clusters in the
clustering solution. Since we ignore the purity of empty clusters in our calculation of CVC,
if all the instances were clustered into one cluster, CVC would be the fraction of instances
that belong to the class with the largest number of instances. NMI would have been zero
in such a case. This is not a problem for most datasets since many algorithms are based on
graph partitioning approaches and output balanced clusters. But like most existing literature
on cluster ensembles, we will use NMI as our principal measure of goodness.

1.4.3.3 Geometric Mean Ratio

Since we are varying the ensemble parameters over a very widerange for each dataset, we
end up with a lot of different points of comparison. In order to report some sort of overall
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score for each algorithm on all the ensembles used, we use theGeometric Mean Ratio (Webb
2000). The GMR is calculated as follows. Suppose we haven ensembles that we tested our
algorithms on, andNMIA andNMIB are vectors of the average NMI values w.r.t. to true
labels obtained by algorithmsA andB on these runs. GMR is calculated as

GMR(A, B) =

(

n
∏

i=1

NMIBi

NMIAi

)
1
n

(1.3)

In later sections we display the GMR values in tables with rows and columns repre-
senting the algorithms being compared. In these tables element (i, j) represents the value
GMR(algo(i), algo(j)), wherealgo(i) andalgo(j) are the algorithms represented in rowi
and columnj respectively. Hence, values> 1 along a column mean that the algorithm corre-
sponding to the column performs better than the other algorithms. Similarly, the values< 1
along the rows indicates that the algorithm corresponding to the row scores better than the
other algorithms.

1.5 Soft vs Hard Cluster Ensembles

In this section we present results from our evaluation of thealgorithms we described in ear-
lier sections using the experimental setup described Section 1.4. In Subsection 1.5.1 we will
compare the performance of algorithms accepting soft ensembles as input and those that
run on hardened versions of the ensembles. After analyzing these experiments we will com-
pare the Information-Theoretic KMeans (ITK) approach withthe best performing algorithms
from Subsection 1.5.1. Finally, in Subsection 1.5.3 and Subsection 1.5.4, we will examine
the variation in performance of algorithms on ensembles of varying difficulty.

1.5.1 Soft Versions of Existing Algorithms

In this section we evaluate the performance of CSPA, MCLA, and HBGF, their soft coun-
terparts, and the Mixture of Multinomials method. The evaluation measure we employ is the
Geometric Mean Ratio (GMR), which is calculated over all theensembles that were cre-
ated as described in Subsection 1.4.2. There were, however,some exceptions to the direct
application of the GMR formula over all datasets. HBGF, CSPAand their soft versions were
not run on the HyperSpectral and Pendigits datasets becausethese datasets are too large to
expect solutions in reasonable time. Hence, when we compareone of these algorithms to the
others we do not consider ensembles of these large datasets.Also, in certain cases (for hard
ensembles) the consensus functions output clusterings that score0 on the NMI measure. This
would happen, for example, if all the instances were placed in a single cluster. In such cases
the GMR either becomes0 or ∞ depending on where the zero score appears. Hence, we
assign a very small nominal value (0.00001) to the NMI score whenever it is zero. The effect
of this nominal score vanishes because we normalize by taking thenth root of the product.

Table 1.7 shows the GMR values of the NMI measure comparing the three original algo-
rithms as well as their soft versions. We can see that for eachalgorithm the soft version
performs better than the corresponding hard version. Keep in mind that algorithm with val-
ues< 1 on the rows are performing better than the others. The table shows that averaged over
all the ensembles we created, the soft versions of the algorithms are slightly better than their



SOFT CLUSTER ENSEMBLES 17

Table 1.7 Geometric mean ratio of NMI score over all ensembles. The value
tablei,j indicates ratio of algorithmsj/i

Dataset CSPA sCSPA MCLA sMCLA HBGF sHBGF MixMns

CSPA 1 1.05 0.718 0.999 0.978 1.02 0.802
sCSPA 0.94 1 0.68 0.948 0.928 0.967 0.76
MCLA 1.163 1.22 1 1.17 1.136 1.18 0.913
sMCLA 1.00 1.05 0.56 1 0.978 1.019 0.77
HBGF 1.02 1.076 0.73 1.02 1 1.04 0.82
sHBGF 0.98 1.03 0.705 0.98 0.959 1 0.787
MixMns 1.25 1.31 0.73 1.297 1.219 1.269 1

Table 1.8 Geometric mean ratio of CVC score over all ensembles. The value
tablei,j indicates ratio of algorithmsj/i

Dataset CSPA sCSPA MCLA sMCLA HBGF sHBGF MixMns

CSPA 1 1.02 0.795 1.17 0.99 1.01 0.964
sCSPA 0.976 1 0.777 1.146 0.97 0.99 0.94
MCLA 1.015 1.039 1 1.197 1.01 1.03 0.99
sMCLA 0.85 0.873 0.53 1 0.85 0.87 0.80
HBGF 1.004 1.029 0.799 1.179 1 1.02 0.97
sHBGF 0.98 1.009 0.78 1.156 0.98 1 0.95
MixMns 1.037 1.06 0.66 1.24 1.03 1.05 1

hard counterparts. This shows that the soft versions of the algorithms are able to use the extra
information in the soft ensembles to obtain better consensus clusterings.

We notice that the mixture of Multinomials algorithm (MixMns) performs worse than all
other algorithms other than MCLA. This may be because many ofthe datasets we used had
a large number of clusters, causing parameter estimation problems for the mixture model.
Topchy et al. (2004) only evaluated their algorithm on real datasets with very low number of
clusters.

Another key observation is the dramatic difference in the performance of the sMCLA
and MCLA algorithms. The performance improvement of sMCLA over MCLA is by far
larger than the improvements by other soft versions like sCSPA and sHBGF. This is because
MCLA’s performance is very bad when the input clusterings are not accurate. This can be
seen by its performance values over tough ensembles (Table 1.9) as well as ensembles with
very low number of attributes in constituent clusterings (Figure 1.1). sMCLA doesn’t get
misled during the meta-clustering phase because the distances between the clusters are now
determined from soft probabilities. Hence, an error in a input clustering which assigns an
instance into the wrong cluster could be alleviated in sMCLA’s case if the posterior probabil-
ities of the wrong assignment are small. This phenomenon, however, needs to be investigated
further since sMCLA performs on par with the best algorithmsshown in Table 1.7.
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Table 1.9 Geometric mean ratio of NMI score over tough ensembles. The value
tablei,j indicates ratio of algorithmsj/i

Dataset CSPA sCSPA MCLA sMCLA HBGF sHBGF MixMns

CSPA 1 1.085 0.652 0.997 0.97 1.06 0.655
sCSPA 0.92 1 0.60 0.919 0.897 0.98 0.604
MCLA 1.53 1.665 1 1.47 1.49 1.63 0.922
sMCLA 1.003 1.088 0.46 1 0.976 1.06 0.627
HBGF 1.028 1.113 0.67 1.025 1 1.09 0.673
sHBGF 0.94 1.024 0.62 0.94 0.92 1 0.618
MixMns 1.53 1.656 0.73 1.59 1.485 1.617 1

Table 1.8 shows the GMR value table for the CVC measure. As we can see from the table
the GMR values closely correspond to the values in the Table 1.7. Since the values in the two
tables closely agree we will henceforth only report resultsusing the NMI measure.

In order to evaluate the intuition that the information obtained from soft ensembles is
especially useful when dealing withtoughensembles, we have populated the Table 1.9 with
GMR values calculated over only thetoughensembles.Toughensembles are defined as those
comprising a small number of clusterings, each of which are obtained using very few features.
In our experiments, tough ensembles contained only 2-4 clusterings which were obtained
using the minimum Numatts option number of features for eachdataset shown in Table 1.6.
For example, a tough ensembles for the 8D5K dataset might contain 3 clusterings, each
obtained using only 3 features. As we can see from Table 1.9, soft versions of algorithms
perform better than their hard counterparts and the difference in their performance is slightly
higher than those in Table 1.7. The fact that the differencesin performances are higher shows
that the extra information in soft clusterings is useful in tough situations.

1.5.2 Information-Theoretic KMeans (ITK)

We compare the Information-Theoretic KMeans algorithm with only two of the best algo-
rithms from the analysis in the previous section. Table 1.10displays the GMR values for the
ITK, sHBGF, and sMCLA algorithm over all the ensembles. As wecan see the ITK algo-
rithm performs appreciably better than both sHBGF and sMCLA. The sHBGF and sMCLA
algorithm are fairly similar to each other in overall performance. The Geometric mean ratio
matrix for the CVC score is identical to the one for the NMI score, and we don’t report those
results.

In order to find whether ITK performs better for tougher or simpler ensembles we cal-
culate GMR over only the tough ensembles. Here again the tough ensembles are defined as
in Subsection 1.5.1. The results of this experiment are listed in Table 1.11. As we can see
from the two tables the improvement in ITK algorithm’s performance over sHBGF/sMCLA
is higher for the subset of tougher ensembles.

In the set of datasets selected for this chapter some presenttougher challenges to the
clustering algorithms than others. In terms of the NMI scoreof clusterings 8D5K is the
simplest dataset while Yeast is the toughest. We display in Table 1.12 and Table 1.13 the



SOFT CLUSTER ENSEMBLES 19

Table 1.10 Geometric mean ratio of NMI
score over all ensembles. The valuetablei,j

indicates ratio of algorithmsj/i

Dataset ITK 10K sHBGF sMCLA

ITK 10K 1 0.856 0.875
sHBGF 1.167 1 0.98
sMCLA 1.142 1.012 1

Table 1.11 Geometric mean ratio of NMI
score over tough ensembles. The valuetablei,j

indicates ratio of algorithmsj/i

Dataset ITK 10K sHBGF sMCLA

ITK 10K 1 0.816 0.798
sHBGF 1.226 1 0.94
sMCLA 1.253 1.06 1

Table 1.12 Geometric mean ratio of NMI
score for only the 8d5k dataset. The value
tablei,j indicates ratio of algorithmsj/i

Dataset ITK 10K sHBGF sMCLA

ITK 10K 1 1.03 0.97
sHBGF 0.968 1 0.944
sMCLA 1.025 1.05 1

GMR value matrix for ensembles of datasets 8D5K and Yeast respectively. As we can see
from these tables, in the case of the Yeast dataset ITK is by far the best performing algorithm.
But for the 8D5K dataset all algorithms are fairly comparable with sHBGF slightly better than
the rest. One reason is that for soft ensembles where most probability values are close to 1
or 0, more complex algorithms like ITK do not perform better than simple graph-theoretic
approaches.

Another explanation for ITK’s performance on the Yeast dataset can be provided based
on the characteristics of the algorithms. The graph partitioning based consensus algorithms
are constrained to provide roughly balanced clusters. Thiscan be a problem in cases where
the underlying data does not have balanced classes. The 8D5Kdataset has perfectly balanced
clusters (200 instances each) while the Yeast dataset has classes that range from 5 instances
to 463 instances in size. The ITK algorithm is not constrained to find balanced clusters and
hence can adapt the clustering solution better to the natural distribution of instances in the
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Table 1.13 Geometric mean ratio of NMI
score for only the yeast dataset. The value
tablei,j indicates ratio of algorithmsj/i

Dataset ITK 10K sHBGF sMCLA

ITK 10K 1 0.84 0.68
sHBGF 1.18 1 0.817
sMCLA 1.454 1.222 1

data. This is why we see the ITK algorithm outperform sHBGF and sMCLA on the Yeast
dataset by a large margin.

1.5.3 Performance Variation with Increasing Attributes

In this section we examine how the performances of differentconsensus functions change
as the number of attributes used for the constituent clusterings is changed. The number of
attributes is an ad-hoc measure of the quality of clusteringobtained and hence the difficulty
of the ensemble. In general, the lesser the number of attributes in the constituent clusterings
the more the confusion in the clustering solutions obtained, and hence, the more the difficulty
of obtaining a consensus labeling using these clustering solutions.

Figure 1.1 shows the variation in the performance of the existing ensemble methods and
their soft variations on two datasets. The mixture of multinomial model method is not shown
since its performance was much lower than the others. The datasets selected for these plots
are of intermediate difficulty. As we can see, as we increase the number of attributes in
the constituent clusterings the accuracy of all algorithmsincreases in general. For Pendigits
Figure 1.1(a) only has curves for MCLA and sMCLA since we did not run HBGF and CSPA
on it.

Figure 1.2 displays curves for the ITK, sHBGF, and sMCLA. As we can see the ITK
algorithm outperforms the other algorithms over the whole range of attributes. But as the
number of attributes is increased the accuracies of all algorithms tend to saturate.

Fern and Brodley (2003) show experimentally that for high dimensional domains com-
bining clusterings on subspace projections of the data outperforms clustering on the whole
data. They also found that the impact of subspace clusteringis more prominent if the number
of dimensions is higher (> 60). We have not experimented with datasets that have very high
dimensionality, and hence we did not observe the reduction in accuracy when using the full
set of attributes.

1.5.4 Performance Variation with Increasing Ensemble Size

In this section examine the effect of increasing the number clusterings used in the ensemble
on the accuracy of final clustering. Say, we set the number of attributes used to create con-
stituent clusterings to some constant value. We would then expect that as more clusterings
are added to the ensemble the combining function would have more information available to
create the final clustering. This has been previously seen inthe classifier ensemble literature
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Figure 1.1 Performance of CSPA, MCLA, HBGF, sCSPA, sMCLA, and sHBGF while vary-
ing the number of attributes used in constituent clusterings
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Figure 1.2 Performance of ITK, sMCLA, and sHBGF while varying the number of attributes
used in constituent clusterings
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where increasing the size of the ensemble increases the accuracy until a saturation point is
reached (Hansen and Salamon 1990; Melville and Mooney 2003;Opitz and Maclin 1999).
Hence, the number of clusterings in an ensemble can also be said to be a measure of the
difficulty of the task of combining them.

Figure 1.3 shows the variation in accuracy as number of clusterings is increased in the
ensembles. We can see that as the ensembles become easier to solve the accuracy of all
algorithms increases. We can also see that the increasing accuracy of most algorithms reaches
a plateau once the number of clusterings grows very large. Figure 1.4 shows the variation
in accuracy of the ITK, sMCLA, and sHBGF over the Pendigits and Vowel dataset as we
increase the size of the ensembles. The accuracy of all the algorithms rises but the ITK
algorithm performs significantly better than the others.

1.6 Conclusions and Future Work

In this chapter we presented several approaches to solving ensembles of soft clusterings.
We introduced a new approach based on Information-Theoretic KMeans, and also presented
simple extensions of existing approaches for hard ensembles (like sCSPA, sMCLA, and
sHBGF), These approaches were extensively evaluated usingdatasets and ensembles of
varying degrees of difficulty. Some principal conclusions we made were that soft ensem-
bles contain useful information that can be exploited by ouralgorithms to obtain better
consensus clusterings, especially in situations where theconstituent clusterings are not very
accurate. Also, ITK significantly outperforms existing approaches over most datasets, with
the improvement in performance is especially large when dealing with toughensembles.

Though the experimental results given in this chapter all assume the same number of
clusters in each solution, the approaches do allow for varying resolution in the individual
solutions. Moreover, the match of the consensus solution atdifferent resolutions with respect
to the individual solutions along the lines of (Ghosh et al. 2002) provides a good way of
model selection. A challenge to the readers of this book is toidentify scenarios where the use
of soft ensembles provides significantly improved performance over hard ensembles, and if
needed devise specialized algorithms to deal with these domains.

While partitioning instances we can also imagine a groupingof the clusters into meta-
clusters. Algorithms based on MCLA and HBGF already computethis co-clusterings, albeit
using graph partitioning based approaches. There is a significant body of research on Co-
clustering or Bi-clustering using other approaches (Dhillon et al. 2003a; Madeira and Oliveira
2004), and it will be worthwhile to investigate specializedco-clustering approaches for obtain-
ing a consensus of soft clusterings.
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