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Abstract

Co-clustering, or simultaneous clustering of rows and columns of a two-dimensional data
matrix, is rapidly becoming a powerful data analysis technique. Co-clustering has enjoyed
wide success in varied application domains such as text clustering, gene-microarray anal-
ysis, natural language processing and image, speech and video analysis. In this paper, we
introduce a partitional co-clustering formulation that is driven by the search for a good
matrix approximation — every co-clustering is associated with an approximation of the
original data matrix and the quality of co-clustering is determined by the approximation
error. We allow the approximation error to be measured using a large class of loss functions
called Bregman divergences that include squared Euclidean distance and KL-divergence as
special cases. In addition, we permit multiple structurally different co-clustering schemes
that preserve various linear statistics of the original data matrix. To accomplish the above
tasks, we introduce a new minimum Bregman information (MBI) principle that simultane-
ously generalizes the maximum entropy and standard least squares principles, and leads to
a matrix approximation that is optimal among all generalized additive models in a certain
natural parameter space.

Analysis based on this principle yields an elegant meta algorithm, special cases of which
include most previously known alternate minimization based clustering algorithms such as
kmeans and co-clustering algorithms such as information theoretic (Dhillon et al., 2003b)

1



Banerjee, Dhillon, Ghosh, Merugu and Modha

and minimum sum-squared residue co-clustering (Cho et al., 2004). To demonstrate the
generality and flexibility of our co-clustering framework, we provide examples and empirical
evidence on a variety of problem domains and also describe novel co-clustering applications
such as missing value prediction and compression of categorical data matrices.

Keywords: co-clustering, matrix approximation, Bregman divergences, Bregman infor-
mation, maximum entropy

1. Introduction

Data naturally arises in the form of matrices in a multitude of machine learning and data
mining applications. Often, the data matrices that arise in real-world applications contain
a large number of rows and columns, and may be very sparse. Understanding the natural
structure of such matrices is a fundamental problem.

Clustering is an unsupervised learning technique that has been often used to discover
the “latent structure” of data matrices that describe a set of objects (rows) by their feature
values (columns). Typically, a clustering algorithm strives to group “similar” objects (or
rows). A large number of clustering algorithms such as kmeans, agglomerative clustering,
and their variants have been thoroughly studied (Jain and Dubes, 1988; Ghosh, 2003).
Often, clustering is preceded by a dimensionality reduction phase, such as feature selection
where only a subset of the columns is retained. As an alternative to feature selection, one
can cluster the columns, and then represent each resulting group of features by a single
derived feature (Dhillon et al., 2003a).

A recent paper (Dhillon and Modha, 2001) dealing with the spherical kmeans algo-
rithm for clustering large, sparse document-term matrices arising in text mining graphi-
cally demonstrates (see Figures 13, 31, and 32 in the paper by Dhillon and Modha (2001))
that document clustering naturally brings together similar words. Intuitively, documents
are similar because they use similar words. A natural question is whether it is possible
to mathematically capture this relationship between rows and columns. Furthermore, is it
possible to exploit this relationship to a practical advantage? This paper shows that both
these questions can be answered in the affirmative in the context of clustering.

Co-clustering, also called bi-clustering (Hartigan, 1972; Cheng and Church, 2000), is the
problem of simultaneously clustering rows and columns of a data matrix. Unlike clustering
which seeks similar rows or columns, co-clustering seeks “blocks” (or “co-clusters”) of rows
and columns that are inter-related. Co-clustering has recently received a lot of attention
in several practical applications such as simultaneous clustering of documents and words
in text mining (Dhillon et al., 2003b; Gao et al., 2005; Takamura and Matsumoto, 2003),
genes and experimental conditions in bioinformatics (Cheng and Church, 2000; Cho et al.,
2004; Kluger et al., 2003), tokens and contexts in natural language processing (Freitag,
2004; Rohwer and Freitag, 2004; Li and Abe, 1998), users and movies in recommender
systems (George and Merugu, 2005), etc.

Co-clustering is desirable over traditional “single-sided” clustering from a number of
perspectives:

1. Simultaneous grouping of row and column clusters is more informative and digestible.
Co-clustering provides compressed representations that are easily interpretable while
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preserving most of the information contained in the original data, which makes it
valuable to a large class of statistical data analysis applications.

2. A row (or column) clustering can be thought of as dimensionality reduction along
the rows (or columns). Simultaneous clustering along rows and columns reduces di-
mensionality along both axes, thus leading to a statistical problem with dramatically
smaller number of parameters and hence, a much more compact representation for
subsequent analysis. Since co-clustering incorporates row clustering information into
column clustering and vice versa, one can think of it as a “statistical regularization”
technique that can yield better quality clusters even if one is primarily interested in
a single-sided clustering. The statistical regularization effect of co-clustering is ex-
tremely important when dealing with large, sparse data matrices, for example, those
arising in text mining. A similar intuition can be drawn from the widely successful
subspace clustering methods (Parsons et al., 2004), which only use a part of the full
potential of the co-clustering methodology.

3. As the size of data matrices increases, so does the need for scalable clustering algo-
rithms. Single-sided, geometric clustering algorithms such as kmeans and its variants
have computation time proportional to mnk per iteration, where m is the number of
rows, n is the number of columns and k is the number of row clusters. Co-clustering
algorithms based on a similar iterative process, on the other hand, involve optimizing
over a smaller number of parameters, and can relax this dependence to (mkl + nkl)
where m, n and k are defined as before and l is the number of column clusters. Since
the number of row and column clusters is usually much lower than the original number
of rows and columns, co-clustering can lead to substantial reduction in the running
time (see, for example, Dhillon et al. (2003b, Remark 4.1) and Rohwer and Freitag
(2004)).

In summary, co-clustering is an exciting paradigm for unsupervised data analysis in that
it is more informative, has less parameters, is scalable, and is able to effectively intertwine
row and column information.

In this paper, we concentrate on partitional co-clustering (also called checkerboard bi-
clustering by Kluger et al. (2003)) where all the rows and columns are partitioned into
disjoint row and column clusters respectively. We provide a general framework for address-
ing this problem that considerably expands the scope and applicability of the co-clustering
methodology. To appreciate this generalization, it is helpful to view partitional co-clustering
as a lossy data compression problem where, given a specified number of rows and column
clusters, one attempts to retain as much information as possible about the original data
matrix in terms of statistics based on the co-clustering (Dhillon et al., 2003b). Hence, a
reconstruction based on the co-clustering results in the same set of statistics as the original
matrix. There are two key components in formulating a co-clustering problem: (i) choosing
a set of critical co-clustering-based statistics of the original data matrix that need to be
preserved, and (ii) selecting an appropriate measure to quantify the information loss or the
discrepancy between the original data matrix and the compressed representation provided
by the co-clustering. For example, in the work of Cheng and Church (2000), the row and
column averages of each co-cluster are preserved and the discrepancy between the original
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and the compressed representation is measured in terms of the sum of element-wise squared
deviation. In contrast, information-theoretic co-clustering (ITCC) (Dhillon et al., 2003b),
which is applicable to data matrices representing joint probability distributions, preserves
a different set of summary statistics, i.e., the row and column averages and the co-cluster
averages. Further, the quality of the compressed representation is measured in terms of the
sum of element-wise I-divergence. In the next subsection, we take a closer look at ITCC to
provide a concrete motivating example.

1.1 ITCC: A Motivating Example

Let X and Y be discrete random variables that take values in the sets {xu} [u]m1 , where
[u]m1 denotes an index u running over {1, · · · , m}, and {yv} [v]n1 respectively. Information-
theoretic co-clustering provides a principled approach for simultaneously clustering the rows
and columns of the joint probability distribution p(X, Y ). In practice, the entries of this
matrix may not be known and are, instead, estimated from a contingency table or co-
occurrence matrix. Let the row clusters be denoted by {x̂g}, [g]k1 and the column clusters
by {ŷh}, [h]l1. Let X̂ and Ŷ denote the clustered random variables induced by X and Y
that range over the set of row and column clusters respectively. A natural goal is to choose
a co-clustering that preserves the maximum amount of “information” in the original data.
In particular, in this case, since the data corresponds to the joint probability distribution
on random variables X and Y , it is natural to preserve the mutual information between X
and Y , or, in other words, minimize the loss in mutual information due to the compression
that results from co-clustering. Thus, a suitable formulation is to solve the problem:

min
X̂,Ŷ

I(X; Y ) − I(X̂; Ŷ ) , (1.1)

where I(X; Y ) is the mutual information between X and Y (Cover and Thomas, 1991).
Dhillon et al. (2003b) showed that

I(X; Y ) − I(X̂, Ŷ ) = KL(p(X, Y )||q(X, Y )) , (1.2)

where q(X, Y ) is a distribution of the form

q(X, Y ) = p(X̂, Ŷ )p(X|X̂)p(Y |Ŷ ) , (1.3)

and KL(·||·) denotes the Kullback-Leibler(KL) divergence, also known as relative entropy.
Thus, the search for the optimal co-clustering may be conducted by searching for the near-
est approximation q(X, Y ) that has the above form. Since p(X), p(Y ) and p(X̂, Ŷ ) are
determined by m − 1, n − 1 and kl − 1 parameters respectively, with k + l dependencies
due to p(X̂) and p(Ŷ ), the distribution q(X, Y ) depends only on (kl + m + n − k − l − 1)
independent parameters, which is much smaller than the mn−1 parameters that determine
a general joint distribution. Hence, q(X, Y ) is a “low-complexity” or low-parameter matrix
approximation of p(X, Y ).

The above viewpoint was developed by Dhillon et al. (2003b). We now present an
alternate viewpoint that will enable us to generalize our approach to arbitrary data matrices
and general distortion measures. The following lemma highlights a key maximum entropy
property that makes q(X, Y ) a “low-complexity” or low-parameter approximation.
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Lemma 1 Given a fixed co-clustering, consider the set of joint distributions p′ that preserve
the row, column and co-cluster marginals of the input distribution p:

∑

x∈x̂

∑

y∈ŷ

p′(x, y) = p(x̂, ŷ) =
∑

x∈x̂

∑

y∈ŷ

p(x, y), ∀x̂, ŷ, (1.4)

p′(x) = p(x), p′(y) = p(y), ∀x, y. (1.5)

Among all such distributions p′, the distribution q given in (1.3) has the maximum entropy,
i.e.,

H(q(X, Y )) ≥ H(p′(X, Y )) .

A proof of the above lemma is presented in Appendix A. What is the significance of the
above lemma? In the absence of any constraints, the uniform distribution, p0(X, Y ) = { 1

mn
},

has the maximum entropy. If only row and column marginals are to be preserved, i.e., (1.5)
holds, then the product distribution p(X)p(Y ) has maximum entropy (see Cover and
Thomas (1991, Problem 5, Chap. 11)). The above lemma states that among all distri-
butions that preserve row, column, and co-cluster marginals, i.e., (1.4) and (1.5) hold, the
maximum entropy distribution has the form in (1.3). The maximum entropy characteriza-
tion ensures that the q has a number of desirable properties. For instance, given the row,
column and co-cluster marginals, it is the unique distribution that satisfies certain consis-
tency criteria (Csiszár, 1991; Shore and Johnson, 1980). In Section 4, we also demonstrate
that it is the optimal approximation to the original distribution p in terms of KL-divergence
among all multiplicative combinations of the preserved marginals. It is important to note
that the maximum entropy characterization also implies that q is a low-complexity matrix
approximation.1 In contrast, note that the input p(X, Y ) obviously satisfies the constraints
in (1.4) and (1.5), but in general, is determined by (mn − 1) parameters and has lower
entropy than q. Every co-clustering yields a unique maximum entropy distribution. Thus,
by (1.2) and Lemma 1, the co-clustering problem (1.1) is equivalent to the problem of
finding the nearest (in KL-divergence) maximum entropy distribution that preserves the
row, column and co-cluster marginals of the original distribution. The maximum entropy
property in Lemma 1 may be re-stated as KL(q||p0) ≤ KL(p′||p0), where p0 is the uniform
distribution. Thus, the maximum entropy principle is identical to the minimum relative
entropy principle where the relative entropy is measured with respect to p0.

The above formulation is applicable when the data matrix corresponds to an empirical
joint distribution. However, there are important situations when the data matrix cannot be
interpreted in this matter, for example the matrix may contain negative entries and/or a
distortion measure other than KL-divergence, such as the squared Euclidean distance might
be more appropriate.

1.2 Key Contributions

This paper provides a vastly more general framework for partitional co-clustering and makes
the following key contributions:

1. The complexity here refers to the number of parameters required to construct a good approximation to
the given matrix. It does not refer to the expected communication complexity, as is usual in the context
of Shannon entropy.
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• We introduce a partitional co-clustering formulation driven by a matrix approximation
viewpoint where the quality of co-clustering is characterized by the accuracy of an
induced co-clustering-based matrix approximation, measured in terms of a suitable
distortion measure. This formulation serves the dual purpose of (i) obtaining row
and column clusterings that optimize a well-defined global objective function, and (ii)
providing a new class of desirable matrix approximations.

• Our formulation is applicable to all Bregman divergences (Azoury and Warmuth, 2001;
Banerjee et al., 2005b; Bregman, 1967; Censor and Zenios, 1998), which constitute
a large class of distortion measures including the most commonly used ones such as
squared Euclidean distance, KL-divergence, Itakura-Saito distance, etc. The gener-
alization to Bregman divergences is useful since there is a bijection between regular
exponential families and a sub-class of Bregman divergences called regular Bregman
divergences (Banerjee et al., 2005b). This bijection result enables choosing the appro-
priate Bregman divergence based on the underlying data generation process or noise
model. This, in turn, allows us to perform co-clustering on practically all types of
data matrices.

• Our formulation allows multiple co-clustering schemes wherein the reconstruction of
the original matrix is based on different sets of linear summary statistics that one may
be interested in preserving. In particular, we focus on summary statistics correspond-
ing to the conditional expectations over partitions that result from the rows, columns
and co-clusterings. We establish that there are exactly six non-trivial co-clustering
schemes. Each of these schemes corresponds to a unique co-clustering basis, i.e.,
combination of conditional expectations over various partitions. Using a formal ab-
straction, we explicitly enumerate and analyze the co-clustering problem for all the six
bases. Existing partitional co-clustering algorithms (Cho et al., 2004; Dhillon et al.,
2003b) can then be seen as special cases of the abstraction, employing one of the
six co-clustering bases. Three of the six bases we discuss have not been used in the
literature till date.

• Previous work on co-clustering assume that all the elements of the data matrix are
equally important, i.e., have uniform measure. In contrast, we associate a probability
measure with the elements of the specified matrix and pose the co-clustering problem
in terms of the random variable that takes values among the matrix elements fol-
lowing this measure. Our formulation based on random variables provides a natural
mechanism for handling values with differing levels of uncertainty and in particular,
missing values, while retaining both the analytical and algorithmic simplicity of the
corresponding uniform-measure formulation.

• En route to formulating the Bregman co-clustering problem, we introduce the mini-
mum Bregman information (MBI) principle that generalizes the well-known maximum
entropy and standard least-squares principles to all Bregman loss functions. The co-
clustering process is guided by the search for the nearest (in Bregman divergence)
matrix approximation that has minimum Bregman information while preserving the
specified co-clustering statistics.

6



Bregman Co-clustering and Matrix Approximation

• We demonstrate that the reconstruction obtained using the minimum Bregman infor-
mation (MBI) principle is the optimal approximation to the original matrix among
all generalized additive models of the preserved summary statistics in a certain trans-
formed space. We achieve this by proving a new projection result (Theorem 5) for
matrix approximation using Bregman loss functions.

• We also provide an alternative interpretation of the Bregman co-clustering prob-
lem in terms of minimizing the loss in Bregman information due to co-clustering,
which enables us to generalize the viewpoint presented in information-theoretic co-
clustering (Dhillon et al., 2003b) in terms of minimizing the loss in mutual information.

• We develop an efficient meta co-clustering algorithm based on alternate minimization
that is guaranteed to achieve (local) optimality for all Bregman divergences. Many
previously known parametric clustering and co-clustering algorithms such as minimum
sum-squared residue co-clustering (Cho et al., 2004) and information-theoretic co-
clustering (Dhillon et al., 2003b) follow as special cases of our methodology.

• Lastly, we describe some novel applications of co-clustering such as predicting missing
values and compression of categorical data matrices, and also provide empirical results
comparing different co-clustering schemes for various application domains.

In summary, our results provide a sound theoretical framework for the analysis and
design of efficient co-clustering algorithms for data approximation and compression, and
considerably expand applicability of the co-clustering methodology.

1.3 Outline of the Paper and Notation

The rest of paper is organized as follows: We begin by reviewing preliminary definitions
and describe the Bregman co-clustering problem at a conceptual level in Section 2. To
present our co-clustering framework, we proceed as follows. First, we describe and analyze
block-average co-clustering, which is an important special case of our general formulation,
in order to provide intuition about the main results. Then, in Section 4, we enumerate
various possible co-clustering bases corresponding to the summary statistics chosen to be
preserved, and present a general formulation that is applicable to all these bases. In Section
5, we analyze the general Bregman co-clustering problem and propose a meta-algorithm
that is applicable to all Bregman divergences and all co-clustering bases. In Section 6, we
describe how the Bregman co-clustering algorithm can be instantiated for various choices of
Bregman divergence and co-clustering basis by providing the exact update steps. Readers
interested in a purely computational recipe can jump to Section 6. Empirical evidence on
the benefits of co-clustering and preliminary experiments on novel co-clustering applications
are presented in Section 7. We discuss related work in Section 8 and conclude in Section 9.

A brief word about the notation: Sets such as {x1, · · · , xn} are enumerated as {xi}
n
i=1

and an index i running over the set {1, · · · , n} is denoted by [i]n1 . Random variables are
denoted using upper case letters, e.g., Z. Matrices are denoted using upper case bold
letters, e.g., Z, whereas the corresponding lower case letters zuv denote the matrix elements.
Transpose of a matrix Z is denoted by ZT . The effective domain of a function f is denoted
by dom(f) and the inverse of a function f , when well defined, is denoted by f (−1). The
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interior and boundary of a set S are denoted by int(S) and bd(S) respectively. Tables D.16,
D.17 and D.18 has a detailed list of the notation used in the paper.

2. Preliminaries

In this section, we discuss some important properties of Bregman divergences and also
describe the basic setup of our co-clustering framework.

2.1 Bregman Divergences and Bregman Information

We start by defining Bregman divergences (Bregman, 1967; Censor and Zenios, 1998), which
form a large class of well-behaved loss functions with a number of desirable properties.

Definition 1 Let φ be a real-valued convex function of Legendre type2 (Rockafeller, 1970;
Banerjee et al., 2005b) defined on the convex set S ≡ dom(φ) (⊆ R

d). The Bregman
divergence dφ : S × int(S) 7→ R+ is defined as

dφ(z1, z2) = φ(z1) − φ(z2) − 〈z1 − z2,∇φ(z2)〉,

where ∇φ is the gradient of φ.

Example 1.A (I-Divergence) Given z ∈ R+, let φ(z) = z log z − z . For z1, z2 ∈ R+,
dφ(z1, z2) = z1 log(z1/z2) − (z1 − z2) .

Example 2.A (Squared Euclidean Distance) Given z ∈ R, let φ(z) = z2. For z1, z2 ∈
R, dφ(z1, z2) = (z1 − z2)

2 .

Example 3.A (Itakura-Saito Distance) Given z ∈ R+, let φ(z) = − log z . For z1, z2 ∈

R+, dφ(z1, z2) = z1

z2
− log

(

z1

z2

)

− 1 .

Given a Bregman divergence and a random variable, the uncertainty in the random
variable can be captured in terms of a useful concept called Bregman information (Banerjee
et al., 2005b) defined below.

Definition 2 For any Bregman divergence dφ : S × int(S) 7→ R+ and any random variable
Z ∼ w(z), z ∈ Z ⊆ S, the Bregman information of Z is defined as the expected Bregman
divergence to the expectation, i.e.,

Iφ(Z) = E[dφ(Z, E[Z])] .

Intuitively, this quantity is a measure of the “spread” or the “information” in the random
variable.

2. A proper, closed convex function φ is said to be of Legendre type if (i) int(dom(φ)) is non-empty, (ii)
φ is strictly convex and differentiable on int(dom(φ)), and (iii) ∀zb ∈ bd(dom(φ)), lim

z→zb

||∇φ(z)|| → ∞,

where z ∈ dom(φ).
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Example 1.B (I-Divergence) Given a random variable Z ∼ w(z), z ∈ Z ⊆ R+, the
Bregman information corresponding to I-divergence is given by

Iφ(Z) = E[Z log (Z/E[Z]) − Z + E[Z]] = E[Z log (Z/E[Z])] .

When w is the uniform measure and the support of Z (say Z) consists of joint probability
values of two other random variables X and Y , i.e., Z = {p(xu, yv), [u]m1 , [v]n1}, then
E[Z] = 1

mn
, i.e., probability value corresponding to the uniform distribution p0(X, Y ). The

Bregman information in this case is given by

Iφ(Z) =
1

mn

m
∑

u=1

n
∑

v=1

p(xu, yv) log

(

p(xu, yv)

p0(xu, yv)

)

=
1

mn
KL(p||p0) = −

1

mn
H(p) + constant,

where H(·) is the Shannon entropy.

Example 2.B (Squared Euclidean Distance) Given Z ∼ w(z), z ∈ Z ⊆ R, the Breg-
man information corresponding to squared Euclidean distance is given by

Iφ(Z) = E[Z − E[Z]]2 ,

which is the variance of Z. When w is uniform and the support of Z, i.e., Z consists of ele-
ments in a matrix Z ∈ R

m×n, i.e., Z = {zuv, [u]m1 , [v]n1}, then E[Z] = 1
mn

∑m
u=1

∑n
v=1 zuv ≡

z̄. The Bregman information in this case is given by

Iφ(Z) =
1

mn

m
∑

u=1

n
∑

v=1

(zuv − z̄)2 =
1

mn

m
∑

u=1

n
∑

v=1

z2
uv − z̄2 =

1

mn
‖Z‖2

F + constant,

i.e., a linear function of the squared Frobenius norm of Z.

We note a useful property of Bregman information that will be extensively used in sub-
sequent sections. The property, formally stated below, shows that the Bregman information
exactly characterizes the difference between the two sides of Jensen’s inequality (Cover and
Thomas, 1991).

Lemma 2 (Banerjee et al., 2005b) For any Bregman divergence dφ : S × int(S) 7→ R+ and
random variable Z ∼ w(z), z ∈ Z ⊆ S, the Bregman information Iφ(Z) = E[dφ(Z, E[Z])] =
E[φ(Z)] − φ(E[Z]).

Lemma 2 implies that the Bregman information is always non-negative. For a detailed list
of other properties and examples of Bregman divergences and Bregman information, the
reader is referred to Banerjee et al. (2005b) and Appendix B.

2.2 Data Matrix

We focus on the problem of co-clustering a specified m × n data matrix Z. Let each entry
of Z = [zuv] take values in the convex set3 S = dom(φ), e.g., S = R for φ(z) = z2 and

3. S need not necessarily be a subset of R. It is convenient to assume this for ease of exposition. In general,
the elements of the matrix Z can take values over any convex domain with a well-defined Bregman
divergence. We give examples of such settings in Section 7.
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S = R+ for φ(z) = z log z − z. Hence, Z ∈ Sm×n. Observe that we are now admitting a
much larger class of matrices than those used in the co-clustering formulations of Cho et al.
(2004); Dhillon et al. (2003b).

Given the data matrix Z, we consider a random variable Z, that takes values in Z
following a probability measure as described below. Let U be a random variable that takes
values in {1, · · · , m}, the set of row indices, and let V be a random variable that takes values
in {1, · · · , n}, the set of column indices. Let (U, V ) be distributed according to a probability
measure w = {wuv : [u]m1 , [v]n1}, which is either pre-specified or set to be the uniform
distribution.4 Let Z be a (U, V )-measurable random variable that takes values in Z following
w, i.e., p(Z(u, v) = zuv) = wuv.

5 Clearly, for a given matrix Z, the random variable Z is
a deterministic function of the random variable (U, V ). Throughout the paper, we assume
the matrix Z and the measure w to be fixed so that taking conditional expectations of the
random variable Z is well defined. In pure numeric terms, such conditional expectations
are simply weighted row/column/block averages of the matrix Z according to the weights
w. The stochastic formalization enables a succinct way to analyze such weighted averages.

Example 1.C (I-Divergence) Let (X, Y ) ∼ p(X, Y ) be jointly distributed random vari-
ables with X and Y taking values in {xu}, [u]m1 and {yv}, [v]n1 respectively. Then, p(X, Y )
can be written in the form of the matrix Z = [zuv], [u]m1 , [v]n1 , where zuv = p(xu, yv) is a
deterministic function of u and v. This example with a uniform measure w corresponds
to the setting described in Section 2, Example 1.B (originally in the work of Dhillon et al.
(2003b)).

Example 2.C (Squared Euclidean Distance) Let Z ∈ R
m×n denote a data matrix

whose elements may assume positive, negative, or zero values and let w be a uniform
measure. This example corresponds to the co-clustering setting described by Cheng and
Church (2000); Cho et al. (2004).

2.3 Bregman Co-clustering

We define a k × l partitional co-clustering as a pair of functions:

ρ : {1, · · · , m} 7→ {1, · · · , k}

γ : {1, · · · , n} 7→ {1, · · · , l} .

Let Û and V̂ be random variables that take values in {1, · · · , k} and {1, · · · , l} such that
Û = ρ(U) and V̂ = γ(V ). Let Ẑ = [ẑuv] ∈ Sm×n be an approximation for the data matrix
Z such that Ẑ depends only upon a given co-clustering (ρ, γ) and certain summary statistics
derived from the co-clustering. Let Ẑ be a (U, V )-measurable random variable that takes
values in this approximate matrix Ẑ following w, i.e., p(Ẑ(U, V ) = ẑuv) = wuv. Then the

4. Associating a measure with the elements of a matrix is not common, but this construct allows us to
deal with a wider variety of situations including the modeling of matrices with missing values. Further,
several quantities of interest, such as row/column/block averages, can now be succinctly described in
terms of conditional expectations.

5. The probability mass of an event is appropriately aggregated when the elements of Z are not distinct.
However, the (U, V )-measurability dictates which part of the total mass of an event is associated with
which element of the support.

10
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goodness of the underlying co-clustering can be measured in terms of the expected distortion
between Z and Ẑ, i.e.,

E[dφ(Z, Ẑ)] =
m

∑

u=1

n
∑

v=1

wuvdφ(zuv, ẑuv) = dΦw(Z, Ẑ), (2.6)

where Φw : Sm×n 7→ R is a separable convex function induced on the matrices such that the
Bregman divergence between any pair of matrices is the weighted sum of the element-wise
Bregman divergences corresponding to the convex function φ. From the matrix approxima-
tion viewpoint, the above quantity is simply the weighted element-wise distortion between
the given matrix Z and the approximation Ẑ. The co-clustering problem is then to find
(ρ, γ) such that (2.6) is minimized. To carry out this plan, we need to make precise the
connection between (ρ, γ) and Ẑ.

Example 1.D (I-Divergence) The Bregman co-clustering objective function (2.6) in this
case is given by E[dφ(Z, Ẑ)] = E[Z log(Z/Ẑ) − Z + Ẑ].

Example 2.D (Squared Euclidean Distance) The Bregman co-clustering objective func-
tion (2.6) in this case is given by E[dφ(Z, Ẑ)] = E[(Z − Ẑ)2].

The goodness of a co-clustering (ρ, γ) is determined by how well Ẑ (or the matrix Ẑ)
approximates Z (or the matrix Z). The crucial thing to note is that the construction of
the approximation Ẑ is based on the co-clustering (ρ, γ) and certain summary statistics of
the original random variable Z that one wants to preserve in the approximation. The sum-
mary statistics may be properties of the co-clusters themselves, such as co-cluster marginals
as in (1.4), and/or some other important statistics of the data, such as row and column
marginals as in (1.5). In other words, Z is not accessible while constructing Ẑ, since other-
wise one could just set Ẑ = Z and get perfect reconstruction. The special case when Ẑ is
constructed only using the co-clustering (ρ, γ) and the co-cluster averages is important and
easy to understand. Moreover, it is a straightforward generalization of one-sided clustering
schemes such as KMeans. Hence, we will investigate this special case in detail in Section 3.
The general case, where additional summary information such as row/column averages of
the original matrix are available, will be analyzed in Sections 4 and 5.

3. Block Average Co-clustering: A Special Case

In this section, we discuss the important special case of Bregman co-clustering where the
summary statistics are derived by aggregating along the co-clusters, i.e., the summary statis-
tics preserved are just the co-cluster means. Hence, in this case, for a given co-clustering
(ρ, γ), Ẑ has to be reconstructed based only on the co-cluster means, or equivalently, the
conditional expectation random variable E[Z|Û , V̂ ] where expectation is taken with respect
to the measure w.6 The quality of the co-clustering (ρ, γ) is determined by the approxima-
tion error between Z and Ẑ.

6. Unless otherwise mentioned, the expectations in the rest of the paper are with respect to the probability
measure w.
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3.1 Minimum Bregman Information (MBI) Principle

In order to analyze the block co-clustering problem, we first focus on characterizing the ap-
proximation random variable Ẑ given a fixed co-clustering (ρ, γ) and the resulting co-cluster
means {E[Z|û, v̂]}. While there can be many different ways to get an approximation Ẑ from
the available information, we consider a principled characterization based on the Bregman
information of the reconstruction Ẑ. In particular, we propose and use the minimum Breg-
man information principle that can be shown to be a direct generalization of the maximum
entropy as well as the least squares principles.

In order to get the “best” approximation, we consider a special class of approximat-
ing random variables Z ′ based on the given co-clustering and the available information
E[Z|Û , V̂ ]. Let SA be defined as

SA = {Z ′|E[Z ′|û, v̂] = E[Z|û, v̂], ∀[û]k1, [v̂]l1 } . (3.7)

It is reasonable to search for the best approximation in SA since any random variable Z ′

in this class has the same co-cluster statistics as the original random variable Z. In other
words, the corresponding reconstructed matrices preserve the co-cluster statistics of the
original matrix, which is desirable. Then, with respect to the set SA, we ask: What is
the “best” random variable to select from this set? We propose a new minimum Bregman
information principle that recommends selecting a random variable that has the minimum
Bregman information subject to the linear constraints (3.7):

ẐA ≡ ẐA(ρ, γ) = argmin
Z′∈SA

Iφ(Z ′). (3.8)

The basic philosophy behind the minimum Bregman information principle is that the
“best” approximation given certain information is one that does not make any extra assump-
tions over the available information. Mathematically, the notion of no extra assumptions
or maximal uncertainty translates to minimum Bregman information while the available
information is provided by the linear constraints that preserve the specified statistics.

As the following examples show, the widely used maximum entropy principle (Jaynes,
1957; Cover and Thomas, 1991) and standard least squares principles (Csiszár, 1991) can
be obtained as special cases of the MBI principle.

Example 1.E From Example 1.B, we observe that the Bregman information of a random
variable Z following a uniform distribution over the joint probability values of two other
random variables X and Y is given by − 1

mn
H(p(X, Y )) upto an additive constant, i.e., it is

negatively related to entropy of the joint distribution of X and Y . Hence, minimizing the
Bregman information is equivalent to maximizing the entropy demonstrating that the max-
imum entropy principle is a special case of the MBI principle corresponding to I-divergence.

Example 2.E From Example 2.B, we observe that the Bregman information of a random
variable Z following a uniform distribution over the elements of a matrix Z is given by
1

mn
‖Z‖2

F upto an additive constant. Hence, minimizing the Bregman information in this
case is equivalent to minimizing the Frobenius norm of the matrix (L2 norm for a vector),
which in turn implies that the standard least squares principle is a special case of the MBI
principle corresponding to squared error.

12
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Now, we focus on getting a closed form solution of the minimum Bregman information
problem. In the absence of any constraints, the minimum Bregman information solution
corresponds to a constant random variable. For the current situation, where we are con-
strained to preserve the co-cluster means {E[Z|û, v̂]}, the following theorem shows that the
best approximation ẐA simply equals E[Z|Û , V̂ ].

Theorem 1 The solution to (3.8) is unique and is given by

ẐA = E[Z|Û , V̂ ].

Proof Let Z ′ be any random variable in SA and let ẐA denote E[Z|Û , V̂ ]. By definition,

Iφ(Z ′)
(a)
= E[φ(Z ′)] − φ(E[Z ′])

= E[φ(Z ′)] − E
Û ,V̂

[φ(E[Z ′|Û , V̂ ])] + E
Û ,V̂

[φ(E[Z ′|Û , V̂ ])] − φ(E[Z ′])

(b)
= E[φ(Z ′)] − E

Û ,V̂
[φ(E[Z ′|Û , V̂ ])] + E

Û ,V̂
[φ(ẐA)] − φ(E

Û ,V̂
[ẐA])

(c)
= E

Û ,V̂

[

E
Z′|Û ,V̂

[φ(Z ′)] − φ(E[Z ′|Û , V̂ ])
]

+ Iφ(ẐA)

(d)

≥ Iφ(ẐA),

where (a) and (c) follow from Lemma 2; (b) follows from the fact that E[Z ′|Û , V̂ ] =
E[Z|Û , V̂ ] = ẐA and E

Û ,V̂
[E[Z|Û , V̂ ]] = E[ẐA] = E[Z] = E[Z ′]; and (d) follows from condi-

tional Jensen’s inequality. In particular, since φ is strictly convex, we have E
Z′|Û ,V̂

[φ(Z ′)] ≥

φ(E[Z ′|Û , V̂ ]).
Hence, ẐA has lower Bregman information than any random variable in SA. Further,

ẐA ∈ SA, i.e., E[ẐA|Û , V̂ ] = ẐA = E[Z|Û , V̂ ]. Along with the strict convexity of φ, this
ensures that ẐA = E[Z|Û , V̂ ] is the unique solution to (3.8).

For an alternative constructive proof of Theorem 1, please see Appendix C.1.
Besides being the MBI solution, ẐA has an additional important property that makes

it the “best” reconstruction. Although we focused on the set SA that contains all Z ′ that
preserve the known co-cluster statistics, an alternative could have been to investigate the
set SB that contains all deterministic functions of the available information E[Z|Û , V̂ ], i.e.,

SB = {Z ′′|Z ′′ = f(E[Z|Û , V̂ ])} , (3.9)

where f is an arbitrary (Û , V̂ )-measurable function. In SB, the optimal approximation ẐB

is the one that is closest to the true Z:

ẐB ≡ argmin
Z′′∈SB

E[dφ(Z, Z ′′)] . (3.10)

In order to show a relationship between ẐA and ẐB, we start with the following lemma
(Lemma 3), which establishes the fact that the MBI solution ẐA allows a Pythagorean
decomposition of the expected divergence between any Z ′ ∈ SA and any Z ′′ ∈ SB. Recall
that SA consists of all random variables that have the same co-cluster statistics as Z and
SB consists of all measurable functions of E[Z|Û , V̂ ].
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Lemma 3 For any Z ′ ∈ SA as in (3.7), any Z ′′ ∈ SB as in (3.9), and ẐA as in (3.8),

E[dφ(Z ′, Z ′′)] = E[dφ(Z ′, ẐA)] + E[dφ(ẐA, Z ′′)].

A proof of the lemma is presented in Appendix C.2. Now, since ẐA = E[Z|Û , V̂ ], and
is hence a function of E[Z|Û , V̂ ], we have ẐA ∈ SB. As a result, from Lemma 3, we get
the following projection theorem, which states that the MBI solution ẐA is the forward
Bregman projection of any element of SA onto the set SB as well as the backward Bregman
projection of any element of SB onto the set SA (see Figure 4.3 in Section 4).

Theorem 2 (Projection Theorem) For any Z ′ ∈ SA as in (3.7), any Z ′′ ∈ SB as
in (3.9), and ẐA as in (3.8), we have,

(a) ẐA = argmin
Z′∈SA

E[dφ(Z ′, Z ′′)],

(b) ẐA = argmin
Z′′∈SB

E[dφ(Z ′, Z ′′)].

Since the original Z ∈ SA, we observe that ẐA is the best approximation (by a backward
Bregman projection) to Z in SB, implying ẐB = ẐA as formally stated below.

Corollary 1 For ẐA and ẐB given by (3.8) and (3.10) respectively, we have

Ẑ ≡ ẐA = ẐB. (3.11)

The equivalence result is a precise mathematical quantification of the optimal approxima-
tion property of the MBI solution for the special case where only E[Z|Û , V̂ ] is available
during reconstruction. It shows that the best approximation in terms of expected Bregman
divergence given the co-cluster statistics is indeed the MBI solution that preserves those
statistics.

3.2 Co-clustering Problem Formulation

Now that we have associated an approximation Ẑ with a given co-clustering (ρ, γ), we
return to the original Bregman co-clustering problem in (2.6). The goal is to obtain a
co-clustering (ρ, γ) such that the expected Bregman divergence between Z and the approxi-
mation Ẑ is minimized. So far, we know that the best reconstruction Ẑ is the MBI solution
and is expressed in closed form by Theorem 1. The following lemma presents an alternative
characterization of the co-clustering objective function (2.6). It shows that the expected
Bregman divergence to the approximation Ẑ is exactly equal to the loss in Bregman infor-
mation due to co-clustering.

Lemma 4 For any random variable Z and Ẑ as in (3.11),

E[dφ(Z, Ẑ)] = Iφ(Z) − Iφ(Ẑ) . (3.12)
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Proof By definition,

E[dφ(Z, Ẑ)] = E[φ(Z) − φ(Ẑ) − 〈Z − Ẑ,∇φ(Ẑ)〉]

(a)
= E[φ(Z)] − E[φ(Ẑ)] − E

Û ,V̂
[〈E[Z|Û , V̂ ] − E[Ẑ|Û , V̂ ],∇φ(Ẑ)〉]

(b)
= E[φ(Z)] − E[φ(Ẑ)]

(c)
= E[φ(Z)] − φ(E[Z]) − E[φ(Ẑ)] + φ(E[Ẑ])

(d)
= Iφ(Z) − Iφ(Ẑ),

where (a) follows from the fact that Ẑ and hence, ∇φ(Ẑ) is constant for fixed (Û , V̂ ), (b)
follows since Ẑ ∈ SA, (c) follows since E[Z] = E[Ẑ] and (d) follows from Lemma 2.

Using Lemma 4, the original Bregman clustering problem in (2.6) can be posed as one
of finding the optimal co-clustering (ρ∗, γ∗) defined as follows:

(ρ∗, γ∗) = argmin
(ρ,γ)

E[dφ(Z, Ẑ)] = argmin
(ρ,γ)

[Iφ(Z) − Iφ(Ẑ)] = argmax
(ρ,γ)

Iφ(Ẑ) , (3.13)

since Iφ(Z) is a constant. Further, using the fact that Ẑ is the solution to the MBI problem,
we have

(ρ∗, γ∗) = argmax
(ρ,γ)

min
Z′∈SA

Iφ(Z ′) . (3.14)

Hence, the best co-clustering (ρ∗, γ∗) is the one that results in the matrix reconstruction
corresponding to the minimum approximation error, or equivalently, the one that solves the
max-min problem in (3.14).

3.3 Block Average Co-clustering Algorithm

In this section, we present an algorithm for block average co-clustering based on a useful
decomposition of the objective function (3.13), which gives a better insight on how to update
either the row clustering ρ or the column clustering γ.

3.3.1 A Useful Decomposition

From Theorem 1, it follows that for a given co-clustering (ρ, γ), the approximation Ẑ that
achieves the minimum Bregman information is given by ẑuv = E[Z|û, v̂], where û = ρ(u), v̂ =
γ(v). We denote the co-cluster means corresponding to (ρ, γ) as µûv̂, i.e., µûv̂ = E[Z|û, v̂].
Hence, the optimal approximation Ẑ corresponding to (ρ, γ) is given by

ẑuv = µûv̂ = µρ(u)γ(v). (3.15)

With this closed form for Ẑ, we have

E[dφ(Z, Ẑ)] =
∑

u,v

wuvdφ(zuv, µρ(u)γ(v))

=
k

∑

g=1

l
∑

h=1

∑

u:ρ(u)=g

∑

v:γ(v)=h

wuvdφ(zuv, µgh) . (3.16)
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Note that (3.16) decomposes the objective function in terms of the row cluster assignment
ρ(u) of each individual row u and column cluster assignment γ(v) of each individual column
v.

3.3.2 Updating Row and Column Clusters

Since the decomposition (3.16) is additive over all the rows (or columns), we can update
the current cluster assignment of each row (or column) in order to decrease the objective
function. For any particular row u, the contribution to the overall objective function is
determined by its current assignment ρ(u). Assuming ρ(u) = g, we can express the objective
function (3.16) as the sum of row contributions of the form

Ju(g) =
l

∑

h=1

∑

v:γ(v)=h

wuvdφ(zuv, µgh) . (3.17)

The choice of g exactly determines what set of l co-cluster means µgh occur in (3.17). Hence,
the best possible choice for the new row cluster assignment ρnew(u) is to pick the value of
g that has the minimum cost, i.e.,

ρnew(u) = argmin
g

Ju(g) = argmin
g

l
∑

h=1

∑

v:γ(v)=h

wuvdφ(zuv, µgh) . (3.18)

Since the terms corresponding to each row are additive in (3.16), the row assignment up-
date in (3.18) can be applied simultaneously to all rows to get the new row assignments
ρnew(u), [u]n1 . The new row assignments effectively change the current approximation ma-
trix Ẑ to a new matrix Z̃ρ1γ0

, which is just a row-permuted version of Ẑ that achieves a
lower cost, i.e.,

E[dφ(Z, Z̃ρ1γ0
)] ≤ E[dφ(Z, Ẑ)] . (3.19)

The decrease in the objective function value is due to the optimal update in the row cluster
assignments. A similar approach can be applied to update the column cluster assignments in
order to obtain an even better approximation Z̃ρ1γ1

. Note that the current approximation
can possibly be further improved by another round of row clustering updates to get an
approximation Z̃ρ2γ1

, where the subscript in ρ (or γ) denotes the number of times the row
(column) cluster assignment has been updated. The same process can be repeated multiple
times. For simplicity, we denote the final assignments by (ρnew, γnew) and the approximation
obtained from such reassignments as Z̃.

Once all row and column assignments have been updated, the new approximation ma-
trix Z̃ need not be the minimum Bregman information solution for the new co-clustering
(ρnew, γnew). Hence, one needs to recompute the new minimum Bregman solution Ẑnew

corresponding to (ρnew, γnew). The following lemma establishes that the updated Ẑnew is
guaranteed to either decrease the objective, or keep it unchanged. In fact, Ẑnew is the best
approximation possible based on the co-clustering (ρnew, γnew).

Lemma 5 Let Ẑnew be the minimum Bregman information solution corresponding to (ρnew, γnew).
Then,

E[dφ(Z, Ẑnew)] ≤ E[dφ(Z, Z̃)] .
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Algorithm 1 Bregman Block Average Co-clustering (BBAC) Algorithm

Input: Matrix Z ⊆ Sm×n, probability measure w, Bregman divergence dφ : S× int(S) 7→ R+, num.
of row clusters l, num. of column clusters k.

Output: Block Co-clustering (ρ∗, γ∗) that (locally) optimizes the objective function in (3.13).
Method:

{Initialize ρ, γ }
Start with an arbitrary co-clustering (ρ, γ)
repeat
{Step A: Update Co-cluster Means}
for g = 1 to k do

for h = 1 to l do
µgh =

∑

u:ρ(u)=g

∑

v:γ(v)=h wuvzuv

end for
end for
{Step B: Update Row Clusters (ρ)}
for u = 1 to m do

ρ(u) = argmin
g∈{1,...,k}

∑l
h=1

∑

v:γ(v)=h wuvdφ(zuv, µgh)

end for
{Step C: Update Column Clusters (γ)}
for v = 1 to n do

γ(v) = argmin
h∈{1,...,l}

∑k
g=1

∑

u:ρ(u)=g wuvdφ(zuv, µgh)

end for
until convergence
return (ρ, γ)

A proof of the above lemma is provided in Appendix C.4.

3.3.3 The Algorithm

The above analysis leads to a simple iterative algorithm for Bregman block average co-
clustering (BBAC in Algorithm 1). The algorithm starts with an arbitrary choice of co-
clustering (ρ, γ). At every iteration, either the row clustering ρ or the column clustering
γ is updated in order to decrease the objective function value in (3.13). In practice, one
could run multiple iterations of such updates. After the assignments have been updated
for all rows and columns, the co-clustering means are updated, which further decreases the
objective. The process is repeated till convergence. Since the objective decreases at every
iteration, and the objective is lower bounded, the algorithm is guaranteed to converge to a
(local) minimum of the objective.

3.4 Block Average Co-clustering as Matrix Factorization

Since the MBI solution is always the co-cluster means, and the BBAC algorithm essen-
tially alternates between updating the row and column assignments, and updating the
co-cluster means, the BBAC algorithm is a direct generalization of the Bregman clustering
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algorithm (Banerjee et al., 2005b). As we show below, the BBAC algorithm can also be
viewed as solving a matrix factorization problem.

Let Z be the m × n matrix corresponding to the random variable Z and W ∈ R
m×n
+

denote the matrix corresponding to a probability measure over the matrix elements. Let
R ∈ {0, 1}m×k and C ∈ {0, 1}n×l denote the row and column cluster membership matrices,
i.e.,

rug =

{

1 g = ρ(u),

0 otherwise,
cvh =

{

1 h = γ(v),

0 otherwise.

Further, let M be a k×l matrix corresponding to the co-cluster means, i.e., expectations
or weighted averages of the matrix values over the co-clusters. Since the minimum Bregman
information solution for the block co-clustering case are the co-cluster averages, the recon-
structed matrix Ẑ can be expressed as the product RMCT . Therefore, the co-clustering
problem is essentially reduces to finding row assignment matrix R, column assignment ma-
trix C such that the approximation error dΦw(Z, Ẑ) is minimized where Ẑ = RMCT . The
BBAC algorithm returns matrices R,M and C that achieves a local minimum of the above
objective function. When l = n, the BBAC algorithm reduces to the Bregman clustering
algorithm (Banerjee et al., 2005b) applied to rows of Z. In particular, when the Bregman
divergence is the squared Euclidean distance, we obtain the classical KMeans algorithm.

3.5 General Formulation and Analysis: Warm Up

So far, we have studied in detail the important special case of block average co-clustering.
In the next section, we will formulate and analyze a more general class of co-clustering
problems.

The differences between the various formulations will stem from the different summary
statistics used in the approximation Ẑ. For the block co-clustering case, Ẑ depended only
on the co-cluster means {E[Z|û, v̂]}. In Section 4, we shall consider the exhaustive list of
summary statistics based on which Ẑ can be reconstructed, and go on to propose a general
case meta-algorithm with provable properties in Section 5. The BBAC algorithm can then
be seen as a special case of this meta-algorithm obtained for a particular choice of summary
statistics.

Before going into the formulation and analysis of the general case, we want to highlight
the results that are specific to block average co-clustering as well as the results that continue
to hold in the general case for any choice of summary statistics. We start with the results
that hold only for block average co-clustering and do not carry over to the general case.

1. For block average co-clustering, the MBI solution is the same for all Bregman diver-
gences (Theorem 1). However, in the general case, the solution generally depends on
the choice of the Bregman divergence. In fact, block average co-clustering is the only
case when the solution is independent of this choice.

2. In the general case, it is not possible to get a closed form MBI solution. In general,
a convex optimization problem has to be solved to find the solution; see Section 5.5
for some iterative approaches for computing the MBI solution. We also provide exact
solutions for the important special cases where closed form solutions do exist.

18



Bregman Co-clustering and Matrix Approximation

3. For block co-clustering, the reconstruction from the minimum Bregman information
solution is also the best approximation of the original Z among all functions of the co-
cluster means (Theorem 1). This result only holds when the reconstruction is based on
one set of summary statistics, which was the co-cluster means in the block co-clustering
case. More formally, the result holds when the random variable is approximated based
on a single sub-σ-algebra (see Section 4.1). In general, multiple sets of summary
statistics may need to be preserved and the reconstruction will be based on multiple
sub-σ-algebras.

4. The matrix approximation obtained in the general case need not be expressible as a
matrix factorization in terms of the cluster membership matrices R and C. In fact,
block average co-clustering is the only formulation where such an interpretation is
possible for all Bregman divergences.

Finally, we focus on the results that continue to hold in the general case for arbitrary
choices of summary statistics:

1. Although there need not be a closed form solution to the minimum Bregman informa-
tion problem and the solution may depend on the choice of the Bregman divergence,
some important properties of the solution remains unchanged in the general case.
In particular, the form of the solution in terms of the Lagrange multipliers (see the
constructive proof of Theorem 1 in Appendix C.1) remain unchanged.

2. The Pythagorean decomposition (Lemma 3) and the projection theorem (Theorem 2)
associated with the sets SA and SB continues to hold for the general case, with SB

defined as the set of all generalized additive models of the various summary statistics
in a transformed space (see Sec 4.4). For the block average co-clustering case, since
we only preserve the co-cluster means, the set SB turns out to be set of all functions
of the co-cluster means. Further, the MBI solution can be shown to be the best
approximation to the original Z among this special class of functions of the summary
statistics SB generalizing the equivalence in Corollary 1. The general result that we
discuss in Section 4.4 provides an axiomatic justification of the minimum Bregman
information principle (Csiszár, 1991).

3. The loss in Bregman information result (Lemma 4) continues to hold.

4. Similar to Algorithm 1, we obtain an iterative algorithm for the general case where we
alternately optimize over the row cluster assignments, column cluster assignments and
the MBI solution. As in the block-average case, the co-clustering objective function
allows an additive decomposition over the rows and columns and the resulting meta-
algorithm (Algorithm 2) guarantees monotonic decrease of the objective function in
every iteration.

4. Bregman Co-clustering: Formulation and Analysis

In this section, we formulate a general version of the Bregman co-clustering problem by
abstracting out the commonalities between various possible co-clustering schemes that arise
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due to constraints that preserve different choices of summary statistics. To achieve this, we
first define the notion of a co-clustering basis in terms of the conditional expectation-based
statistics that one might want to preserve, and then enumerate all the possible co-clustering
bases that may be of interest.

4.1 Co-clustering Bases

Let us fix a co-clustering (ρ, γ). Given the co-clustering, there are essentially four random
variables of interest: U , V , Û , and V̂ . To these, we add two random variables U∅ and V∅

corresponding to the constant random variables over the rows and columns respectively, for
easy enumeration. Let Γ1 denote the set {U∅, V∅, Û , V̂ , U, V }. Our goal is to approximate
the random variable Z using (possibly multiple) conditional expectations of Z where the
conditioning is done on one or more of the random variables in Γ1. Observe that choosing
one or more random variables to condition on is equivalent to choosing a sub-σ-algebra7 G
of the Z. We focus on approximating Z using conditional expectations E[Z|G] since the
conditional expectation E[Z|G] is the optimal approximation of the true Z with respect to
any Bregman divergence among all G-measurable functions (Banerjee et al., 2005a).

Since duplication of information in the preserved conditional expectations does not lead
to a different approximation, we only focus on combinations of random variables from Γ1

that will lead to a unique set of summary statistics. First, we observe that some of the
random variables in Γ1 are measurable with respect to some others. In other words, some
random variables are just “high resolution” versions of some others so that conditioning
on certain sets of members of Γ1 is equivalent to conditioning on the subset with respect
to which the rest are measurable. For example, E[Z|U, Û , V∅, V̂ ] = E[Z|U, V̂ ], since Û is
U -measurable, and V∅ is V̂ -measurable. In fact, due to the natural ordering of the random
variables {U∅, Û , U} and {V∅, V̂ , V } in terms of measurability, only the row and column
random variables of the highest granularity matter. Hence, there are only 9 unique sub-σ-
algebras of Z based on which conditional expectations may be taken. We denote this set
by Γ2:

Γ2 = {{U∅, V∅}, {U∅, V̂ }, {U∅, V }, {Û , V∅}, {Û , V̂ }, {Û , V }, {U, V∅}, {U, V̂ }, {U, V }}.

Γ2 determines the set of all summary statistics that one maybe interested in preserving. A
particular choice of an element of Γ2, such as {Û , V̂ }, leads to an approximation scheme
where the reconstruction matrix preserves the corresponding summary statistics. For the
choice of {Û , V̂ }, we get the block average co-clustering discussed in Section 3 where the
matrix approximation preserves all co-cluster means.

Now, we focus on a much more general scenario where one may want to preserve pos-
sibly more than one summary statistic. In fact, one could consider all possible subsets
of Γ2. Of these, some combinations of summary statistics are effectively equivalent, e.g.,
{{Û , V∅}, {U∅, V̂ }, {Û , V̂ }} and {{Û , V̂ }}, whereas some others are trivial and even inde-
pendent of the co-clustering, e.g., {{U∅, V∅}} and {{U∅, V }, {U, V∅}}. In this paper, we focus
only on unique and non-trivial combinations of elements of Γ2, that we call co-clustering
bases and define them as follows:

7. A σ-algebra is a collection of sets that includes the empty-set and is closed w.r.t. complements, countable
unions and intersections. Further, G1 is a sub σ-algebra of a σ-algebra G (or a G-measurable random
variable) if G1 is itself a σ-algebra and satisfies G1 ⊆ G.
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Definition 3 8 A co-clustering basis C is a set of elements of Γ2, i.e., an element of the
power set 2Γ2 , which satisfies the following two conditions:

(a) There exist G1,G2 ∈ C (with G1 possibly the same as G2) such that Û ∈ G1 and V̂ ∈ G2.

(b) There do not exist G1,G2 ∈ C, G1 6= G2 such that G2 is a deterministic function of G1.

In the above definition, condition (a) ensures that the approximation depends on the co-
clustering while condition (b) ensures that for any pair G1,G2, the conditional expectation
E[Z|G2] cannot be obtained from E[Z|G1]. The latter ensures that the approximation
obtained using the basis C is not identical to that obtained using C \ G2.

The following theorem shows that there are only six possible co-clustering bases, each
of which leads to a distinct matrix approximation scheme.

Theorem 3 Given the random variable Z, there are only six distinct co-clustering bases
that approximate Z using conditional expectations of Z given combinations of the row and
column random variables {U, V, Û , V̂ }. The six bases correspond to the sets

C1 = {{Û}, {V̂ }}, C2 = {{Û , V̂ }},

C3 = {{Û , V̂ }, {U}}, C4 = {{Û , V̂ }, {V }},

C5 = {{Û , V̂ }, {U}, {V }}, C6 = {{U, V̂ }, {Û , V }}.

Proof In order to identify the various matrix approximation schemes, we determine the
subsets C ⊆ Γ2 that satisfy conditions (a) and (b). First, observe that E[Z|U∅, V∅] = E[Z]
and E[Z|U, V ] = Z. Since E[Z] = E[Z|U∅, V∅] can be obtained from every other condi-
tional expectation E[Z|C], C ∈ Γ2, and Z = E[Z|U, V ] determines every other conditional
expectation, condition (b) implies that the pairs {U∅, V∅} and {U, V } cannot occur in com-
bination with any other. As these pairs do not contain Û or V̂ , we only need to consider
combinations of the remaining members of Γ2.

Further, we note that if there are two pairs G1,G2 ∈ C, G1 6= G2 such that Û ∈ G1 and
Û ∈ G2, then either E[Z|G1] subsumes E[Z|G2] or vice versa depending on the granularity
of the column random variables in G1 and G2. A similar observation holds for V̂ . Hence,
condition (b) implies that each non-trivial combination C ⊆ Γ2 should contain exactly one
pair (possibly the same) that contains Û and V̂ . Using the above observation, we enumerate
the various possible cases as follows:

case 1: {Û , V∅} ∈ C. C should also contain a pair containing V̂ , which can only be {U∅, V̂ }
since every other eligible pair ∈ Γ2 uniquely determines {Û , V∅} so that inclusion of
any other pair leads to a violation of condition (b). Therefore, the only possible
combination in this case is {{Û , V∅}, {U∅, V̂ }}.

case 2: {Û , V̂ } ∈ C. Since condition (a) is already satisfied, we only need to identify the
pairs in Γ2 that can be included in C without violating condition (b), i.e., pairs for
which the row random variable is of higher granularity than Û and the column random

8. Note that each element of Γ2 corresponds to a unique sub-σ algebra of Z, and hence, we use identical
notation for the elements of the co-clustering bases and the corresponding sub-σ algebras.
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Figure 4.1: Relative complexity of the 6 co-clustering bases.

variable is of lower granularity than V̂ or vice versa, which leads to two possibilities—
{U, V∅} and {U∅, V }. Hence, there are four combinations corresponding to the cases
where we include neither of the pairs, exactly one of the pairs and both of them, i.e.,

{{Û , V̂ }}, {{Û , V̂ }, {U}, {V }}

{{Û , V̂ }, {U, V∅}}, and{{Û , V̂ }, {U∅, V }}.

case 3: {Û , V } ∈ C. C should also contain a pair containing V̂ , which can only be {U, V̂ }
since every other eligible pair ∈ Γ2 is subsumed by {Û , V }. Therefore, the only
possible combination in this case is {{Û , V }, {U, V̂ }}.

Ignoring U∅ and V∅ since they are constant random variables and putting together all the
different possible bases, we obtain the desired result.

Table 4.1 contains a graphical representation of the various co-clustering bases. For example,
in (a), the expectations along the row clusters (E[Z|Û ]) and the column clusters (E[Z|V̂ ])
are the statistics used for reconstructing the original Z. From the table, we can see that
the various conditional expectations correspond to matrices of different sizes. We make use
of this observation later in Section 6 to obtain a computational recipe for the Bregman co-
clustering problem. The sets C1, C2, C5 and C6 are symmetric in the row and column random
variables whereas C3 and C4 are not. Further, if we have access to {E[Z|G] : G ∈ Ci}, for some
1 ≤ i ≤ 6, then we can compute {E[Z|G] : G ∈ Cj} for all 1 ≤ j ≤ i, i 6= 4, j 6= 3. In this
sense, we say that the constraint set Ci is more complex than Cj for all j ≤ i ≤ 6, i 6= 4, j 6= 3
as in Figure 4.1. From a practical perspective, a more complex set of constraints allows
us to retain more information about Z, but obviously requires an increased number of
parameters.

Our abstraction allows us to handle all the above schemes in a systematic way. Now,
consider a co-clustering basis C ∈ {Ci}

6
i=1 as the pertinent one. Given the choice of a

particular basis, we need to decide on the “best” reconstruction Ẑ for a given co-clustering
(ρ, γ). Then the general co-clustering problem will effectively reduce to one of finding an
optimal co-clustering (ρ∗, γ∗) whose reconstruction has the lowest approximation error with
respect to the original Z.
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(a) Basis C1 (b) Basis C2

E[Z|U,V]
^  ^

Reordered ZE[Z|U]

E[Z|V]

E[Z|U,V]
^  ^

Reordered Z

(c) Basis C3 (d) Basis C4

E[Z|U]

E[Z|V]
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^  ^

Reordered Z

Reordered Z

E[Z|U,V]

E[Z|U,V]

^

^

(e) Basis C5 (f) Basis C6

Table 4.1: Schematic diagram of the six co-clustering bases. In each case, the summary
statistics used for reconstruction (e.g., E[Z|Û ] and E[Z|V̂ ]) are expectations
taken over the corresponding dotted regions (e.g., over all the columns and all
the rows in the row cluster determined by Û in case of E[Z|Û ]).
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4.2 Minimum Bregman Information (MBI) Approximation

As in Section 3.1, for a given co-clustering (ρ, γ) and a given co-clustering basis C, we use
the MBI principle to obtain the “best” approximation Ẑ. Recall that for block average
co-clustering, the search for the MBI solution was restricted to all Z ′ that preserved the co-
cluster means. For a general co-clustering basis C, the search space has to be appropriately
generalized (or restricted) such that Z ′ preserves all the summary statistics relevant to
C. Let SA denote a class of random variables such that every Z ′ in the class satisfies the
following linear constraints, i.e.,

SA = {Z ′|E[Z|G] = E[Z ′|G], ∀G ∈ C}. (4.20)

The reader may wish to compare the above definition (4.20) to the more specific definition
(3.7) that is applicable in the case of block co-clustering. It can be readily seen that (3.7)
follows by assuming that the co-clustering basis C = {{Û , V̂ }}.

We now select the random variable ẐA ∈ SA that has the minimum Bregman information
as the “best” approximation, i.e.,

ẐA ≡ argmin
Z′∈SA

Iφ(Z ′). (4.21)

The following theorem characterizes the solution to the MBI problem (4.21).

Theorem 4 For any random variable Z and a specified co-clustering basis C = {Gr}
s
r=1,

the solution ẐA to (4.21) is given by

∇φ(ẐA) = ∇φ(E[Z]) −
s

∑

r=1

Λ∗
Gr

wGr

, (4.22)

where wGr is the measure corresponding to Gr and {Λ⋆
Gr
}s

r=1 are the optimal Lagrange mul-
tipliers corresponding to the set of linear constraints:

E[Z ′|Gr] = E[Z|Gr], [r]s1.

In the above theorem, note that every instantiation of the random variables {Gr}
s
r=1

determines a single linear constraint and corresponds to uniquely determined scalar values
for the optimal Lagrange multipliers {Λ∗

Gr
}s

r=1, i.e., Λ∗
Gr

is a deterministic function of Gr.
Similarly, for each instantiation of Gr, wGr equals the total measure associated with that
particular instantiation, e.g., wû,v̂ =

∑

u:ρ(u)=û,v:γ(v)=v̂

wuv. Further, the fact φ is a strictly

convex function ensures that ∇φ is a one-to-one function so that (4.22) uniquely determines
the approximation ẐA. A proof of the above theorem is given in detail in Appendix D.1.

For easy reference, in Tables 4.2-4.3, we present the optimal Lagrange multipliers9 and
the MBI solutions for I-divergence and squared Euclidean distance for each of the six co-
clustering bases. Note that the approximation ẐA is itself a (U, V ) measurable random

9. The Lagrange dual L(Λ) of Bregman information is concave in Λ for all bases, but strictly concave only
for C2. Hence, the multipliers shown in Tables 4.2 and 4.3 are only one of the possible maximizers of
L(Λ) (for all the cases except C2).
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Coclustering Lagrange multipliers Approximation ẐA

basis C

C1 Λ∗
Û

= −wÛ log
(

E[Z|Û ]
E[Z]

)

, Λ∗
V̂

= −wV̂ log
(

E[Z|V̂ ]
E[Z]

)

E[Z|Û ]×E[Z|V̂ ]
E[Z]

C2 Λ∗
Û,V̂

= −wÛ,V̂ log
(

E[Z|Û,V̂ ]
E[Z]

)

E[Z|Û , V̂ ]

C3 Λ∗
Û,V̂

= −wÛ,V̂ log
(

E[Z|Û,V̂ ]
E[Z]

)

, Λ∗
U = −wU log

(

E[Z|U ]

E[Z|Û ]

)

E[Z|Û,V̂ ]×E[Z|U ]

E[Z|Û ]

C4 Λ∗
Û,V̂

= −wÛ,V̂ log
(

E[Z|Û,V̂ ]
E[Z]

)

, Λ∗
V = −wV log

(

E[Z|V ]

E[Z|V̂ ]

)

E[Z|Û,V̂ ]×E[Z|V ]

E[Z|V̂ ]

C5 Λ∗
Û,V̂

= −wÛ,V̂ log
(

E[Z|Û,V̂ ]
E[Z]

)

E[Z|Û,V̂ ]×E[Z|U ]×E[Z|V ]

E[Z|Û ]×E[Z|V̂ ]

Λ∗
U = −wU log

(

E[Z|U ]

E[Z|Û ]

)

, Λ∗
V = −wV log

(

E[Z|V ]

E[Z|V̂ ]

)

C6 Λ∗
Û,V

= −wÛ,V log
(

E[Z|Û,V ]

(E[Z]E[Z|Û,V̂ ])1/2

)

E[Z|U,V̂ ]×E[Z|Û,V ]

E[Z|Û,V̂ ]

Λ∗
U,V̂

= −wU,V̂ log
(

E[Z|U,V̂ ]

(E[Z]E[Z|Û,V̂ ])1/2

)

Table 4.2: MBI solution and optimal Lagrange multipliers for I-Divergence.

Coclustering Lagrange multipliers Approximation ẐA

basis C

C1 Λ∗
Û

= −2wÛ (E[Z|Û ] − E[Z]), E[Z|Û ] + E[Z|V̂ ] − E[Z]

Λ∗
V̂

= −2wÛ (E[Z|V̂ ] − E[Z])

C2 Λ∗
Û,V̂

= −2wÛ,V̂ (E[Z|Û , V̂ ] − E[Z]) E[Z|Û , V̂ ]

C3 Λ∗
Û,V̂

= −2wÛ,V̂ (E[Z|Û , V̂ ] − E[Z]), E[Z|Û , V̂ ] + E[Z|U ] − E[Z|Û ]

Λ∗
U = −2wU (E[Z|U ] − E[Z|Û ])

C4 Λ∗
Û,V̂

= −2wÛ,V̂ (E[Z|Û , V̂ ] − E[Z]), E[Z|Û , V̂ ] + E[Z|V ] − E[Z|V̂ ]

Λ∗
V = −2wV (E[Z|V ] − E[Z|V̂ ])

C5 Λ∗
Û,V̂

= −2wÛ,V̂ (E[Z|Û , V̂ ] − E[Z]) E[Z|Û , V̂ ] + E[Z|U ] + E[Z|V ]

Λ∗
U = −2wU (E[Z|U ] − E[Z|Û ]) −E[Z|Û ] − E[Z|V̂ ]

Λ∗
V = −2wV (E[Z|V ] − E[Z|V̂ ])

C6 Λ∗
Û,V

= −2wÛ,V (E[Z|Û , V ] − E[Z]
2 − E[Z|Û,V̂ ]

2 ) E[Z|U, V̂ ] + E[Z|Û , V ] − E[Z|Û , V̂ ]

Λ∗
U,V̂

= −2wU,V̂ (E[Z|U, V̂ ] − E[Z]
2 − E[Z|Û,V̂ ]

2 )

Table 4.3: MBI solution and optimal Lagrange multipliers for Squared Euclidean distance.

variable and the elements of the corresponding matrix approximation ẐA can be obtained by
instantiating ẐA for specific choices of U and V . From Table 4.2, we observe that in case of I-
divergence and original Z taking values over the probabilities of a joint distribution p(X, Y ),

the approximation ẐA for the co-clustering basis C5 is given by E[Z|Û ,V̂ ]E[Z|U ]E[Z|V ]

E[Z|Û ]E[Z|V̂ ]
which

reduces to q(X, Y ) = p(X)p(Y )p(X̂,Ŷ )

p(X̂)p(Ŷ )
(same as (1.3) ) since the marginal over the various row,

column and co-cluster partitions are directly proportional to the corresponding conditional
expectations of Z. Further, the fact that q is the minimum Bregman information solution
for KL-divergence under certain constraints is equivalent to Lemma 1, which shows that it
is the maximum entropy distribution under those constraints.
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4.3 Co-clustering Problem Formulation

The expected Bregman divergence between the given matrix Z and the minimum Bregman
information solution Ẑ provides us with an elegant way to quantify the goodness of a co-
clustering. This expected Bregman divergence is also exactly equal to the loss in Bregman
information due to co-clustering as the following lemma shows. This equivalence provides
another nice interpretation for the Bregman co-clustering formulation while generalizing
the viewpoint presented in the information-theoretic co-clustering formulation (Eqn. (1.1),
originally Lemma 2.1 of Dhillon et al. (2003b)).

Lemma 6 For any random variable Z,

E[dφ(Z, Ẑ)] = Iφ(Z) − Iφ(Ẑ),

where Ẑ = ẐA defined in (4.21).

Proof From Theorem 4, we note that

Ẑ = (∇φ)(−1)

(

∇φ(E[Z]) −
s

∑

r=1

Λ∗
Gr

wGr

)

,

where C = {Gr}
s
r=1 and Λ∗

Gr
are the optimal Lagrange multipliers corresponding to the

constraints E[Z|Gr] = E[Ẑ|Gr]. Now, by definition,

E[dφ(Z, Ẑ)] = E[φ(Z) − φ(Ẑ) − 〈Z − Ẑ,∇φ(Ẑ)〉]

= E[φ(Z) − φ(Ẑ)] + E[〈Z − Ẑ, (∇φ(E[Z]) −
s

∑

r=1

Λ∗
Gr

wGr

)〉]

= E[φ(Z) − φ(Ẑ)] + E[〈Z − Ẑ,∇φ(E[Z])〉] −
s

∑

r=1

E[〈Z − Ẑ,
Λ∗
Gr

wGr

〉]

(a)
= E[φ(Z) − φ(Ẑ)] −

s
∑

r=1

EGr [〈E[Z|Gr] − E[Ẑ|Gr],
Λ∗
Gr

wGr

〉]

(b)
= E[φ(Z) − φ(Ẑ)]

(c)
= E[φ(Z) − φ(E[Z])] − E[φ(Ẑ) − φ(E[Ẑ])]

(d)
= E[φ(Z) − φ(E[Z]) − 〈Z − E[Z],∇φ(E[Z])〉]

−E[φ(Ẑ) − φ(E[Ẑ]) − 〈Ẑ − E[Ẑ],∇φ(E[Ẑ])〉]

= Iφ(Z) − Iφ(Ẑ),

where (a) and (c) follow since E[Z] = E[Ẑ], (b) follows since E[Z|Gr] = E[Ẑ|Gr], ∀Gr ∈ C,
and (d) follows since E[〈Z−E[Z],∇φ(E[Z])〉] = 0 and similarly E[〈Ẑ−E[Ẑ],∇φ(E[Ẑ])] = 0.

We are now ready to define the generalized co-clustering problem.
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Definition 4 Given k, l, a Bregman divergence dφ, a random variable Z following a non-
negative measure w over Z ∈ Sm×n, namely the data matrix and a co-clustering basis C we
wish to find a co-clustering (ρ⋆, γ⋆) that minimizes:

(ρ⋆, γ⋆) = argmin
(ρ,γ)

E[dφ(Z, Ẑ)] = argmin
(ρ,γ)

(Iφ(Z) − Iφ(Ẑ)), (4.23)

where Ẑ = argmin
Z′∈SA

Iφ(Z ′) as defined in (4.21).

The general problem is NP-hard by a reduction from the KMeans problem. Hence, it is
difficult to obtain a globally optimal solution efficiently. However, in Section 5, we prove
that it is always possible to come up with an iterative update scheme that (a) monotonically
decreases the objective function, and (b) converges to a local minimum of the problem.

Example 1.F (I-Divergence) Continuing from Example 1.C, the Bregman co-clustering
objective function is given by E[Z log(Z/Ẑ) − Z + Ẑ] = E[Z log(Z/Ẑ)] since E[Z] = E[Ẑ]
where Ẑ is the minimum Bregman information solution from Table 4.2. Note that for the
co-clustering basis C5 and Z based on a joint distribution p(X, Y ), this reduces to KL(p||q)
where q is the joint distribution corresponding to the minimum Bregman solution indicating
that (1.1) follows as a special case of (4.23).

Example 2.F (Squared Euclidean Distance) Continuing from Example 2.C, the Breg-
man co-clustering objective function is E[(Z − Ẑ)2] where Ẑ is the minimum Bregman in-
formation solution from Table 4.3. Note that for the co-clustering basis C6, this reduces to
E[(Z −E[Z|U, V̂ ]−E[Z|Û , V ] +E[Z|Û , V̂ ])2], which is equivalent to the objective function
proposed in Cho et al. (2004); Cheng and Church (2000).

4.4 Optimality of the MBI Solution

We now present an analysis of the optimality of the MBI solution as the “best” reconstruc-
tion of the original matrix given the row and column clustering and the summary statistics
corresponding to any of the co-clustering bases. In Section 3, we showed that the minimum
Bregman information solution is the best reconstruction among all measurable functions
of the preserved summary statistics, i.e., conditional expectations with respect to the co-
clusters (Theorem 2). In this section, we present a generalization of that result, applicable
to all the co-clustering bases discussed above.

Ideally, we would like to demonstrate that the MBI solution minimizes the approxima-
tion error with respect to the original matrix among all reconstructions that correspond to
measurable functions of the available summary statistics. However, this property is not true
for a general co-clustering basis since the optimal reconstruction depends on the structure of
the original matrix, which is not available during the reconstruction process. For example,
if the original matrix admits a perfect additive decomposition with respect to some coclus-
tering basis, e.g., Z = E[Z|Û ] + E[Z|V̂ ]−E[Z] for basis C1, then the “best” reconstruction
among all measurable functions of the conditional expectation statistics is given by this ad-
ditive decomposition itself irrespective of the choice of the Bregman divergence. From Table
4.2, one can readily see that this solution is different from the MBI solution for I-divergence
and basis C1 and in fact, it is different from the MBI solution for all Bregman divergences
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other than squared Euclidean distance. Therefore, instead of seeking the optimal recon-
struction from the class of all measurable functions of the available summary statistics, we
focus on a special class of approximations that correspond to generalized additive models
in a “dual” space, which we describe now.

Let ψ be the conjugate Rockafeller (1970) of the function φ. Since φ is a convex function
of Legendre type, ψ is also of Legendre type (Rockafeller, 1970, Theorem 26.5). Further,
the gradient mappings ∇φ and ∇ψ are one-to-one between the sets S = int(dom(φ)) and
Θ = int(dom(ψ)). In other words, corresponding to each z ∈ S, there exists a unique
element θ ∈ Θ such that θ = ∇φ(z) and z = ∇ψ(θ). The two sets S and Θ are, therefore,
dual or conjugate spaces. The reader is referred to (Rockafeller, 1970, Section 26) for a
detailed exposition on this duality correspondence. In the context of exponential families,
the sets S and Θ respectively correspond to the expectation parameter space and the natural
parameter space where ψ is the cumulant function of the exponential family Banerjee et al.
(2005b).

Using the above notion of duality, we now define a class of reconstructions based on
the natural parameter representations of the available summary statistics. For a given co-
clustering basis C = {Gr}

s
r=1, the only available information for reconstruction is in the

form of the conditional expectations {E[Z|Gr]}
s
r=1, each of which can be uniquely mapped

to random variables {θGr}
s
r=1 in the natural parameter space via the gradient mapping

∇φ(·). Let ΘB be the set of all random variables θ′′ that are generalized additive models
of {θGr}

s
r=1, i.e.,

θ′′ =
s

∑

r=1

fr(θGr) ,

where {fr(·)}
s
r=1 are arbitrary functions measurable with respect to {Gr}

s
r=1 respectively

and θ′′ takes values in Θ, i.e., the support of θ′′ is a subset of Θ. Since the original Z takes
values in S, the expectation parameter space, any natural parameterized approximation
θ′′ ∈ ΘB needs to be transformed back to the expectation space using the inverse mapping,
i.e.,

Z ′′ = ∇φ−1(θ′′) = ∇ψ

(

s
∑

r=1

fr(θGr)

)

.

Let SB denote the inverse image of ΘB under the gradient mapping, i.e.,

SB =
{

Z ′′|Z ′′ = ∇ψ(θ′′), θ′′ ∈ ΘB

}

=

{

Z ′′

∣

∣

∣

∣

∣

Z ′′ = ∇ψ

(

s
∑

r=1

gr(E[Z|Gr])

)}

, (4.24)

where gr(·) = fr(∇φ(·)), and {fr}
s
r=1 are arbitrary functions measurable with respect to

{Gr}
s
r=1. Note that unlike SA, the set SB depends on the choice of the Bregman divergence

in general. Figure 4.2 shows a pictorial representation of the relation between SB and the
conditional expectations E[Z|Gr]. The reader may wish to compare (3.9) for block average
co-clustering with (4.24). Since SB is defined in terms of arbitrary measurable functions,
when there is only one conditional expectation to be preserved as in the case of block
average co-clustering, SB turns out to be the set of all possible measurable functions of that
conditional expectation.
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Figure 4.2: Pictorial representation of SB

Example 1.G (I-Divergence) When φ(z) = z log z − z, the Legendre transformation or
the gradient mapping turns out to be log-transformation, i.e. ∇φ(z) = log z so that addition
in the natural parameter space corresponds to multiplication in the original expectation
parameter space and generalized additive models in the natural parameter space lead to
generalized multiplicative models. The set SB in this case can, therefore, be characterized
as the set of all reconstructions corresponding to generalized multiplicative models, or in
other words, products of arbitrary functions of the conditional expectations, i.e.,

SB =

{

Z ′′

∣

∣

∣

∣

∣

Z ′′ =
s

∏

r=1

hr(E[Z|Gr])

}

,

where {hr(·)}
s
r=1 are arbitrary functions measurable with respect to {Gr}

s
r=1.

Example 2.G (Squared Euclidean Distance) When φ(z) = z2, the Legendre trans-
formation or the gradient mapping is the identity transformation, i.e., ∇φ(z) = z so that
natural parameter space is identical to the original space. Therefore, SB is just the set of all
reconstructions corresponding to generalized additive models, or in other words, additive
combinations of arbitrary functions of the conditional expectations, i.e.,

SB =

{

Z ′′

∣

∣

∣

∣

∣

Z ′′ =

s
∑

r=1

hr(E[Z|Gr])

}

,

where {hr(·)}
s
r=1 are arbitrary functions measurable with respect to {Gr}

s
r=1.

Among this class of reconstructions SB, let ẐB be the best approximation to Z in terms
of Bregman divergence, i.e.,

ẐB = argmin
Z′′∈SB

E[dφ(Z, Ẑ)] . (4.25)

Interestingly, as Corollary 2 below shows, the best reconstruction ẐB among all elements
of SB is exactly identical to ẐA, i.e., the MBI solution among all elements of SA, which
preserve the relevant conditional expectations. In order to arrive at this result, we make use
of a projection theorem (Theorem 5) that characterizes the backward and forward Bregman
projections of elements of SB onto the set SA and vice versa. This projection theorem, in
turn, readily follows from the observation (Lemma 7) that the expected Bregman divergence

29



Banerjee, Dhillon, Ghosh, Merugu and Modha

Z A
E[d  (Z’, Z  )]φ

^
A

E[d  (Z  , Z’’)]φ A

E[d  (Z’, Z’’)]φ

E[d  (Z’, Z  )]φ
^
A E[d  (Z  , Z’’)]φ AE[d  (Z’, Z’’)]φ

^
= +

Original Matrix

^Z’ 

Z’’ 

Z 

^

S SBA

Figure 4.3: Pictorial representation of the projection theorem

between any Z ′ ∈ SA and any Z ′′ ∈ SB follows a Pythagorean decomposition involving the
MBI solution ẐA, i.e., it can be expressed as the sum of expected Bregman divergences
between the pairs (Z ′, ẐA), and (ẐA, Z ′′).

Lemma 7 For any Z ′ ∈ SA as in (4.20) and any Z ′′ ∈ SB as in (4.24) and ẐA as in (4.21)

E[dφ(Z ′, Z ′′)] = E[dφ(Z ′, ẐA)] + E[dφ(ẐA, Z ′′)].

A proof of the above lemma is given in Appendix D.2. Since the natural parameter represen-
tation of the MBI solution ∇φ(ẐA) can be expressed as sum of functions of the conditional
expectations (Theorem 4), we note that the MBI solution belongs to the set SB as well,
i.e., ẐA ∈ SB. From Lemma 7, it follows that the intersection of SB and SA is a singleton
set consisting only of the MBI solution ẐA. Figure 4.3 shows a pictorial representation of
the relation between the two sets and the distance decomposition. Using Lemma 7, we
can now obtain the following projection theorem, which states that the MBI solution is
the forward Bregman projection of any element of SA onto the set SB and the backward
Bregman projection of any element of SB onto the set SA.

Theorem 5 (Projection Theorem) For any Z ′ ∈ SA as in (4.20) and any Z ′′ ∈ SB as
in (4.24) and ẐA as in (4.21), the following two statements hold true:

(a) ẐA = argmin
Z′∈SA

dφ(Z ′, Z ′′), ∀Z ′′ ∈ SB,

(b) ẐA = argmin
Z′′∈SB

dφ(Z ′, Z ′′), ∀Z ′ ∈ SA.
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Since the original Z is also an element of SA, we observe that ẐA is the forward Bregman
projection of Z onto SB, which leads to the equivalence between ẐA and ẐB, which is the
best reconstruction in SB.

Corollary 2 For ẐA and ẐB given by (4.21) and (4.25), we have

ẐA = ẐB . (4.26)

Proof Follows from the definition of ẐB and the projection theorem (Theorem 5).

Corollary 2 gives a concrete justification for the use of the minimum Bregman infor-
mation solution as the best matrix reconstruction for a given co-clustering since it is the
optimum approximation among a large class of possible reconstructions obtained from the
summary statistics. It is straightforward to see that the corresponding result for block av-
erage co-clustering (Corollary 1) is a special case of this result. This equivalence result is
also closely related to Csiszar’s axiomatic justification (Csiszár, 1991) of the least squares
and maximum entropy principles for linear inverse problems based on sum consistency and
product consistency respectively. More specifically, the sum and product consistency condi-
tions along with certain regularity, locality and fixed point assumptions10 restrict the best
reconstruction Ẑ to generalized additive and multiplicative combinations of the observed
linear functionals (i.e., conditional expectations in our case) respectively. Hence, the best
approximation Ẑ ∈ SB where SB is defined as in Examples 1.G and 2.G. On the other hand,
the constraint of preserving the observed linear functionals (i.e., conditional expectations)
ensures that Ẑ ∈ SA as well. Since SA

⋂

SB = {ẐA}, it follows that Ẑ is the MBI solution
itself. In particular, the best reconstruction satisfying sum consistency is the least squares
solution while the one satisfying product consistency is the maximum entropy solution.

Example 1.H (I-divergence) From Example 1.E, we observe that when φ(z) = z log z−
z, the MBI solution ẐA is identical to the maximum entropy solution that preserves the
conditional expectations. Further from Example 1.G, we note that the set SB consists of
generalized multiplicative combinations of the conditional expectations. Hence, from the
projection theorem, it follows that the maximum entropy solution is the only generalized
multiplicative solution that preserves the relevant conditional expectations. It is also the
best reconstruction of Z (or any other Z ′ ∈ SA) among all multiplicative combinations of
arbitrary functions of the conditional expectations.

Example 2.H (Squared Euclidean Distance) From Example 2.E, we observe that when
φ(z) = z2, the MBI solution ẐA is identical to the standard least squares solution that pre-
serves the conditional expectations. Further from Example 2.G, we note that the set SB

consists of generalized additive combinations of the conditional expectations. Hence, from
the projection theorem, it follows that the least squares solution is the only generalized
additive solution that preserves the relevant conditional expectations. It is also the best
reconstruction of Z (or any other Z ′ ∈ SA) among all additive combinations of arbitrary
functions of the conditional expectations.

10. Please refer to Csiszár (1991) for details.
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5. A Meta Algorithm

In this section, we shall develop an alternating minimization scheme for the general Bregman
co-clustering problem. Our scheme shall serve as a meta algorithm from which a number of
special cases (both previously known and unknown) can be derived.

Throughout this section, let us suppose that the underlying measure w, the Bregman
divergence dφ, the data matrix Z, number of row clusters k, number of column clusters
l, and the co-clustering basis C are specified and fixed. We shall focus on finding a good
co-clustering for (4.23).

5.1 Intuition and Plan of Attack

We first outline the essence of our meta algorithm.

Step 1: Start with an arbitrary row and column clustering, say, (ρ0, γ0). Set t = 0.

Step 2: Repeat either of the following steps till convergence:

Step 2A: With respect to co-clustering (ρt, γt), compute the matrix approximation
Ẑt by solving the MBI problem (4.21).

Step 2B: Hold the column clustering γt fixed, and find a better row co-clustering,
say, ρt+1. Set γt+1 = γt. Set t = t + 1.

Step 2C: Hold the row clustering ρt+1 fixed, and find a better column co-clustering,
say, γt+1. Set ρt+1 = ρt. Set t = t + 1.

We shall prove that this meta algorithm converges in a finite number of steps to a local
minima.11 As is clear from the outline above, a key step in our algorithm will involve finding
a solution of the MBI problem (4.21). Further, since the number of possible row (or column)
clusterings is exponential in the number of rows (or columns), it is also essential to have
an efficient means for determining the best row (or column) clustering for a fixed choice
of the column (or row) clustering and the MBI solution. Fortunately for the co-clustering
problem, the expected distortion measure that quantifies the quality of a row (or column)
clustering admits a separability property that allows independent optimal updates of the
cluster assignments of every row (or column). We discuss this property in more detail below.

5.2 A Separability Property

We begin by considering the quality of a candidate row (or column) clustering ρ in Step 2B
(or step 2C) for a fixed choice of column (or row) clustering and MBI solution parameters.
Since our objective is to obtain an accurate reconstruction of the original matrix, a natural
choice is to consider the expected Bregman distortion between the original Z and a recon-
struction Z̃ based on the row (or column) clustering ρ while keeping everything else fixed. To
characterize this reconstruction, we employ the functional form for the MBI solution Ẑ given

11. In fact, any ordering of Steps 2B and 2C gives the same guarantees. Alternatively, one can run Steps 2A
and 2C for some iterations followed by Steps 2A and 2B. We will establish that each step can only
improve the quality of the current approximation. Hence, any ordering is sufficient to reach a local
minimum.
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in Theorem 4. To be more precise, for a given (ρ, γ), there exist a set of optimal Lagrange
multipliers Λ∗ so that Theorem 4 uniquely specifies the MBI solution Ẑ. In general, the for-
mula in Theorem 4 provides a unique reconstruction Z̃ for any set of Lagrange multipliers Λ
(not necessarily optimal) and (ρ, γ), since ∇φ(·) is a monotonic function (Azoury and War-
muth, 2001; Banerjee et al., 2005b). To underscore the dependence of Z̃ on the Lagrange
multipliers, we shall use the notation Z̃ = ζ(ρ, γ,Λ) = (∇φ)−1(∇φ(E[Z])−

∑s
r=1 ΛGr/wGr).

The quality of a candidate row (or column) clustering can now be quantified in terms of
the accuracy of the corresponding Z̃ where the other two arguments, i.e., the column (or
row) clustering and Lagrange multipliers are fixed. In particular, Ẑ = ζ(ρ, γ,Λ∗) is the
approximation corresponding to the optimal Lagrange multipliers Λ∗.

Given a set of (not necessarily optimal) Lagrange multipliers Λ, we now consider updat-
ing the current co-cluster assignments (ρ, γ) in order to improve the current approximation
is Z̃ = ζ(ρ, γ,Λ). Although Z̃ looks complex, the fact that ∇φ is a one-one function with
a well-defined inverse ensures that each element z̃uv in the matrix Z̃ corresponding to Z̃
depends only on (u, ρ(u), v, γ(v)) for a given Λ. Hence, for any given Λ, there exists a func-
tion ξ such that the point-wise distortion dφ(zuv, z̃uv) can be expressed as ξ(u, ρ(u), v, γ(v)),
i.e., it depends only on the corresponding row/column and cluster assignments. Since the
expected distortion E[dφ(Z, Z̃)] is weighted sum of the point wise distortions, it satisfies
a nice separability property that allows efficient updation of the current row (or column)
assignments. In particular, for any given Λ, the expected distortion E[dφ(Z, Z̃)] can be
expressed as the sum of contributions from the rows (or columns) where each row (or col-
umn ) contribution only depends on the row and its current cluster assignment. Note that
this separability property is similar to that of the KMeans objective function, which can be
also be expressed as the sum of terms corresponding to each point and its cluster assign-
ment. As in the case of KMeans, the separability property allows independent updates of
the cluster assignments of every row (or column). Further, for a fixed Λ and γ, since the
total approximation error is the sum over the approximation errors due to each row (or
column) and its cluster assignment, greedy cluster assignments of the individual rows result
in a globally optimal row clustering ρ for the given Λ and γ. An equivalent statement is
true for column assignments for a given Λ and ρ. The following lemma formally states this
separability property. The proof simply follows from definitions, and is hence omitted.

Lemma 8 For a fixed co-clustering (ρ, γ) and a fixed set of (not necessarily optimal) La-
grange multipliers Λ, and Z̃ = ζ(ρ, γ,Λ), we can write:

E[dφ(Z, Z̃)] = EU [EV |U [ξ(U, ρ(U), V, γ(V ))]] = EV [EU |V [ξ(U, ρ(U), V, γ(V ))]] ,

where ξ(·) is given by ξ(U, ρ(U), V, γ(V )) = dφ(Z, Z̃).

5.3 Updating Row and Column Clusters

We will now present the details of our plan in Section 5.1. First, we will demonstrate how
to update row clustering (or column clustering) with respect to a fixed column clustering
(or row clustering) and a fixed set of Lagrange multipliers. Then, we will find the optimal
Lagrange multipliers corresponding to the minimum Bregman solution of the updated co-
clustering.
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Suppose we are in Step 2A outlined in Section 5.1. Updating the row clustering keeping
the column clustering and the Lagrange multipliers fixed leads to a new value for the
Bregman co-clustering objective function. Now making use of the separability property in
Lemma 8, we can efficiently optimize the contribution of each row assignment to the overall
objective function to obtain the following row cluster update step.

Lemma 9 Let ρt+1 be defined as

ρt+1(u) = argmin
g:[g]k

1

EV |u[ξ(u, g, V, γt(V ))], [u]m1 ,

and let Z̃t = ζ(ρt+1, γt, Λ∗t). Then,

E[dφ(Z, Z̃t]) ≤ E[dφ(Z, Ẑt)].

where Ẑt = ζ(ρt, γt, Λ∗t).

Proof From Lemma 8, we have

E[dφ(Z, Z̃t)] = EU [EV |U [ξ(U, ρt+1(U), V, γt(V ))]]

= EU [min
g:[g]k

1

EV |U [ξ(U, g, V, γt(V ))]]

≤ EU [EV |U [ξ(U, ρt(U), V, γ(V ))]]

= E[dφ(Z, Ẑt)]

A similar argument applies to step 2B where we seek to update the column clustering
keeping the row clustering fixed.

Lemma 10 Let γt+1 be defined as

γt+1(v) = argmin
h:[h]l

1

EU |v[ξ(U, ρt(U), v, h)] [v]n1 ,

and let Z̃t = ζ(ρt, γt+1, Λ∗t). Then,

E[dφ(Z, Z̃t)] ≤ E[dφ(Z, Ẑt)].

where Ẑt = ζ(ρt, γt, Λ∗t).

We now consider step 2C. So far, we have only considered updating the row (or column)
assignments keeping the Lagrange multipliers fixed. After such updation, the approxima-
tion Z̃t = ζ(ρt+1, γt+1, Λ∗t) is closer to the original matrix Z than the earlier minimum
Bregman information solution Ẑt, but the Lagrange multipliers Λ∗t are no longer optimal.
In other words, the approximation Z̃t is not a minimum Bregman information solution. For
the given co-clustering (ρt+1, γt+1), let Λ∗t+1 be the optimal Lagrange multipliers for the
corresponding minimum Bregman information problem in (4.21). The corresponding matrix
approximation is Ẑt+1 = ζ(ρt+1, γt+1, Λ∗t+1) is a minimum Bregman information solution.
As the following lemma shows, this approximation is better than the current approximation
Z̃t.
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Lemma 11 Let Ẑt+1 = ζ(ρt+1, γt+1, Λ∗t+1) be the minimum Bregman information solution
corresponding to (ρt+1, γt+1) with Λ∗t+1 being the optimal Lagrange multipliers in (4.21).
Then,

E[dφ(Z, Ẑt+1) ≤ E[dφ(Z, Z̃t)],

where Z̃t = ζ(ρt+1, γt+1, Λ∗t).

Proof By definition,

E[dφ(Z, Ẑt+1)] = E[φ(Z) − φ(Ẑt+1) − 〈Z − Ẑt+1,∇φ(Ẑt+1)〉]

(a)
= E[φ(Z) − φ(Ẑt+1)]

= E[dφ(Z, Z̃t)] − E[dφ(Ẑt+1, Z̃t)] − E[〈Z − Ẑt+1,∇φ(Z̃t)〉]

(b)
= E[dφ(Z, Z̃t)] − E[dφ(Ẑt+1, Z̃t)]

≤ E[dφ(Z, Z̃t)] ,

where (a) follows since Ẑt+1 belongs to both ΓA and ΓB so that taking conditional ex-
pectations over E[Z|G],G ∈ C makes the last term zero and (b) follows since ∇φ(Z̃t) is
summation of terms involving E[Z] and ΛGr , [r]

s
1, and E[Ẑt+1|Gr] = E[Z|Gr], thus making

the last term vanish.

5.4 The Algorithm

The meta algorithm for generalized Bregman co-clustering (see Algorithm 2) is a concrete
“implementation” of our plan in Section 5.1. Comparing this algorithm with the solution for
block average co-clustering (Algorithm 1), one can readily see that both the algorithms are
based on an identical alternate minimization strategy and Algorithm 1 is in fact a special
case of Algorithm 2 when the MBI solution corresponds to the co-cluster means. We now
establish that our algorithm is guaranteed to achieve local optimality.

Theorem 6 The general Bregman co-clustering algorithm (Algorithm 2) converges to a so-
lution that is locally optimal for the Bregman co-clustering problem (4.23), i.e., the objective
function cannot be improved by changing either the row clustering, the column clustering or
the Lagrange multipliers.

Proof From Lemmas 9, 10, and 11, it follows that updating the row clustering ρ, the
column clustering γ and the Lagrange multipliers Λ one at a time decreases the objective
function of the Bregman co-clustering problem. Hence, the Bregman co-clustering algorithm
(Algorithm 2) which proceeds by alternately updating ρ → γ → Λ monotonically decreases
the Bregman co-clustering objective function. Since the number of distinct co-clusterings
is finite, the algorithm is guaranteed to converge to a locally optimal solution.

Note that updating Λ is the same as obtaining the minimum Bregman information
solution. When the Bregman divergence is I-divergence or squared deviation, the minimum
Bregman information problem has an analytic closed form solution as shown in Tables 4.2

35



Banerjee, Dhillon, Ghosh, Merugu and Modha

Algorithm 2 Bregman Co-clustering Algorithm

Input: Matrix Z ⊆ Sm×n, probability measure w, Bregman divergence dφ : S× int(S) 7→ R+, num.
of row clusters l, num. of column clusters k, co-clustering basis C.

Output: Co-clustering (ρ∗, γ∗) that (locally) optimize the objective function in (4.23).
Method:

{Initialize ρ, γ }
Start with an arbitrary co-clustering (ρ, γ)
repeat
{Step A: Update Minimum Bregman Information Solution (Λ∗)}
Λ∗ ← argmax

Λ
L(Λ)

where L(·) is Lagrange dual of Bregman information in (4.21).
{Step B: Update Row Clusters (ρ)}
for u = 1 to m do

ρ(u) ← argmin
g:[g]k

1

EV |u[ξ(u, g, V, γ(V ))]

where ξ(U, ρ′(U), V, γ(V )) = dφ(Z, Z̃), Z̃ = ζ(ρ′, γ,Λ∗) for any ρ′

end for
{Step C: Update Column Clusters (γ)}
for v = 1 to n do

γ(v) ← argmin
h:[h]l

1

EU |v[ξ(U, ρ(U), v, h)]

where ξ(U, ρ(U), V, γ′(V )) = dφ(Z, Z̃), Z̃ = ζ(ρ, γ′,Λ∗) for any γ′

end for
until convergence
return (ρ, γ)

and 4.3. Hence, it is straightforward to obtain the row and column cluster update steps
and implement the Bregman co-clustering algorithm. The resulting algorithms involve a
computational effort that is linear per iteration in the size of the data and are hence, very
scalable. In general, the minimum Bregman information problem has a unique solution
since it involves a strictly convex objective function and linear constraints. However, the
solution need not have a closed form and has to be obtained numerically using iterative
projection algorithms, which in turn involves solving non-linear systems of equations. In
the general case, the Bregman co-clustering algorithm will include such iterative projection
procedures as a sub-routine.

5.5 Iterative Algorithms for the Minimum Bregman Information Problem

An important part of the Bregman co-clustering algorithm involves solving the MBI prob-
lem. While there are closed form solutions for some important choices of Bregman diver-
gences or summary statistics, the general case leads to a convex programming problem and
does not have a closed form solution. In this section, we discuss two simple iterative algo-
rithms to solve the MBI problem. The first one is Bregman’s algorithm (Bregman, 1967;
Censor and Zenios, 1998) and the second is an iterative scaling method (Pietra et al., 2001).

Recall that the MBI solution Ẑ for a co-clustering basis C is given by

Ẑ = argmin
Z′|E[Z′|C]=E[Z|C], ∀C∈C

E[dφ(Z ′, E[Z ′])] . (5.27)
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For notational convenience, let z, z′ and z̄ denote vectorized versions of the original matrix
Z, the tentative solution matrix Z′, and a constant matrix consisting of the expectation
E[Z] respectively. Then z, z′ and z̄ are all vectors of dimension mn. Let A denote the
c × mn matrix corresponding to the linear constraints E[Z ′|G] = E[Z|G], ∀G ∈ C, where
c is the total number of constraints, so that the constraints can be written as Az′ = Az.
The vectorized version ẑ of the MBI solution can now be written as

ẑ = argmin
z′|Az′=Az

mn
∑

ι=1

wιdφ(z′ι, z̄ι). (5.28)

Since a convex combination of Bregman divergences is again a Bregman divergence, the
objective function in (5.28) can be readily expressed as the Bregman divergence between
the vectors z′ and z̄ derived from the convex function φw(z′) =

∑mn
ι=1 wιφ(z′ι), i.e.,

ẑ = argmin
z′|Az′=Az

dφw
(z′, z̄). (5.29)

Since φw is the convex function induced on the vectorized matrices by the original convex
function φ, we ignore this distinction and use φ to denote φw as well when it is clear that
the function is being applied to matrices.

5.5.1 Bregman’s Algorithm (Bregman, 1967)

Bregman’s algorithm requires that the initial guess z′0 belong to the set {z′|z′ ∈ int(dom(φ)), ∇φ(z′) =
ATx,x ∈ R

c}. The unconstrained global optimum z̄ belongs to this set since ∇φ(z̄) = 0
which is ATx for x = 0 ∈ R

c. Hence, we use z̄ as the initial guess, i.e.,

z′0 = z̄ . (5.30)

Subsequent iterative updates are obtained by solving the following set of equations:

∇φ(z′t+1) = ∇φ(z′t) + AT
i λ (5.31)

Ai z′t+1 = Ai z , (5.32)

where Ai is the ith row of A and λ ∈ R. The solution to the above set of equations
can be considered as the Bregman projection of the current tentative solution z′t onto the
hyperplane {z′|Aiz

′ = Aiz}. Due to the strict convexity of φ, the update equations, under
proper regularity conditions (Bregman, 1967), uniquely determine z′t+1 and λ. However,
the equations are non-linear and one needs to use appropriate numerical techniques to solve
for z′t+1.

The update equations (5.31) and (5.32) are based on only one linear constraint. For
convergence to the optimum, the updates must touch upon all the constraints following
a schedule known as relaxation control (Bregman, 1967; Bauschke and Borowein, 1997).
For simplicity, we consider updates based on a cyclic ordering of the constraints, where all
constraints are considered one after the other. The cyclic ordering schedule is sufficient
to guarantee convergence to the optimum solution, although more general schedules are
admissible (Bauschke and Borowein, 1997).
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5.5.2 Iterative Scaling (Pietra et al., 2001)

We now discuss an auxiliary function-based iterative scaling method to solve the problem.
The method makes use of the Legendre-Bregman projection Lφ(z′,a), which is the Bregman
projection of z′ onto the hyperplane {z′|aTz′ = aTz} and can be explicitly written as

Lφ(z′,a) = (∇φ)−1(∇φ(z′) + a) (5.33)

⇒ ∇φ(Lφ(z′,a)) = ∇φ(z′) + a . (5.34)

The similarity between the Legendre-Bregman projection as in (5.34) and the first update
equation (5.31) is due to the fact that both are Bregman projections of a point onto a
hyperplane. Further, it is straightforward to see that a corresponds to AT

i .
As before, we set the initial guess z′0 = z̄. Using the constraint matrix A, we select

Nj ≥
∑c

i=1 Aij for j = 1, . . . , mn. Then, the iterative update of the tentative solution is
given by

∇φ(z′t+1) = ∇φ(z′t) + AT
λ , (5.35)

where λ ∈ R
c and each component λi satisfies

mn
∑

j=1

Aij Lφ(z′tj , sijNjλi) = Aiz , (5.36)

where sij = sign(Aij) and φ operates on the matrix elements.
As before, the system of equations (5.35) and (5.36) are non-linear and one needs to use

proper numerical methods to obtain the updates. However, there is an important difference
between the iterative scaling updates and the updates of Bregman’s algorithm. Since (5.36)
is in terms of each component of λ, one can obtain λ entirely from (5.36). This λ can then
be used in (5.35) to get z′t+1. In other words, analogous to the EM algorithm, iterative
scaling allows one to alternate updates to λ and z′ till convergence. This is not possible in
case of Bregman’s algorithm where both the equations (5.31) and (5.32) have to be solved
simultaneously. Note that both the algorithms require regularity conditions to guarantee
convergence. The reader is referred to the original papers (Bregman, 1967; Pietra et al.,
2001) for details.

6. A Recipe for Implementation

To instantiate the Bregman co-clustering meta-algorithm, two key ingredients need to be
selected: (a) the Bregman divergence suitable for a given data matrix, and (b) a co-clustering
basis. The goal of this section is to show how to translate the abstract meta algorithm in
Section 5 into a concrete and operational co-clustering recipe that is customized for the
selected ingredients. We discuss four such concrete recipes. The first three cases concern
special cases that admit significant structural and computational simplifications in the meta-
algorithm and the last case concerns an example that requires us to use the full power of
the abstract framework.

The Bregman co-clustering algorithm (Algorithm 2) involves three main steps—(i) ob-
taining the MBI solution (Section 5.5) or the optimal Lagrange multipliers, (ii) row assign-
ment, and (iii) column assignment. Of these three steps, the last two involve conceptually
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straightforward comparisons to determine the optimal row and column assignments at each
stage whereas the first step usually involves non-linear optimization and can be computa-
tionally expensive. Nonetheless, it is possible to implement these steps in a computationally
economical fashion. For certain special cases, the MBI problem has a closed form solution,
which eliminates the need for the MBI routine and allows significant simplification of the
overall co-clustering algorithm. In particular, there are three cases for which such closed
form exists:

Case A: When the co-clustering basis C is C2 and dφ is any Bregman divergence. Con-
ceptually, this case was covered in complete detail in Section 3, but we present
additional operational details in this section.

Case B: When dφ is squared Euclidean distance and C is any co-clustering basis in the set
{Ci}

6
i=1 ,

Case C: When dφ is I-divergence and C is any co-clustering basis in the set {Ci}
6
i=1 .

For these special cases, the cost functions that determine the row and column assignments
in steps 2B and 2C of the co-clustering algorithm (Algorithm 2) can be directly expressed in
terms of the co-clustering (ρ, γ) and the input matrix Z without any Lagrange multipliers
and the computational effort required to evaluate the cost is linear in the size of Z (i.e.,
number of non-zeros). For the general case, the computation time per iteration for the
co-clustering algorithm is still linear in the size of Z, but the total time taken will depend
on the number of iterations required to obtain the MBI solution.

In order to describe the Bregman co-clustering algorithm for the special cases mentioned
above, we use a matrix notation that is more suitable for computation and exposition.
From Theorem 1 and Tables 4.2 and 4.3, we observe that the MBI solution for the three
special cases mentioned above can be expressed as a combination of conditional expectations
of the random variable Z corresponding to the input matrix. Since the computation of
the MBI solution is an important task in the co-clustering algorithm, we proceed by first
expressing the various conditional expectations in matrix notation. We use the symbols ⊗
and ⊘ respectively to denote element-wise multiplication (i.e., the Hadamard product) and
element-wise division between two matrices of the same size.

6.1 Matrix Representation of Conditional Expectations

Let Z ∈ Sm×n denote the data matrix and W ∈ R
m×n
+ denote the matrix corresponding

to a probability measure over the matrix elements. Let R ∈ {0, 1}m×k and C ∈ {0, 1}n×l

denote the row and column cluster membership matrices, i.e.,

rug =

{

1 g = ρ(u),

0 otherwise,
cvh =

{

1 h = γ(v),

0 otherwise.

In other words, the entry rug = 1 iff row u belongs to row cluster g and the entry cvh = 1
iff column v belongs to column cluster h. Further, let Em and En denote m × 1 and n × 1
vectors consisting of all ones. It should now be straightforward to see that elements in
different partitions (e.g., rows or row clusters) of the input matrix Z can be aggregated
using the appropriate matrix multiplication operations, from the ones listed below:
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(a) Left multiplication by RT —Aggregation of the rows into row clusters

(b) Right multiplication by C—Aggregation of the columns into column clusters

(c) Left multiplication by ET
m—Aggregation of all the rows into a single group

(d) Right multiplication by En—Aggregation of all the columns into a single group

To obtain the expected values along the various partitions instead of the sums, we need
to perform an element-wise multiplication with the measure matrix W before aggregation
and later follow it up with an appropriate element-wise division. It is important to note
here that the size of matrix containing the expected values is equal to the number of
corresponding partitions, which is usually smaller than that of the original Z. Therefore,
to create a m × n matrix such that the uvth element reflects the expectation along the
partition containing zuv, we need to replicate the expected values for all members of the
corresponding partitions, which can be achieved using the following matrix multiplications:

(a) Left multiplication by R—Replication of the given (row) vectors corresponding to each
row cluster along all the constituent rows.

(b) Right multiplication by CT —Replication of the given (column) vectors corresponding
to each column cluster along all the constituent columns.

(c) Left multiplication by Em—Replication of a given (row) vector along all the rows.

(d) Right multiplication by ET
n—Replication of a given (column) vector along all the

columns

For example, the conditional expectation E[Z|Û , V̂ ] involves partitioning along (Û , V̂ ),
i.e., both row and column clusters. Since there are k row clusters and l column clusters,
there are kl partitions (or co-clusters) and a conditional expectation value corresponding
to each of these partitions. To obtain these expectation values, we need to aggregate the
rows into the row clusters as well as the columns into column clusters. In particular, the
conditional expectation values are given by

E[Z|û, v̂] = z̄û,v̂ where Z̄
Û ,V̂

=
(

RT (W ⊗ Z)C
)

⊘
(

RTWC
)

.

Though seemingly complicated, the above expression has a simple interpretation in terms
of the aggregation and replication operators described earlier. Operation W ⊗ Z has the
effect of attenuating each element zuv by its corresponding weight wuv. Left multiplication
by RT aggregates the matrix along rows in the same row cluster across each column, and
then right multiplication by C aggregates this reduced matrix consisting of row cluster sums
along columns in the same column cluster. Thus, each element of (RT (W⊗Z)C) represents
the sum along each co-cluster of the attenuated Z. Similarly, the matrix RTWC contains
the probability mass assigned to the different co-cluster by W and the element-wise division
results in k × l matrix whose ûv̂th entry is the expected value in ûv̂th co-cluster.

To obtain a m×n full matrix Zf

Û,V̂
such that zf

uv = E[Z|ρ(u), γ(v)], we need to replicate

the co-cluster values along the rows and columns corresponding to the row and column
clusters respectively. Hence, the reconstructed matrix

Zf

Û,V̂
= RZ̄

Û ,V̂
CT = R

((

RT (W ⊗ Z)C
)

⊘
(

RTWC
))

CT .
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E[Z|G] Z̄G size(Z̄G) Zf
G (m × n)

E[Z] (ET
m(W ⊗ Z)En) ⊘ (ET

mWEn) 1 × 1 EmZ̄ET
n

E[Z|U ] ((W ⊗ Z)En) ⊘ (WEn) m × 1 Z̄UET
n

E[Z|V ] (ET
m(W ⊗ Z)) ⊘ (ET

mW) 1 × n EmZ̄V

E[Z|Û ] (RT (W ⊗ Z)En) ⊘ (RT WEn) k × 1 RZ̄ÛET
n

E[Z|V̂ ] (ET
m(W ⊗ Z)C) ⊘ (ET

mWC) 1 × l EmZ̄V̂ CT

E[Z|U, V̂ ] ((W ⊗ Z)C) ⊘ (WC) m × l Z̄U,V̂ CT

E[Z|Û , V ] (RT (W ⊗ Z)) ⊘ (RT W) k × n RZ̄Û,V

E[Z|Û , V̂ ] (RT (W ⊗ Z)C) ⊘ (RT WC) k × l RZ̄Û,V̂ CT

E[Z|U, V ] (W ⊗ Z) ⊘ W m × n Z̄U,V = Z

Table 6.4: Conditional expectations in matrix notation.

Table 6.4 shows the matrices corresponding to the various conditional expectations. Note
that the number of independent parameters in Zf

G (in Table 6.4) is equal to that in Z̄G in
spite of the difference in the matrix sizes.

6.2 Bregman Co-clustering Algorithm for Special Cases

We will now consider the three special cases mentioned earlier and illustrate how the various
steps in the Bregman co-clustering algorithm can be instantiated.

6.2.1 Case A: Basis C2 and Any Bregman Divergence

1. Obtaining the MBI Solution. From Theorem 1, we note that the MBI solution for
case A is Ẑ = E[Z|Û , V̂ ]. From Table 6.4, the corresponding MBI matrix Ẑ is given

by Zf

Û,V̂
= RZ̄

Û ,V̂
CT where Z̄

Û ,V̂
is computed as (RT (W⊗Z)C)⊘ (RTWC). Since

Ẑ is completely determined by the smaller k × l matrix Z̄
Û ,V̂

, we only compute the
reduced matrix. Using the fact that R and C are binary matrices, this computation
can be performed efficiently using O(mn) operations.

2. Row Cluster Assignment Step. Given the parameters of the MBI solution and
a fixed column clustering determined by C, we want to find for each row, the row
cluster assignment that leads to the best approximation to the original matrix. In
other words, we are searching for a row cluster membership matrix R′ that results in
the most accurate reconstruction Z̃. For the current case, this reconstructed matrix Z̃
takes the same functional form as the MBI solution and is given by R′Z̄

Û ,V̂
CT where

Z̄
Û ,V̂

is based on a possibly different row clustering. From step 2B of the Bregman
co-clustering algorithm (Algorithm 2), the optimal row assignment for each row u is
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given by

ρ∗(u) = argmin
g∈{1,··· ,k}

EV |u[dφ(Z, Z̃)] = argmin
g∈{1,··· ,k}

n
∑

v=1

wuvdφ(zuv, z̃uv), [u]m1 ,

(a)
⇒ R∗ = argmin

R′

dΦw(Z, Z̃) = argmin
R′

dΦw(Z,R′Z̄
Û ,V̂

CT ),

(b)
⇒ R∗ = argmin

R′

dΦw(ZrowRed,R′Z̄
Û ,V̂

),

(c)
⇒ ρ∗(u) = argmin

g∈{1,··· ,k}

l
∑

h=1

wuhdφ(zrowRed
uh , z̄gh), [u]m1 ,

where ZrowRed ≡ ((W⊗Z)C)⊘(WC) and dΦw is the induced Bregman divergence that
applies to matrices in Sk×n.12 Further, (a) and (c) follow from the definition of the row
cluster membership matrix, and (b) follows from the fact minimizing the (weighted)
average Bregman divergence from a set {xi}

n
i=1 to a fixed point a is equivalent to

minimizing the Bregman divergence between the (weighted) average of the set and
a (Banerjee et al., 2005b). Assuming the matrix ZrowRed is computed apriori, the row
clustering only requires O(mkl) operations as opposed to O(mkn) since for each row,
we only compare the reduced rows (of size 1 × l) in ZrowRed with the k possible row
cluster representatives.

3. Column Cluster Assignment Step. The column cluster assignment step is similar
to that of the previous row cluster assignment step and involves finding a column
cluster membership matrix C′ that results in the most accurate reconstruction Z̃ =
RZ̄

Û ,V̂
C′T . From step 2C of the Bregman co-clustering algorithm (Algorithm 2), the

optimal column assignment for each column v is given by

γ∗(v) = argmin
h∈{1,··· ,l}

EU |v[dφ(Z, Z̃)] = argmin
h∈{1,··· ,l}

m
∑

u=1

wuvdφ(zuv, z̃uv), [v]n1 ,

(a)
⇒ C∗ = argmin

C′

dΦw(Z, Z̃) = argmin
C′

dΦw(Z,RZ̄
Û ,V̂

C′T ),

(b)
⇒ C∗ = argmin

C′

dΦw(ZcolRed, Z̄
Û ,V̂

C′T ),

(c)
⇒ γ∗(v) = argmin

h∈{1,··· ,l}

k
∑

g=1

wgvdφ(zcolRed
gv , z̄gh), [v]n1 ,

where ZcolRed ≡ (RT (W⊗Z))⊘ (RTW), (a) and (c) follow from the definition of the
column cluster membership matrix, and (b) follows from the same reduction (Baner-
jee et al., 2005b) employed in the row cluster assignment step. As in the previous
case, the column clustering involves a reduced number of distance computations and
comparisons and in particular, requires O(nkl) operations.

12. Note that dΦw has been overloaded to denote the separable Bregman divergences induced from the
original dφ and the measure w that apply to matrices in Sm×n, Sk×n and Sm×l.
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6.2.2 Case B: Squared Euclidean Distance

1. Obtaining the MBI Solution. For case B, the MBI solution Ẑ has a closed form
for all the six co-clustering bases in terms of the appropriate conditional expectations
as shown in Table 4.3. Using Table 6.4, we can exactly compute each of the relevant
conditional expectations, which requires O(mn) operations. Though we do not ex-
plicitly compute it, the MBI matrix Ẑ (shown in Table 6.5) can be expressed in terms
of the row clustering R, column clustering C and these conditional expectations for
any co-clustering basis.

2. Row Cluster Assignment Step. To obtain the row cluster assignment step, we
observe that the reconstructed matrix Z̃, which has the same form as Ẑ can be split
into two additive terms of which only one depends on the candidate row clustering.
In particular, for the row assignment step, the reconstructed matrix Z̃ based on a
candidate row clustering R′ can be written as

Z̃ = Z̃rowConst + R′Z̃rowV ar, (6.37)

where Z̃rowConst is an m × n matrix corresponding to the constant part of Z̃ and
Z̃rowV ar is a k×n matrix that is the linear coefficient in the variable part of Z̃. Table
6.6 provides the Z̃rowConst and Z̃rowV ar for the different co-clustering bases. From
step 2B of Algorithm 2 and (6.37), the row cluster update step for squared Euclidean
distance is given by

ρ∗(u) = argmin
g∈{1,··· ,k}

EV |u[(Z − Z̃)2] = argmin
g∈{1,··· ,k}

n
∑

v=1

wuv(zuv − z̃uv)
2, [u]m1 ,

⇒ R∗ = argmin
R′

||Z − Z̃||2w = argmin
R′

||Z − Z̃rowConst − R′Z̃rowV ar||2w,

⇒ R∗ = argmin
R′

||Zrow − R′Z̃rowV ar||2w,

⇒ ρ∗(u) = argmin
g∈{1,··· ,k}

n
∑

v=1

wuv(z
row
uv − z̃rowV ar

gv )2, [u]m1 ,

where Zrow = Z − Z̃rowConst and || · ||w is the weighted squared Euclidean distance.
The optimal row assignments can, therefore, be determined by finding the nearest row
(among k possible ones) in Z̃rowV ar for each of the m rows in Zrow. The above row
assignment step can be readily instantiated for any specified co-clustering basis by
choosing the appropriate matrices Z̃rowConst and Z̃rowV ar from Table 6.6.

For co-clustering bases {Ci}
5
i=1, it is possible to further optimize the above up-

date step using the same observation as in case A, i.e., minimizing the row up-
date cost function ||Zrow − R′Z̃rowV ar||2w is equivalent to minimizing the distortion
between reduced versions of these matrices, i.e., ||ZrowRed − R′Z̃rowV Red||2w where
ZrowRed ≡ ((W⊗Zrow)C)⊘(WC) and R′Z̃rowV Red ≡ ((W⊗(R′Z̃rowV ar))C)⊘(WC).
Though the expression for Z̃rowV Red looks complicated, it can be simplified using the
fact that Z̃rowV ar can always be written as ACT + BET

n for some matrices A and B,
which ensures that Z̃rowV Red = A + BET

l , i.e., independent of R′. For all the five
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Co-clustering basis C Ẑ (m × n)

C1 RZ̄ÛET
n + EmZ̄V̂ CT − EmZ̄ET

n

C2 RZ̄Û,V̂ CT

C3 RZ̄Û,V̂ CT + Z̄UET
n − RZ̄ÛET

n

C4 RZ̄Û,V̂ CT + EmZ̄V − EmZ̄V̂ CT

C5 RZ̄Û,V̂ CT + Z̄UET
n − RZ̄ÛET

n + EmZ̄V − EmZ̄V̂ CT

C6 Z̄U,V̂ CT + RZ̄Û,V − RZ̄Û,V̂ CT

Table 6.5: MBI matrix for squared Euclidean distance.

Co-clustering

basis C Z̃rowConst (m × n) Z̃rowV ar (k × n) Z̃rowV Red (k × l)

C1 EmZ̄V̂ CT − EmZ̄ET
n Z̄ÛET

n Z̄ÛET
l

C2 0 Z̄Û,V̂ CT Z̄Û,V̂

C3 Z̄UET
n Z̄Û,V̂ CT − Z̄ÛET

n Z̄Û,V̂ − Z̄ÛET
l

C4 EmZ̄V − EmZ̄V̂ CT Z̄Û,V̂ CT Z̄Û,V̂

C5 Z̄UET
n + EmZ̄V − EmZ̄V̂ CT Z̄Û,V̂ CT − Z̄ÛET

n Z̄Û,V̂ − Z̄ÛET
l

C6 Z̄U,V̂ CT Z̄Û,V − Z̄Û,V̂ CT n/a

Table 6.6: Row assignment update matrices for squared Euclidean distance.

co-clustering bases, Z̃rowV Red is determined by the relevant conditional expectations
and can be looked up from Table 6.6. As a result of this optimization, the row clus-
tering step involves comparisons between smaller matrices and requires only O(mkl)
operations.

3. Column Cluster Assignment Step. The column assignment step employs a similar
decomposition of Z̃ in terms of the column clustering, i.e., Z̃ = Z̃colConst + Z̃colV arC′T

and the optimal assignments are determined by

γ(v) = argmin
h∈{1,··· ,l}

m
∑

u=1

wuv(z
col
uv − z̃colV ar

uh )2, [v]n1 ,

where Zcol ≡ Z−Z̃colConst and the matrices Z̃colConst and Z̃colV ar can be obtained from
Table 6.7. As in the case of row clustering, it is possible to further optimize the above
update step for co-clustering bases {Ci}

5
i=1 by computing ZcolRed ≡ (RT (W⊗Zcol))⊘

(RTW) and comparing it with Z̃colV RedCT ≡ (RT (W ⊗ (Z̃colV arCT ))) ⊘ (RTW),
which can be obtained from Table 6.7. Further, as in the previous step, the column
clustering step only requires O(nkl) operations similar to that in case A.

6.2.3 Case C: I-divergence

1. Obtaining the MBI Solution. As in the previous case, the MBI solution for case
C has a closed form for all the six co-clustering bases in terms of the appropriate
conditional expectations as shown in Table 4.2. Using Table 6.4, one can exactly
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Co-clustering

basis C Z̃colConst (m × n) Z̃colV ar (m × l) Z̃colV Red (k × l)

C1 RZ̄ÛET
n − EmZ̄ET

n EmZ̄V̂ EkZ̄V̂

C2 0 RZ̄Û,V̂ Z̄Û,V̂

C3 Z̄UET
n − RZ̄ÛET

n RZ̄Û,V̂ Z̄Û,V̂

C4 EmZ̄V RZ̄Û,V̂ − EmZ̄V̂ Z̄Û,V̂ − EkZ̄V̂

C5 Z̄UET
n + EmZ̄V − RZ̄ÛET

n RZ̄Û,V̂ − EmZ̄V̂ Z̄Û,V̂ − EkZ̄V̂

C6 RZ̄Û,V Z̄U,V̂ − RZ̄Û,V̂ n/a

Table 6.7: Column assignment update matrices for squared Euclidean distance.

compute each of the relevant conditional expectations, which completely determine
the MBI matrix Ẑ (shown in Table 6.8) for a given row clustering R and column
clustering C.

2. Row Cluster Assignment Step. To obtain the row assignment steps for I-divergence,
we make use of the fact that the reconstructed matrix Z̃, can be decomposed as the
Hadamard product of two terms of which only one depends on the candidate row or
column clustering. In particular, the reconstructed matrix Z̃ can be expressed as

Z̃ = (Z̃rowConst) ⊗ (R′Z̃rowV ar), (6.38)

where Z̃rowConst is the constant factor and Z̃rowV ar is the linear coefficient of the
variable factor that depends on R′, both of which can be looked up from Table 6.9.

From step 2B of Algorithm 2 and (6.37), the row cluster update step for I-divergence
for [u]m1 is given by

ρ∗(u) = argmin
g∈{1,··· ,k}

EV |u

[

Z log

(

Z

Z̃

)

− Z + Z̃

]

,

= argmin
g∈{1,··· ,k}

n
∑

v=1

wuv

(

zuv log

(

zuv

z̃uv

)

− zuv + z̃uv

)

,

= argmin
g∈{1,··· ,k}

n
∑

v=1

wuv

(

zuv log

(

zuv

z̃rowConst
uv

)

− zuv

)

+
n

∑

v=1

wuv(z̃
rowConst
uv z̃rowV ar

ρ′(u)v − zuv log(z̃rowV ar
ρ′(u)v )),

(a)
= argmin

g∈{1,··· ,k}

n
∑

v=1

wuv

(

z̃rowConst
uv z̃rowV ar

ρ′(u)v − zuv log(z̃rowV ar
ρ′(u)v )

)

,

where (a) follows since the first term in the cost function is independent of the row
clustering.

As in case B, it is possible to optimize the row assignment step for the co-clustering
bases {Ci}

5
i=1 by minimizing a simplified row update cost function dΦw(ZrowRed, Z̃rowCRed⊗

R′Z̃rowV Red) based on equivalent reduced matrices instead of the original cost function
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Co-clustering basis C Ẑ (m × n)

C1 ((RZ̄ÛET
n ) ⊗ (EmZ̄V̂ CT )) ⊘ (EmZ̄ET

n )

C2 RZ̄Û,V̂ CT

C3 ((RZ̄Û,V̂ CT ) ⊗ (Z̄UET
n )) ⊘ (RZ̄ÛET

n )

C4 ((RZ̄Û,V̂ CT ) ⊗ (EmZ̄V )) ⊘ (EmZ̄V̂ CT )

C5 ((RZ̄Û,V̂ CT ) ⊗ (Z̄UET
n ) ⊗ (EmZ̄V )) ⊘ ((RZ̄ÛET

n ) ⊗ (EmZ̄V̂ CT ))

C6 ((Z̄U,V̂ CT ) ⊗ (RZ̄Û,V )) ⊘ (RZ̄Û,V̂ CT )

Table 6.8: MBI matrix for I-divergence.

Co-clustering

basis C Z̃rowConst (m × n) Z̃rowV ar (k × n) Z̃rowV Red (k × l)

C1 (EmZ̄V̂ CT ) ⊘ (EmZ̄ET
n ) Z̄ÛET

n Z̄ÛET
l

C2 0 Z̄Û,V̂ CT Z̄Û,V̂

C3 Z̄UET
n (Z̄Û,V̂ CT ) ⊘ (Z̄ÛET

n ) (Z̄Û,V̂ ) ⊘ (Z̄ÛET
l )

C4 (EmZ̄V ) ⊘ (EmZ̄V̂ CT ) Z̄Û,V̂ CT Z̄Û,V̂

C5 ((Z̄UET
n ) ⊗ (EmZ̄V )) ⊘ (EmZ̄V̂ CT ) (Z̄Û,V̂ CT ) ⊘ (Z̄ÛET

n ) (Z̄Û,V̂ ) ⊘ (Z̄ÛET
l )

C6 Z̄U,V̂ CT (Z̄Û,V ) ⊘ (Z̄Û,V̂ CT ) n/a

Table 6.9: Row assignment update matrices for I-divergence.

dΦw(Z, Z̃rowConst ⊗ R′Z̃rowV ar) where ZrowRed ≡ ((W ⊗ Z)C) ⊘ (WC), ZrowCRed ≡
((W ⊗ ZrowConst)C) ⊘ (WC), and R′Z̃rowV Red ≡ ((W ⊗ (R′Z̃rowV ar))C) ⊘ (WC).
Further as in the previous case, Z̃rowV Red can be simplified by noticing that Z̃rowV ar

in this case can be written as ACT ⊗BET
n for some matrices A and B, ensuring that

Z̃rowV Red = A⊗(BET
l ), i.e., independent of R′. Table 6.9 shows the matrix Z̃rowV Red

for the different co-clustering bases.

3. Column Cluster Assignment Step. The optimal column assignments can be
obtained in similar fashion by computing the matrices Z̃colConst and Z̃colV ar shown in
Table 6.10 and optimizing the part of the column update cost function that depends
on the column clustering, i.e.,

γ(v) = argmin
h∈{1,··· ,l}

n
∑

u=1

wuv

(

z̃colConst
uv z̃colV ar

uh − zuv log(z̃colV ar
uh )

)

, [v]n1 .

Further, as in the row clustering case, the column assignment step can be optimized
further for co-clustering bases {Ci}

5
i=1 by computing ZcolRed ≡ (RT (W ⊗ Z)) ⊘

(RTW), ZcolCRed ≡ (RT (W ⊗ Z̃colConst)) ⊘ (RTW) and Z̃colV RedCT ≡ (RT (W ⊗
(Z̃colV arCT ))) ⊘ (RTW), using Table 6.10 and finding the column clustering C′ that
optimizes the cost dΦw(ZcolRed, Z̃colCRed ⊗ Z̃colV RedC). The computational time for
these update steps is same as in the cases A and B.
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Co-clustering

basis C Z̃colConst (m × n) Z̃colV ar (m × l) Z̃colV Red (k × l)

C1 (RZ̄ÛET
n ) ⊘ (EmZ̄ET

n ) EmZ̄V̂ EkZ̄V̂

C2 Emn RZ̄Û,V̂ Z̄Û,V̂

C3 (Z̄UET
n ) ⊘ (RZ̄ÛET

n ) RZ̄Û,V̂ Z̄Û,V̂

C4 EmZ̄V (RZ̄Û,V̂ ) ⊘ (EmZ̄V̂ ) (Z̄Û,V̂ ) ⊘ (EkZ̄V̂ )

C5 (Z̄UET
n ) ⊗ (EmZ̄V ) ⊘ (RZ̄ÛET

n ) (RZ̄Û,V̂ ) ⊘ (EmZ̄V̂ ) (Z̄Û,V̂ ) ⊘ (EkZ̄V̂ )

C6 RZ̄Û,V (Z̄U,V̂ ) ⊘ (RZ̄Û,V̂ ) n/a

Table 6.10: Column assignment update matrices for I-divergence.

6.2.4 Case D: Any Bregman Divergence and Co-clustering Basis

The proposed meta-algorithm can be instantiated for any Bregman divergence and co-
clustering basis. We now consider a particular example of the general case corresponding
to Itakura-Saito distance, which is the Bregman divergence corresponding to the convex
function φ(z) = − log(z), a uniform measure and the co-clustering basis C1. The example
is a representative of the general case, since no divergence/basis specific optimizations are
possible in this case.

1. Obtaining the MBI Solution. For the general case involving a Bregman divergence
other than squared Euclidean distance and I-divergence and a co-clustering basis dif-
ferent from C2, the MBI solution does not have a closed form, which makes it necessary
to use a convex optimization algorithm (e.g., Bregman’s algorithm or Iterative Scaling
algorithm). Further, since the reconstructed Z̃ is defined in terms of the optimal La-
grange multipliers, we also need to compute these Lagrange parameters from the MBI
solution. For the example under consideration, ∇φ(z) = 1

z
. Hence, using the notation

in Section 5.5, the matrix A corresponds to a (k + l)×mn membership matrix where
the rows correspond to the clusters (first k rows to row clusters and the next l rows
to the column clusters) and the columns correspond to the elements of the matrix Z
(or the corresponding mn× 1 vector z). Assuming Emn is mn× 1 vector consisting of
all ones, the update steps in the Bregman’s algorithm (Section 5.5.1) are, therefore,
given by

Emn ⊘ z′t+1 = Emn ⊘ z′t + AT
i λi

Aiz
t+1 = Aiz,

where Ai is the ith row in A and λi ∈ R. These updates are cyclically repeated
over all the k + l rows in A. Let Ẑ (m × n matrix) be the solution obtained after
convergence and let Λ

Û
, Λ

V̂
be the k × 1 and 1 × l matrices containing the optimal

Lagrange multipliers. Then, from Theorem 4, the optimal Lagrange multipliers can
be obtained by solving the linear system

∇φ(Ẑ) = Em×n ⊘ Ẑ = Z̄ − RΛ
Û
ET

n − EmΛ
V̂
CT ,

where Z̄ is a m × n matrix with all its elements equal to the overall mean E[Z]
and Em×n is a m × n matrix with all its elements equal to 1. Since Ẑ satisfies the
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conditional expectation constraints on row and column clusters, this linear system is
under-determined resulting in multiple solutions for Λ

Û
and Λ

V̂
.

2. Row Cluster Assignment Step. To obtain the row cluster assignment step, we
first reconstruct Z̃ for a candidate co-clustering R′ using the Lagrange multipliers
Λ

Û
and Λ

V̂
computed in the previous step. More specifically, the reconstruction Z̃ is

given by
Z̃ = Emn ⊘ (Z̄ − R′Λ

Û
ET

n − EmΛ
V̂
CT ), (6.39)

i.e., z̃uv = 1/(z̄ − λρ′(u) − λγ(v)).

Using (6.39) the row update cost function reduces to

EV |u[dφ(Z, Z̃]

= EV |u[Z/Z̃ − log(Z/Z̃) − 1] =
n

∑

v=1

wuv(zuv/z̃uv − log(zuv/z̃uv) − 1)

=
n

∑

v=1

wuv(zuv(z̄ − λρ′(u) − λγ(v)) − log(zuv) + log(z̄ − λρ′(u) − λγ(v)) − 1)

=
n

∑

v=1

wuv(zuv(z̄ − λγ(v)) − log(zuv) − 1) +
n

∑

v=1

wuv(−zuvλρ′(u) + log(z̄ − λρ′(u) − λγ(v))).

Since the first term is independent of the row clustering, it is sufficient to optimize
only the second term. Hence, the row assignment step is given by

ρ(u) = argmin
g∈{1,··· ,k}

n
∑

v=1

wuv(−zuvλg + log(z̄ − λg − λγ(v))), [u]m1 .

3. Column Cluster Assignment Step. The column assignment step can be similarly
obtained by substituting the appropriate reconstructed matrix Z̃ into the column
update cost function and optimizing the part that depends on the column clustering,
i.e.,

γ(v) = argmin
h∈{1,··· ,l}

m
∑

u=1

wuv(−zuvλh + log(z̄ − λρ(u) − λh)), [v]n1 .

7. Experiments

In recent years, co-clustering has been successfully applied to a number of application
domains such as text mining (Dhillon et al., 2003b; Gao et al., 2005; Takamura and Mat-
sumoto, 2003), image and video analysis (Zhong et al., 2004; Qiu, 2004; Guan et al., 2005;
Cai et al., 2005), natural language processing (Freitag, 2004; Rohwer and Freitag, 2004; Li
and Abe, 1998), bio-informatics (Cheng and Church, 2000; Cho et al., 2004; Kluger et al.,
2003) as well as other applications (Carrasco et al., 2003). In particular, there exist a num-
ber of empirical studies that illustrate the usefulness of particular instances of the Bregman
co-clustering framework that we describe in this paper. Hence, instead of extensively eval-
uating our methodology on various application domains, we present a brief summary of
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existing experimental results. Further, we present a comparative empirical study of the
different co-clustering bases as well as the divergences discussed in this paper. Finally, we
highlight new applications such as missing value prediction and co-clustering of matrices
with categorical elements.

7.1 Existing Applications and Results

7.1.1 Text Clustering

Text clustering is one of the first domains where a special case of the Bregman co-clustering
algorithm, namely the information-theoretic co-clustering algorithm based on I-divergence
and basis C5, has been successfully applied. The key task in text clustering is to identify
document clusters. Since most of the information in a document can be captured using a bag-
of-words model, a convenient vector-space representation is in the form of word-document
co-occurrence matrices with documents corresponding to rows and words corresponding to
columns. However, it is often difficult to obtain good document clusters by directly cluster-
ing the matrix rows due to the inherent sparsity and high dimensionality (i.e., large number
of words). Co-clustering, on the other hand, performs an implicit dimensionality reduction
by clustering the words and hence, is more effective and efficient for identifying document
clusters. Since word-document co-occurrence matrices can be interpreted as estimates of un-
normalized joint distribution, an appropriate choice for the loss function is the I-divergence
cost used by Dhillon et al. (2003b); Takamura and Matsumoto (2003). Previous empirical
evaluations on some of the popular text datasets (NG20 and CLASSIC3) (Dhillon et al.,
2003b) reveal that this choice of co-clustering algorithm provides performance compara-
ble to the best text-clustering algorithms while yielding superior results than single-sided
information-theoretic clustering. In particular, there is a significant improvement in the
micro-averaged precision values with respect to single-sided clustering; See Dhillon et al.
(2003b) for more details.

7.1.2 Natural Language Processing

Natural language processing is yet another domain where co-clustering has been widely
employed as a key intermediate technique for obtaining an informative partitioning of both
the language tokens and contexts, which in turn facilitates improved performance on vari-
ous tasks such as named-entity recognition (Freitag, 2004), automatic construction of lex-
icon (Rohwer and Freitag, 2004) and prepositional phrase attachment disambiguation (Li
and Abe, 1998). In all these applications, the relevant structural information in an unla-
beled text corpus can be effectively captured in terms of the distributional properties of
appropriately defined language tokens with respect to the contexts in which they occur,
e.g., k-neighborhood of tokens on either side, verb preceding the token, etc. Hence, one
could expect improved performance by leveraging the token-context co-occurrence matri-
ces. However, for most natural language processing applications, the number of tokens
and contexts is extremely large, making it infeasible to directly employ computationally
intensive learning algorithms. Co-clustering alleviates this problem by producing a highly
informative, but reduced cluster-based representation for both tokens and contexts, thus
making it possible to incorporate additional information from unlabeled text. As in the case
of text clustering, the normalized token-context co-occurrence matrices can be interpreted
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as a joint distribution and hence, most of the co-clustering methods employed in natural
processing applications are based on the KL-divergence loss function, or equivalently, the
loss in mutual information using co-clustering basis C5. Empirical studies Freitag (2004);
Rohwer and Freitag (2004); Li and Abe (1998) demonstrate that the use of co-clustering
as an intermediate step makes it straightforward to leverage the additional information in
unlabeled repositories and leads to substantial performance improvement for a number of
natural language processing applications with negligible manual supervision. In particular,
Freitag (2004) shows that including additional features based on co-clustering resulted in
better entity recognition accuracy (statistically significant for certain entity types) on the
MUC 6 named entity data set, while Li and Abe (1998) demonstrates that predictive meth-
ods based on the conditional probabilities derived from co-clustering noun and verb phrases
provide better accuracy than the state-of-the-art rule-based methods on the prepositional
phrase attachment task.

7.1.3 Bio-informatics

In recent years, co-clustering methods are being increasingly employed for analyzing bio-
logical data as well, in particular for studying microarray data consisting of gene expression
matrices where rows corresponds to genes and columns correspond to experimental condi-
tions. The fundamental problem in this setting is to identify groups of similar genes and
similar conditions based on their expression levels. To address this problem, a number of
co-clustering configurations (e.g., overlapping, partitional) and loss functions based on ad-
ditive and multiplicative models have been proposed (Madeira and Oliveira, 2004). These
methods have been shown to be quite effective for identifying highly correlated genes and
conditions. In particular, a special case of the Bregman co-clustering (Cheng and Church,
2000; Cho et al., 2004) corresponding to squared loss function and basis C6 has been shown
to provide high quality co-clusters on biological datasets involving a variety of human cancer
data sets.

7.1.4 Video/Image/Speech Content Analysis

There have also been a number of interesting applications of co-clustering in areas such
as video, image and speech content analysis for performing unsupervised categorization of
video segments (Zhong et al., 2004), images (Qiu, 2004; Guan et al., 2005) and auditory
scenes (Cai et al., 2005). Each of these settings involves two large sets of entities related
to each other through co-occurrence matrices—(i) auditory scenes and audio effects in case
of speech content analysis, (ii) fixed length video segments and prototype images for video
content recognition, and (iii) images and low level features in case of image recognition.
Further, as in the case of text clustering, information-theoretic co-clustering methods based
on preserving mutual information effectively handle the sparsity and high dimensionality
problems to provide high quality categorization of the dual sets of entities. Empirical
results on auditory scene and image categorization show improved classification accuracy
as compared to single-sided clustering methods.
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7.2 Choice of Bregman Divergence and Co-clustering Basis

We now empirically study the appropriateness of the choice of the Bregman divergence and
the co-clustering basis for specific tasks. When the choice of the Bregman divergence and
the specified statistics capture the natural structure of the data, it is possible to obtain a
more accurate low parameter representation of the original data. To illustrate this idea, we
perform co-clustering on synthetic data matrices produced using certain generative models
as well as on real-life matrices—(i) word-document matrices encountered in text analysis,
and (ii) user-movie rating matrices for recommender systems.

7.2.1 Synthetic Data Matrices

First, to study the dependence on the Bregman divergence, we generated multiple (10)
sets of three classes of artificial 50 × 50 matrices MEuc,MIdiv, and MIS , using generative
models corresponding to three different choices of Bregman divergences—squared Euclidean
distance, I-divergence, and Itakura-Saito distance. It can be shown that the appropriate
generative models in this case respectively correspond to mixtures of Gaussian, Poisson
and exponential distributions centered at the co-cluster means.13 In the generative model,
we used 5 row clusters and 5 column clusters. The means of each of the co-clusters were
chosen to be identical (all positive values) for all the three classes of matrices. Table 7.11
shows the results (averaged over 10 sets) of co-clustering these matrices using the Bregman
co-clustering algorithms corresponding to the basis C2 and the three choices of Bregman
divergence with k = l = 5. In each case, the co-clustering algorithms were run 10 times and
the reported quality corresponds to the best run in terms of the objective function. Since
the co-clustering objective functions based on the different divergences are not comparable
and sometimes not even well-defined 14, we measure the co-clustering quality in terms of the
average of the normalized mutual information (Strehl et al., 2000) between the clustering
and true class labels over both the rows and the columns. The standard-deviations reported
in the table correspond to the deviations over multiple sets of matrices. From the table, it
is clear that the co-clustering quality (i.e., row and column clustering), as indicated by the
normalized mutual information with true labels, is better when the Bregman divergence
used in the co-clustering algorithm matches that of the generative model.

In order to study how the approximation error depends on the choice of co-clustering
basis, we created multiple (10) sets of six 50×50 data matrices, M1,M2, . . . , and M6 using
generative models based on the Gaussian family, but with increasing levels of complexity
corresponding to the various co-clustering bases. This was done by first obtaining the mini-
mum Bregman information approximations of an arbitrary 50×50 matrix corresponding to
the various co-clustering bases and then adding Gaussian noise to each of the approxima-
tions. We perform Bregman co-clustering on each of these matrices using squared Euclidean
distance and k = l = 5. Table 7.12 presents the approximation error obtained for each of
these matrices using the various co-clustering bases. From the table, it is clear that for rela-

13. The reader is referred to Banerjee et al. (2005b) for a connection between Bregman divergences and
exponential family distributions. The datasets were generated based on extensions of the results obtained
by Banerjee et al. (2005b).

14. For example, I-divergence and Itakura-Saito costs are not defined for approximation matrices with neg-
ative values.
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Bregman Divergence for Co-clustering
Matrix Squared Euclidean Distance I-divergence Itakura-Saito distance
MEuc 0.812 ± 0.029 0.685 ± 0.041 0.637 ± 0.044
MIdiv 0.645 ± 0.037 0.689 ± 0.035 0.621 ± 0.042
MIS 0.586 ± 0.082 0.622 ± 0.047 0.636 ± 0.039

Table 7.11: Normalized mutual information (NMI) between the true labels and the clusters
obtained using different Bregman divergences, basis C2 and k = l = 5. Re-
sults indicate better performance when the Bregman divergence matches the
generative model.

Matrix C1 C2 C3 C4 C5 C6

M1 6.10 ± 0.13 6.02 ± 0.13 5.80 ± 0.15 5.69 ± 0.14 5.40 ± 0.12 4.89 ± 0.10
M2 22.62 ± 1.81 6.32 ± 0.94 6.15 ± 0.91 6.16 ± 0.95 5.99 ± 0.89 5.12 ± 0.23
M3 22.39 ± 1.87 12.84 ± 1.06 6.76 ± 1.24 8.82 ± 1.15 6.57 ± 1.03 5.04 ± 0.29
M4 23.28 ± 1.93 12.98 ± 1.11 8.87 ± 1.04 6.19 ± 0.98 6.42 ± 0.96 5.08 ± 0.31
M5 24.53 ± 2.08 14.19 ± 1.28 10.31 ± 1.22 11.96 ± 1.18 6.14 ± 0.99 5.29 ± 0.25
M6 44.41 ± 2.75 33.34 ± 1.79 29.18 ± 2.05 31.26 ± 1.99 25.74 ± 1.26 5.01 ± 0.33

Table 7.12: Approximation errors on synthetic matrices for different co-clustering bases
using squared Euclidean distance and k = l = 5. The results indicate that the
performance saturates when the complexity of the co-clustering basis matches
that of the generative model.

tively simple matrices such as M1 and M2, reasonably low parameter bases such as C1 or C2

suffice, whereas for more complex matrices such as M6, high parameter co-clustering bases
such as C6 are necessary. Figures 7.4 and 7.5 show the images of the original data matrix
M2 and M6, and the reconstructions obtained using the different co-clustering bases. The
figures reinforce the observation we make from the table. In particular, in Figure 7.4, one
can visually infer that the reconstruction of the matrix M2 obtained using C2 is reasonably
accurate and cannot be improved much using more complex co-clustering bases whereas,
in Figure 7.5, the reconstruction of M6 obtained using C6 is significantly better than that
obtained using the other co-clustering bases, thus clearly demonstrating that the choice
of co-clustering basis should match the generative model in order to obtain an accurate
approximation.

7.2.2 Word-Document Matrices

As mentioned earlier, co-clustering has been successfully applied to text analysis (Dhillon
et al., 2003b). Since several results comparing specific co-clustering schemes to alternative
text clustering approaches have already been studied, we focus on the relative performance
of the different co-clustering bases introduced in this paper. We use the CLASSIC3 dataset
with 3891 documents represented in the bag-of-words model with 4666 words. We fix the
number of document clusters to be three, which is the number of document classes in the
dataset. Figure 7.6 shows the relative performance (averaged over 10 runs) of all the six co-
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Matrix M
2

Basis C1 Basis C2 Basis C3

Basis C4 Basis C5 Basis C6

Figure 7.4: Co-clustering-based approximation of a simple 50×50 matrix M2 using various
co-clustering bases, squared distortion and k = l = 5. While the matrix is too
complicated for C1, all bases from C2 onwards get an accurate approximation.
Note that all matrices are shown with a consistent permutation (which the
co-clustering finds) for easy visual comparison.

Matrix M
6

Basis C1 Basis C2 Basis C3

Basis C4 Basis C5 Basis C6

Figure 7.5: Co-clustering-based approximation of a complex 50× 50 matrix M6 using vari-
ous co-clustering bases, squared distortion and k = l = 5. Since the given matrix
has fairly complicated structure, only C6 gets an accurate approximation. All
other schemes have more errors, with the simple bases (C1 and C2) having high
errors. As before, the matrices are consistently permuted for visualization. The
co-clustering algorithm also finds this permutation.
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Figure 7.6: Co-clustering results from CLASSIC3—6 bases and 2 divergences. Bases C2−C5

perform very well in getting back the hidden true labels. Basis C1 performs the
worst as it has access to minimal amount of information. Interestingly, basis C6,
in spite of having the maximal information, performs poorly according to NMI.
Possibly C6 is overfitting, i.e., finding some additional structure in the data
that goes beyond what is needed to get the labels right. There is no significant
difference between the two loss functions used.

clustering schemes for a varying number of word clusters and for two Bregman divergences—
squared Euclidean distance and I-divergence. Performance is evaluated by the normalized
mutual information of the document clusters with the true labels of the documents (Strehl
and Ghosh, 2002). As in many of the other experiments, we note that co-clustering bases
C2 and C5 are suitable for both divergences. In Figure 7.7, we compare the performances of
C2 and C5 for both divergences, using the spherical k-means (SPKmeans) algorithm (Dhillon
and Modha, 2001) as a benchmark. We note that the co-clustering algorithms, in particular
the ones based on I-divergence, have very good performance for the entire range of word
clusters. Our results are in agreement with similar results reported in the literature (Dhillon
et al., 2003b).

7.2.3 User-Movie Rating Matrices

The other real-life data domain that we studied is that of movie recommender systems. The
data matrices in this case consist of user ratings for various movies. For our experiments,
we used the MovieLens dataset (GroupLens) consisting of 100,000 ratings in the range 0-5
corresponding to 943 users and 1682 movies. To figure out the appropriate divergence and
co-clustering basis for this data, we performed experiments using both squared Euclidean
distance and I-divergence and various co-clustering bases with varying number of row and
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Figure 7.7: Co-clustering on CLASSIC3—Bases C2 and C5 using squared Euclidean distance
and I-divergence compared with SPKmeans. The co-clustering results compare
favorably to SPKmeans.

Bregman divergence k = l = 1 k = l = 2 k = l = 12 k = l = 32 k = l = 64 k = l = 75
Squared Euclidean distance 0.7004 0.6816 0.6048 0.5547 0.4451 0.4052

I-divergence 0.7006 0.6824 0.6029 0.5573 0.4492 0.4080

Table 7.13: Mean absolute error (MAE) for reconstructing MovieLens data (all values) using
co-clustering methods based on squared Euclidean distance and I-divergence
and co-clustering basis C5.

column clusters. For each case, the co-clustering was performed assuming uniform weights
on the known ratings and zero weights for the unknown ones. The known ratings were then
reconstructed using the MBI principle. Figures 7.8 and 7.9 show how the approximation
error varies with the number of parameters for different co-clustering bases using squared
Euclidean distance and I-divergence cost functions respectively. In the case of squared
Euclidean distance-based co-clustering, we observe that C2 provides the best accuracy when
an extremely low parameter approximation is required while C2-C5 are more suitable for
moderately low parameter sizes. In the case of I-divergence-based co-clustering, C5 is better
than the other bases over a wide range of parameter sizes. Further as Table 7.13 shows,
both choices of Bregman divergence, i.e., squared Euclidean distance and I-divergence, seem
to provide similar performance in terms of the mean absolute error for C5.
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Figure 7.8: Approximation error (normalized squared error) on MovieLens data using
squared Euclidean distance-based co-clustering. As expected, the error de-
creases with increasing number of parameters for all bases. For each basis,
the number of parameters varies as a function of the number of row and column
clusters that the co-clustering algorithm uses.
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Figure 7.9: Approximation error (average I-divergence) on MovieLens data using I-
divergence-based co-clustering. The error decreases with increasing number
of parameters.
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7.3 Novel Applications of Bregman Co-clustering

We now briefly describe two novel applications of our Bregman co-clustering framework and
illustrate these with specific real-life examples.

7.3.1 Missing Value Prediction

Prediction of missing values is an important task encountered in a number of real-world
domains such as recommender systems, bioinformatics, etc. For our experiments, we con-
sider a collaborative filtering-based recommender system where the main task is to predict
the preference of a given user for a given item using known preferences of the other users.
One of the earliest and most popular approaches to solve this problem is by computing the
Pearson correlation of each user with all other users based on the known preferences and
predict the unknown rating by proportionately combining all the users’ ratings. Based on
the observation that the known ratings correspond to elements in a matrix and the missing
ratings can be predicted using suitable low parameter approximations of the ratings matrix,
a number of other collaborative filtering approaches based on matrix approximation meth-
ods such as SVD (Sarwar et al., 2000), and NNMF (Hofmann, 2004) have been proposed
in recent years.

Following the same general intuition, we propose a mathematically well-motivated so-
lution based on co-clustering. The main idea is to (i) assume that the ratings matrix has a
low parameter structure involving properties of user and item clusters, (ii) deduce the rel-
evant parameters using the available ratings so that the desired loss function is minimized,
and (iii) use a matrix reconstruction based on this structure for predicting the missing val-
ues. More specifically, in our co-clustering approach, we assume a low parameter structure
by using the MBI principle so that the parameter learning can be readily performed us-
ing the Bregman co-clustering algorithm with a suitably weighted loss function (weight is
uniform for known ratings, 0 otherwise). The missing values are then predicted using the
reconstructed approximate matrix. Based on the results in Section 7.2.3, we consider low
parameter structures corresponding to the bases C2 and C5. In case of C2, the use of the
MBI principle implies that the user-item rating depends equals the average rating in the
co-cluster whereas in C5, the user-item rating is a combination of the user-bias, item-bias
and the average rating in the co-cluster.

For our experiments, we used the MovieLens dataset (GroupLens) described earlier and
the results reported are averaged over multiple runs of five-fold cross-validation with 80%
of ratings as the training data and 20% of the ratings as the test data in each run.

Table 7.14 shows the mean absolute error (MAE) obtained using various existing col-
laborative filtering approaches (Sarwar et al., 2000; Hofmann, 2004; Resnick et al., 1994) as
well as the co-clustering approach based on squared Euclidean distance. From the table, we
note that the co-clustering method based on C5 provides accuracy comparable to that of the
SVD and NNMF-based methods. The co-clustering approach also has significant benefits in
terms of computational effort as the training time is linear in the number of known ratings
and the missing value prediction is a constant time operation unlike in other approaches.
The number of parameters in the compressed representation is also much lower in the case
of co-clustering as compared to SVD, NNMF and correlation methods when the rank or
neighborhood size is of the same order as the number of row and column clusters.
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SVD NNMF CORR C2 C5

0.7721 ± 0.0164 0.7636 ± 0.0186 0.8214 ± 0.0201 0.8733 ± 0.197 0.7608 ± 0.0211

Table 7.14: Mean absolute error on MovieLens dataset for various collaborative filtering
approaches. Number of row and column clusters for co-clustering (based on
squared Euclidean distance and basis C5) and rank of SVD and NNMF is set
to 5 and the number of neighbors in the correlation method was set to 50.

7.3.2 Co-clustering Categorical Data Matrices

The second data analysis task we consider involves co-clustering data matrices consisting
of categorical values from a finite set. Examples of such data include (i) market-basket
data matrices with users as rows and products as columns and the entries corresponding to
preferred brands, and (ii) genomic data matrices with rows corresponding to patients and
columns corresponding to various positions/loci of gene sequences (also referred to as single
nucleotide polymorphisms) and matrix entries indicating the occupying allele (usually only
4 possible alleles for each location) (Lin and Altman, 2004). Though the matrix elements
take a finite number of values, there is no natural ordering, which makes it impossible to
directly map them to the set of reals R (except in the case of binary valued data) in order to
perform co-clustering as in the case of co-occurrence matrices. However, it is straightforward
to represent each of these categorical values using discrete distributions over the set of all
possible values. For example, when the matrix elements take values in {A, B, C, D}, then
A can be represented as the distribution [1, 0, 0, 0] while B can be represented as [0, 1, 0, 0]
and so on. With this representation, each element of the data matrix is a member of the
r-simplex where r denotes the number of possible categorical values. Defining the domain
S of the matrix elements to be the r-simplex, we can now proceed to perform co-clustering
on the categorical data matrix by choosing an appropriate Bregman divergence over S and
a suitable co-clustering basis. Since elements of S correspond to probability distributions,
a natural choice of distortion measure is the relative entropy (or KL-divergence) over the
r-simplex. The co-clustering objective function in this case is given by

J(ρ, γ) =
m

∑

u=1

n
∑

v=1

KL(zuv||ẑuv)

where Z = [zuv] is the original matrix, Ẑ = [ẑuv] is the MBI solution based on the co-
clustering, and the elements zuv and ẑuv belong to the r-simplex. This co-clustering objec-
tive function is also exactly equal to the minimum achievable description length (in bits)
required for a lossless encoding of the original matrix Z given the MBI solution Ẑ, which de-
pends only on the co-clustering and the summary statistics. Hence, assuming that the cost
of describing the co-clustering and the summary statistics depends only on the pre-specified
number of row and column clusters, the Bregman co-clustering algorithm corresponding to
the relative entropy-based cost function automatically seeks to find an optimal (minimum
length) lossless code for the matrix. A recent paper (Chakrabarti et al., 2004) follows a sim-
ilar co-clustering based approach using binary relative entropy and basis C2 for performing
lossless coding of binary valued matrices.
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To demonstrate the effectiveness of the co-clustering approach described above, we gen-
erated 10 artificial 50 × 50 matrices consisting of four categorical values {A, B, C, D}. For
all the matrices, we assumed generative models corresponding to multinomial distributions
over {A, B, C, D} and co-clustering basis C2 with k = l = 5. The elements in each co-cluster
were generated using a single multinomial distribution with a purity of about 0.8, i.e., the
most likely categorical value had a probability of 0.8 with the rest all being equally likely
with probability 0.067. Each of these matrices was then co-clustered using the relative
entropy-based cost function on 4-simplex with k = l = 5. Table 7.15 shows a comparison
of the description lengths for various choices of k and l using a three-step encoding pro-
tocol where we first encode the co-clustering, then the summary statistics, i.e., counts of
{A, B, C, D} in each co-cluster, and finally the original matrix given the summary statistics
and the co-clustering.

For encoding the co-clustering, we employ a naive scheme that involves specifying the
row and column clusters for each row and column respectively. Since there are k row clusters
and l column clusters, the total number of bits required is given by m log2 k + n log2 l, as
shown in the second column of Table 7.15. Given this co-clustering, we then proceed to
encode the summary statistics, i.e., counts of {A, B, C, D}, corresponding to each co-cluster.
First, we observe that for each co-cluster, the four counts have to be non-negative integers
that sum up to the total size of the particular co-cluster. Since the co-clustering already
specifies the total size of all the co-clusters, it is sufficient to specify any three of the four
counts. Further, information about the count of a particular categorical value reduces the
number of possible choices for the rest of the counts. In particular, if mû and nv̂ denote
the number of rows and columns in row cluster û and column cluster v̂ respectively, then
the number of bits for encoding the first count (say that of A) is given by log2(1 + mûnv̂)
while the cost for the second count (say that of B) is given by log2(1 + mûnv̂ − NA)
where NA is the count of A. Similarly, the encoding cost for the third count is given by
log2(1 + mûnv̂ − NA − NB) where NB denotes the count of B. Thus, the total number of
bits for encoding the summary statistics in this case is given by15

k
∑

û=1

l
∑

v̂=1

(log2(1 + mûnv̂) + log2(1 + mûnv̂ − NA) + log2(1 + mûnv̂ − NA − NB)) .

The third column in Table 7.15 shows the above encoding cost for different choices of k and
l. When k = l = 50, the co-clusters are all singleton sets so that it is sufficient to specify
the single categorical value in each co-cluster. Since there are 4 possible values and mn
co-clusters, the encoding cost in this case equals 2mn = 5000 bits.

The final step is to specify the original matrix given the summary statistics and the
co-clustering and as mentioned earlier, the description length in this case is identical to
the co-clustering objective function, which is shown in the fourth column of Table 7.15.
When k = l = 50, the description length is zero since the summary statistics fully specify
the original matrix. From the table, we observe that with an optimal choice of row and
column clusters, one can obtain an efficient lossless compression of matrix consisting of

15. It is possible to have a more efficient encoding scheme by choosing an ordering of the categorical values
{A, B, C, D} that is likely to lead to the lowest number of bits, but does not make a significant difference
in the current experiment as all the categorical values have nearly equal counts over the entire matrix.
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Num. clusters Co-clustering Code Summary Statistics Code Matrix Code Total
(Co-clustering Cost)

k = l = 1 0 32.4 4973.3 ± 30.8 5005.7 ± 30.8
k = l = 5 232.2 425.8 ± 4.7 2695.4 ± 47.6 3353.4 ± 52.3
k = l = 50 564.4 5000 0 5564.4

Table 7.15: Description length (in bits) for encoding matrix information. Summary statistic
code is the number of bits for encoding the counts of the four possible values in
each co-cluster given the co-clustering whereas the matrix code is description
length of the actual matrix given the summary statistics and the co-clustering.
Co-clustering was performed using relative entropy cost function and basis C2.

finite categorical values. On examining the resulting co-clusters, we find that most of them
are quite homogeneous as well.

8. Related Work

We have discussed several related methods that have appeared in the literature throughout
the paper. We have also discussed existing as well as novel applications of co-clustering
in Section 7. In this section, we briefly review further connections and contrast our work
to the existing literature. Our current work is related to several active areas of research,
namely co-clustering, matrix approximation, learning based on Bregman divergences and
convex optimization. In particular, our formulation of a general co-clustering problem was
motivated by earlier work on co-clustering and matrix approximation (Dhillon et al., 2003b).

Co-clustering has been a topic of much interest in the recent years because of its ap-
plications to problems such as microarray analysis (Cheng and Church, 2000; Cho et al.,
2004), natural language processing (Li and Abe, 1998; Freitag, 2004; Rohwer and Freitag,
2004), recommender systems (Hofmann, 2004) and text, image and speech analysis (Dhillon
et al., 2003b; Takamura and Matsumoto, 2003; Qiu, 2004; Cai et al., 2005). Currently,
there exist many formulations of the co-clustering problem such as the hierarchical co-
clustering model (Hartigan, 1972), the sequential bi-clustering model (Cheng and Church,
2000) that involves finding the best co-clusters one at a time, and the spectral co-clustering
model (Dhillon, 2001; Kluger et al., 2003) that involves partitioning a bipartite graph with
vertices corresponding to the rows and columns. The reader should refer to Madeira and
Oliveira (2004) for an extensive survey on various co-clustering models proposed in literature
and their applications. Recently, there have also been other clustering formulations (Bekker-
man et al., 2005; Gao et al., 2005) that are closely connected to co-clustering, but involve
simultaneous clustering of multiple sets of related entities. In our current work, we focus
on the partitional co-clustering formulation, first introduced by Hartigan (1972), where the
objective is to partition the data matrix into k × l non-overlapping co-clusters where the
quality of co-clusters is determined in terms of an appropriate cost function. Recently, quite
a few algorithms (Cho et al., 2004; Dhillon et al., 2003b; Li and Abe, 1998; Li, 2005) have
been proposed to address the above partitional problem for various cost functions based on
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squared Euclidean distance and I-divergence. One of the objectives of the current work is
to generalize these algorithms to a large set of loss functions based on Bregman divergences

Partitional co-clustering can also be readily viewed as an efficient low parameter matrix
approximation technique as each homogeneous co-cluster can be accurately approximated
by a small number of parameters. In fact, the flexibility to approximate a given data matrix
in terms of a wide range of loss functions subject to a large class of constraints makes the co-
clustering methods more widely applicable than traditional matrix approximation methods
based on singular value decomposition. In particular, classical singular value decompo-
sition (SVD) (Papadimitriou et al., 1998) based approaches to matrix approximation are
quite often inappropriate for certain data matrices such as co-occurrence and contingency
tables as singular vectors can have negative entries and the contributions of the component
vectors in the approximation matrix are not localized. Both these issues make the interpre-
tation of SVD-based approximations difficult, which is necessary for data mining purposes.
To address these and related issues, techniques involving non-negativity constraints (Lee
and Seung, 2001) using KL-divergence as the approximation loss function (Hofmann and
Puzicha, 1998; Lee and Seung, 2001) have been proposed. However, these approaches ap-
ply to special types of matrices such as doubly stochastic and fully non-negative matrices.
A general formulation that is both interpretable and applicable to various classes of ma-
trices is often necessary for a number of real-life applications and the proposed Bregman
co-clustering formulation attempts to address this requirement.

Co-clustering involving constraints on conditional expectations gives rise to theoreti-
cally elegant models with wide range of practical applicability since key summary statistics
can be naturally preserved. Several co-clustering algorithms (Dhillon et al., 2003b; Cho
et al., 2004) that have been proposed in the recent years can be derived from conditional
expectation-based constraints. Conditional expectation constrained co-clustering, along
with its demonstrated connection to the widely used maximum entropy principle (Jaynes,
1957; Cover and Thomas, 1991) and conditional independence based models (Hofmann and
Puzicha, 1998), provides a strong foundation for a unified analysis and design of unsuper-
vised learning algorithms.

Recent research (Azoury and Warmuth, 2001; Banerjee et al., 2005b) has shown that
several results involving the KL-divergence and the squared Euclidean distance are in fact
based on certain convexity properties and hence, generalize to all Bregman divergences. This
intuition motivated us to consider co-clustering based on Bregman divergences. Further,
the similarities between the maximum entropy and the least squares principles (Csiszár,
1991) prompted us to explore a more general minimum Bregman information principle for
all Bregman divergences.

It is important to note that most clustering and co-clustering techniques based on the al-
ternate minimization scheme can be obtained as special cases of the Bregman co-clustering
algorithm. For example, information-theoretic co-clustering (Dhillon et al., 2003b) cor-
responds to the case where the constraint set is C5 and the Bregman divergence is KL-
divergence. Similarly, the minimum sum-squared residue co-clustering algorithms (Cho
et al., 2004) correspond to the cases where the constraint sets are C2 and C6 respectively
while the Bregman divergence is the squared Euclidean distance. The one-sided Bregman
clustering algorithms (Banerjee et al., 2005b) are also a special case with l = n.
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9. Discussion

In this paper, we have presented a general theory of partitional Bregman co-clustering.
Our analysis leads to a unified treatment of a several known co-clustering methods that are
being successfully used in the literature. Further, the analysis gives rise to an entire class
of new co-clustering algorithms based on particular choices of the Bregman divergence and
the set of summary statistics to be preserved. We have provided a meta-algorithm for the
general case, and have demonstrated how to instantiate the algorithm for specific choices
of divergences and statistics. There are several potential benefits to our formulation and
analysis:

• Since our co-clustering formulation co-clustering allows loss functions corresponding to
all Bregman divergences, the technique now becomes applicable to practically all types
of data matrices. The particular choice of the divergence function can be determined
by (i) the data type, e.g., if the data corresponds to joint probability distributions, rel-
ative entropy is an appropriate choice as the divergence function; (ii) the appropriate
noise model, e.g., Euclidean distance is appropriate for Gaussian noise, Itakura-Saito
is appropriate for Poisson noise, etc.; or (iii) domain knowledge/requirements, e.g.,
sparsity of the original matrix can be preserved using I-divergence.

• Our formulation allows approximation models of various complexities depending on
the statistics that are constrained to be preserved. There are two key advantages to
this flexibility. First, preserving summary statistics of the data may be crucial for
some applications as well as important for subsequent analysis. Since the statistics
preserving property is intrinsic to our approach, it is readily applicable to domains
where summary statistics are important. Second, the multiple sets of preserved statis-
tics may enable discovery of different structural patterns in the data.

• We have proposed and extensively used the minimum Bregman information (MBI)
principle as a generalization of the maximum entropy principle. Since the approxima-
tions obtained from the MBI principle extend some of the desirable properties of the
maximum entropy models to settings where some Bregman divergence other than the
relative entropy is more appropriate, we get a new class of statistical modeling tech-
niques that are applicable to more general settings. The MBI principle has potential
applications beyond the co-clustering approximations considered in this paper.

• While the central focus of this paper has been to obtain good co-clusterings using
matrix approximation error to evaluate goodness, as a by-product, we have obtained
a general class of fast matrix approximation techniques with several desirable prop-
erties. In particular, the approximation techniques can work with general divergence
functions and preserves desirable statistical properties of the original data. The ap-
proximations are based on co-clustering, and are expected to have different behavior
from the spectral methods typically employed for matrix approximations. Further,
since the methods are iterative and do not involve eigen-value decompositions, they
are significantly faster than the existing methods and hence, more appropriate for
large data matrices.
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In this paper, our analysis of co-clustering has focused on data that can be represented
in data matrices, representing the relationship between two entities. Many emerging ap-
plication domains collect data on relationships between multiple entities. Such data can
be represented as tensors in the general case, although more compact representations are
possible in some cases. Our proposed co-clustering technique can be extended in a straight-
forward manner to this general setting involving tensors unlike some other methods that are
specific to matrices. It will be worthwhile to investigate how the extensions of co-clustering
to tensor data perform compared to some of the existing techniques. In particular, sev-
eral practical problem domains have known statistical dependency relationships between
the several entities of interest. One of the key challenges of an extension of co-clustering
to such multi-entity relational domains is to come up with very efficient algorithms that
take advantage of the statistical relationships and maintain succinct representations of the
entities and their relationships.
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Appendix A. Information Theoretic Co-clustering

We present a proof of Lemma 1.
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Proof Let p′ be any distribution that satisfies (1.4) and (1.5), and let q be as in (1.3).
Consider

KL(p′||q) =
∑

x̂

∑

ŷ

∑

x∈x̂

∑

y∈ŷ

p′(x, y) log
p′(x, y)

q(x, y)

= −H(p′) −
∑

x̂

∑

ŷ

∑

x∈x̂

∑

y∈ŷ

p′(x, y) (log p(x̂, ŷ) + log p(x|x̂) + log p(y|ŷ))

= −H(p′) −
∑

x̂

∑

ŷ

p(x̂, ŷ) log p(x̂, ŷ) −
∑

x̂

∑

x∈x̂

p(x) log p(x|x̂) −
∑

ŷ

∑

y∈ŷ

p(y) log p(y|ŷ)

= −H(p′) −
∑

x̂

∑

ŷ

p(x̂, ŷ)

(

∑

x∈x̂

p(x|x̂)

)





∑

y∈ŷ

p(y|ŷ)



 log p(x̂, ŷ) −
∑

x̂

∑

x∈x̂

q(x) log p(x|x̂)

−
∑

ŷ

∑

y∈cy

q(y) log p(y|ŷ)

= −H(p′) −
∑

x̂

∑

ŷ

∑

x∈x̂

∑

y∈ŷ

p(x|x̂)p(x̂, ŷ)p(y|ŷ) log p(x̂, ŷ)

−
∑

x̂

∑

x∈x̂





∑

ŷ

∑

y∈ŷ

q(x, y)



 log p(x|x̂) −
∑

ŷ

∑

y∈ŷ

(

∑

x̂

∑

x∈x̂

q(x, y)

)

log p(y|ŷ)

= −H(p′) −
∑

x̂

∑

ŷ

∑

x∈x̂

∑

y∈ŷ

q(x, y) log(p(x̂, ŷ)p(x|x̂)p(y|ŷ))

= −H(p′) + H(q).

Since KL(p′||q) ≥ 0, we have H(q) ≥ H(p′).

Appendix B. Some Properties of Bregman Divergences

We present some useful properties of Bregman divergences and Bregman information that
we use in our analysis in the paper.

Lemma 12 (Bregman (1967); Censor and Zenios (1998)) For any Bregman diver-
gence dφ : S × int(S) 7→ R+ and z1 ∈ S and z2, z3 ∈ int(S), the following three-point
property holds:

dφ(z1, z3) = dφ(z1, z2) + dφ(z2, z3) − 〈z1 − z2,∇φ(z3) −∇φ(z2)〉 .

Theorem 7 (Banerjee et al. (2005a)) For any Bregman divergence dφ : S × int(S) 7→
R+, random variable Z ∼ w(z), z ∈ Z ⊆ S and sub-σ algebra G for Z, the conditional
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expectation E[Z|G] is the optimal predictor of Z among all G measurable random variables
in terms of Bregman divergence, i.e.,

E[Z|G] = argmin
Z′∈G

dφ(Z, Z ′) .

Lemma 13 (Banerjee et al. (2005b)) For any Bregman divergence dφ : S × int(S) 7→
R+, random variable Z ∼ w(z), z ∈ Z ⊆ S and any constant c ∈ int(S), the following
decomposition holds:

E[dφ(Z, c)] = E[dφ(Z, E[Z])] + dφ(E[Z], c) .

Lemma 14 (Banerjee et al. (2005b)) For any Bregman divergence dφ : S × int(S) 7→
R+ and random variable Z ∼ w(z), z ∈ Z ⊆ S, the optimal constant predictor of Z in
terms of Bregman divergence is its expectation, i.e.,

E[Z] = argmin
c

E[dφ(Z, c)] .

Appendix C. Block Average Co-clustering

C.1 Alternate Proof of Theorem 1

The proof of Theorem 1 given in Section 3 assumes knowledge of the optimal solution. In
this appendix, we given an alternate constructive proof of the theorem.

Proof Consider the Lagrangian J(Z ′, Λ) of the MBI problem:

J(Z ′, Λ) = Iφ(Z ′) +
∑

û,v̂

λûv̂(E[Z ′|û, v̂] − E[Z|û, v̂])

(a)
= E[φ(Z ′)] − φ(E[Z ′]) +

∑

û,v̂

λûv̂(E[Z ′|û, v̂] − E[Z|û, v̂])

(b)
= E[φ(Z ′)] − φ(E[Z]) +

∑

û,v̂

λûv̂(E[Z ′|û, v̂] − E[Z|û, v̂]) , (C.40)

where Λ = {{λûv̂}
k
û=1}

l
v̂=1 and λûv̂ is the Lagrange multiplier corresponding to the con-

straint E[Z ′|û, v̂] − E[Z|û, v̂] = 0 for all [û]k1, [v̂]l1. Further, (a) follows from Lemma 2 and
(b) follows since E[Z ′] = E

Û ,V̂
[E[Z ′|Û , V̂ ]] = E[Z].

Rewriting the Lagrangian in terms of matrix elements {{z′uv}
m
u=1}

n
v=1 corresponding to

Z ′, we obtain

J(Z ′, Λ) =
m

∑

u=1

n
∑

v=1

wuv(φ(z′uv) − φ(z̄)) +
∑

û,v̂

λûv̂
1

wûv̂

∑

u:ρ(u)=û
γ(v)=v̂

wuv(z
′
uv − zuv) , (C.41)
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where wûv̂ =
∑

u:ρ(u)=û,v:γ(v)=v̂ wuv and z̄ =
∑m

u=1

∑n
v=1 wuvz

′
uv =

∑m
u=1

∑n
v=1 wuvzuv.

To obtain optimal solution ẐA, we consider the first order necessary conditions, i.e., set
the partial derivatives with respect to the matrix elements and the Lagrange multipliers.
Taking partial derivatives with respect to λû,v̂, we obtain

1

wûv̂

∑

u:ρ(u)=û
γ(v)=v̂

wuv(z
′
uv − zuv) = 0 ∀û, v̂, (C.42)

i.e., E[Z|û, v̂] = E[Z ′|û, v̂] for all [û]k1 and [v̂]l1.

Now, setting partial derivatives of (C.41) with respect to z′uv equal to 0, we get

wuv∇φ(z′uv) − wuv∇φ(z̄) + λûv̂
wuv

wûv̂

= 0 ,∀u, v. (C.43)

where û = ρ(u) and v̂ = γ(v). Since wuv ∈ R+ and z̄ = E[Z] = E[Z ′], the optimal solution
Z ′ = ẐA has the form

ẑuv = ∇φ(−1)

(

∇φ(E[Z]) −
λ∗

ûv̂

wûv̂

)

, û = ρ(u), v̂ = γ(v), (C.44)

where λ∗
ûv̂ corresponds to the optimal Lagrange multiplier. Note that the right hand side

is constant for a given (û, v̂). Thus, substituting (C.44) into (C.42) gives us

E[Z|û, v̂] = ∇φ(−1)

(

∇φ(E[Z]) −
λ∗

ûv̂

wûv̂

)

.

Hence, the only solution satisfying the first order necessary conditions is ẑuv = E[Z|û, v̂], ∀u, v,
i.e., ẐA = E[Z|Û , V̂ ]. The existence and uniqueness of ẐA follow from the strict convexity
of φ.

C.2 Proof of Lemma 3

A proof of the projection lemma (Lemma 3) is given below.

Proof Using the three point property (Lemma 12) and taking expectations, for any Z ′ ∈ SA

and Z ′′ ∈ SB, we have

E[dφ(Z ′, Z ′′)] = E[dφ(Z ′, ẐA)]+E[dφ(ẐA, Z ′′)+E[〈Z ′−ẐA,∇φ(ẐA)〉]−E[〈Z ′−ẐA,∇φ(Z ′′)〉] .

We now argue that the last two terms in the expression vanish to give the desired result.
From Theorem 1, we note that ẐA = E[Z|Û , V̂ ] so that

E[〈Z ′ − ẐA,∇φ(ẐA)] = E
Û ,V̂

[〈E[Z ′|Û , V̂ ] − E[ẐA|Û , V̂ ],∇φ(ẐA)〉] = 0 ,

since ẐA is a constant given (Û , V̂ ) and has the same co-cluster means as Z ′ ∈ SA.
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To show that the last term E[〈Z ′ − ẐA,∇φ(Z ′′)〉] also vanishes, we note that for any
Z ′′ ∈ SB, ∇φ(Z ′′) = f(E[Z|Û , V̂ ]) for some deterministic function f so that

E[〈Z ′ − ẐA,∇φ(Z ′′)〉] = E[〈Z ′ − ẐA, f(E[Z|Û , V̂ ])〉]

= E
Û ,V̂

[〈(E[Z ′|Û , V̂ ] − E[ẐA|Û , V̂ ]), f(E[Z|Û , V̂ ])〉]

(a)
= 0 ,

where (a) follows since ẐA and Z ′ both belong to SA and hence, have the same co-cluster
means. That completes the proof.

C.3 Proof of Theorem 2

Using Lemma 3, we now present a proof of the projection theorem 2.

Proof From Lemma 7, we observe that for any Z ′ ∈ SA and Z ′′ ∈ SB, the following
property holds:

E[dφ(Z ′, Z ′′)] = E[dφ(Z ′, ẐA)] + E[dφ(ẐA, Z ′′) .

From Theorem 1, the MBI solution ẐA = E[Z|Û , V̂ ]. Further, ẐA ∈ SA and ẐB ∈ SB

as well. Hence, due to the strict convexity of φ, it follows that for a given Z ′′ ∈ SB and any
Z ′ ∈ SA,

E[dφ(Z ′, Z ′′)] ≥ E[dφ(ẐA, Z ′′)] ,

with equality only when Z ′ = ẐA. Since ẐA ∈ SA, this implies that

ẐA = argmin
Z′∈SA

dφ(Z ′, Z ′′), ∀Z ′′ ∈ SB.

Similarly, for a given Z ′ ∈ SA and any Z ′′ ∈ SA, E[dφ(Z ′, Z ′′)] ≥ E[dφ(Z ′, ẐA)] with equality

only when Z ′′ = ẐA. Since ẐA ∈ SB as well, we obtain the second part of the result, i.e.,

ẐA = argmin
Z′′∈SB

dφ(Z ′, Z ′′), ∀Z ′ ∈ SA .

C.4 Updating Co-cluster Means

In this section, we prove Lemma 5 that guarantees a non-increasing objective function value
on updating the co-cluster means after either row or column re-assignments.
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Proof By definition,

E[dφ(Z, Ẑt+1)] = E[φ(Z) − φ(Ẑt+1) − 〈Z − Ẑt+1,∇φ(Ẑt+1)〉]

(a)
= E[φ(Z) − φ(Ẑt+1)]

= E[φ(Z) − φ(Z̃t) − 〈Z − Z̃t,∇φ(Z̃t)〉] − E[φ(Ẑt+1) − φ(Z̃t) − 〈Z − Z̃t,∇φ(Z̃t)〉]

= E[dφ(Z, Z̃t)] − E[dφ(Ẑt+1, Z̃t)] + E[〈Z − Ẑt+1,∇φ(Z̃t)〉]

(b)
= E[dφ(Z, Z̃t)] − E[dφ(Ẑt+1, Z̃t)]

≤ E[dφ(Z, Z̃t)] ,

where (a) follows since Ẑt+1 ∈ SA as well as Ẑt+1 ∈ SB so that taking conditional expec-
tations over E[Z|Û , V̂ ] makes the last term zero and (b) follows since by definition ∇φ(Z̃t)
is the summation of terms E[Z] and λ

Û ,V̂
and E[Ẑt+1|Û , V̂ ] = E[Z|Û , V̂ ], thus making the

last term vanish.

Appendix D. General Case Analysis

D.1 Proof of Theorem 4

Proof Consider the Lagrangian J(Z ′, Λ) of the MBI problem:

J(Z ′, Λ) = Iφ(Z ′) +
s

∑

r=1

EGr [ΛGr(E[Z ′|Gr] − E[Z|Gr])]

= E[φ(Z ′)] − φ(E[Z ′]) +
s

∑

r=1

EGr [ΛGr(E[Z ′|Gr] − E[Z|Gr])] ,

where ΛGr is a deterministic function of the random variable Gr and equals the appropriate
Lagrange multiplier when Gr is specified. The Lagrange dual, L(Λ) = infZ′ J(Z ′, Λ), is
concave in Λ. By maximizing the Lagrange dual, we get the optimal Lagrange multipliers,
i.e., Λ∗ = {Λ∗

Gr
} = argmaxΛ L(Λ). Substituting Λ∗ into the first order necessary conditions

corresponding to the minimizer ẐA, we get

∇

(

E[φ(ẐA)] − φ(E[ẐA]) +
s

∑

r=1

Λ∗
Gr

(E[ẐA|Gr] − E[Z|Gr])

)

= 0,

⇔ ∇φ(ẐA) = ∇φ(E[Z]) −
s

∑

r=1

Λ∗
Gr

wGr

,

where wGr is the measure corresponding to Gr and E[ẐA] = E[Z]. Rearranging terms proves
the first part of the theorem. The existence and uniqueness of ẐA follow from the strict
convexity of φ.
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D.2 Proof of Lemma 7

Proof Using the three point property (Lemma 12) and taking expectations, for any Z ′ ∈ SA

and Z ′′ ∈ SB, we have

E[dφ(Z ′, Z ′′)] = E[dφ(Z ′, ẐA)]+E[dφ(ẐA, Z ′′)+E[〈Z ′−ẐA,∇φ(ẐA)〉]−E[〈Z ′−ẐA,∇φ(Z ′′)〉] .

We now argue that the last two terms in the expression vanish to give the desired result.
From Theorem 4, we note that

ẐA = (∇φ)(−1)

(

∇φ(E[Z]) −
s

∑

r=1

Λ∗
Gr

wGr

)

,

where C = {Gr}
s
r=1 and Λ∗

Gr
are the optimal Lagrange multipliers corresponding to the

linear constraints arising from preserving the summary statistics. Note that since ẐA and
Z ′ ∈ SA, we have E[Z|Gr] = E[ẐA|Gr] = E[Z ′|Gr], ∀Gr ∈ C. Substituting the expression for
ẐA into the first of the latter two terms, we have

E[〈Z ′ − ẐA,∇φ(ẐA)] = E[〈Z ′ − ẐA, (∇φ(E[Z]) −
s

∑

r=1

Λ∗
Gr

wGr

)〉]

= 〈E[Z ′ − ẐA],∇φ(E[Z])〉 −
s

∑

r=1

E[〈Z ′ − ẐA,
Λ∗
Gr

wGr

〉]

(a)
= −

s
∑

r=1

EGr [〈E[Z ′|Gr] − E[ẐA|Gr],
Λ∗
Gr

wGr

〉]

(b)
= 0 ,

where (a) follows since E[Z] = E[ZA] = E[Z ′], and (b) follows since both Z ′ and ẐA satisfies
the constraints, E[Z|Gr] = E[ẐA|Gr], ∀Gr ∈ C.

To show that the last term E[〈Z ′ − ẐA,∇φ(Z ′′)] also vanishes, we use the fact that by
definition ∇φ(Z ′′) =

∑s
r=1 fr(E[Z|Gr]). Hence,

E[〈Z ′ − ẐA,∇φ(Z ′′)〉] = E[〈Z ′ − ẐA,
s

∑

r=1

fr(E[Z|Gr])〉]

=
s

∑

r=1

E[〈Z ′ − ẐA, fr(E[Z|Gr])〉]

=
s

∑

r=1

EGr [〈E[Z ′|Gr] − E[ẐA|Gr], fr(E[Z|Gr])〉]

= 0 ,

since E[Z|Gr] = E[ẐA|Gr], ∀Gr ∈ C. That completes the proof.
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D.3 Proof of Theorem 5

Using Lemma 7, we now present a proof of the projection theorem 5.

Proof From Lemma 7, we observe that for any Z ′ ∈ SA and Z ′′ ∈ SB, the following
property holds:

E[dφ(Z ′, Z ′′)] = E[dφ(Z ′, ẐA)] + E[dφ(ẐA, Z ′′) .

By definition, the MBI solution ẐA ∈ SA. Further from Theorem 4, it can also be
expressed in the form

ẐA = (∇φ)(−1)

(

∇φ(E[Z]) −

s
∑

r=1

Λ∗
Gr

wGr

)

,

i.e., it is additive in functions of the conditional expectations, i.e.,
Λ∗
Gr

wGr
in the natural

parameter space, which implies that ẐA ∈ SB as well.
Therefore, due to the strict convexity of φ, it follows that for a given Z ′′ ∈ SB and any

Z ′ ∈ SA,
E[dφ(Z ′, Z ′′)] ≥ E[dφ(ẐA, Z ′′)] ,

with equality only when Z ′ = ẐA. Since ẐA ∈ SA, this implies that

ẐA = argmin
Z′∈SA

dφ(Z ′, Z ′′), ∀Z ′′ ∈ SB.

Similarly, for a given Z ′ ∈ SA and any Z ′′ ∈ SA,E[dφ(Z ′, Z ′′)] ≥ E[dφ(Z ′, ẐA)] with equality

only when Z ′′ = ẐA. Since ẐA ∈ SB as well, we obtain the second part of the result, i.e.,

ẐA = argmin
Z′′∈SB

dφ(Z ′, Z ′′), ∀Z ′ ∈ SA .
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Table D.16: Notation used in the paper

Notation Usage Introduced in

X,Y Random variables over {x1, . . . , xm} and {y1, . . . , yn} Sec 1.1
m,n Cardinality of support sets of X and Y Sec 1.1
u, v Indices over the sets {1, · · · ,m} and {1, · · · , n} resp. Sec 1.1

X̂, Ŷ Compressed/clustered versions of random variables X and Y Sec 1.1
k, l Number of row and column clusters Sec 1.1
g, h Indices over the sets {1, · · · k} and {1, · · · , l} resp. Sec 1.1

p(·) Given joint (and induced) distributions over X, Y , X̂ and Ŷ Sec 1.1

p′(·) Candidate joint (and induced) distributions over X, Y , X̂ and Ŷ Sec 1.1

q(·) Max. entropy joint (and induced) distributions over X, Y , X̂ and Ŷ Sec 1.1

p0(·) Uniform joint (and induced) distributions over X, Y , X̂ and Ŷ Sec 1.1
φ(·) Strictly convex, differentiable function Sec 2.1
dφ(·) Bregman divergence derived from φ Sec 2.1

S Effective domain of φ Sec 2.1
z, zi Elements of S Sec 2.1
Z Random variable taking values in S Sec 2.1
Z Support of Z Sec 2.1

w(·) Probability measure associated with random variable Z Sec 2.1
Z Matrix ∈ Sm×n Sec 2.1

U, V Random variables over {1, . . . ,m} and {1, . . . , n} Sec 2.2
w Joint distribution of (U, V ) Sec 2.2
Z H-measurable random variable Sec 2.2

ρ, γ Row and column cluster mapping Sec 2.3

Û , V̂ Random variables ρ(U) and γ(V ) Sec 2.3

Ẑ Matrix approximating Z (size m × n) Sec 2.3

Ẑ Random variable approximating Z Sec 2.3
Φw Convex function induced on matrix by φ Sec 2.3
û, v̂ Indices representing ρ(u) and γ(v) Sec 3.1
SA Set of random variables preserving co-cluster means Sec 3.1

ẐA Random variable, minimum Bregman information solution Sec 3.1
Z ′ Element of SA Sec 3.1
SB Set of random variables that are functions of co-cluster means Sec 3.1

ẐB Random variable, best approximation to Z in SB Sec 3.1
Z ′′ Element of SB Sec 3.1

Ẑ Same as ẐA and ẐB Sec 3.1
(ρ∗, γ∗) Optimal row and column clustering Sec 3.2

µû,v̂ co-cluster mean E[Z|û, v̂] Sec 3.3
Ju(·) Contribution of uth row to the objective function Sec 3.3
ρt Row clustering in the tth iteration Sec 3.3
γt Column clustering in the tth iteration Sec 3.3

Ẑt MBI solution corresponding to (ρt, γt Sec 3.3

Z̃t Row permuted version of Ẑt according to ρt Sec 3.3
R Row assignment matrix (size m × k) Sec 3.4
C Column assignment matrix (size n × l) Sec 3.4
M Co-cluster mean matrix (size k × l) Sec 3.4

In×n Identity matrix Sec 3.4
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Table D.17: Notation used in the paper

Notation Usage Introduced in

U∅ Constant random variable over rows Sec 4.1
V∅ Constant random variable over columns Sec 4.1
G Sub-σ algebra of Z Sec 4.1
Γ1 Set of index random variables Sec 4.1
Γ2 Unique sub-σ-algebra of Z Sec 4.1
C, Ci Co-clustering basis Sec 4.1
G,Gi Sub-σ algebra or corresponding r.v. in a co-clustering basis Sec 4.1

s Total number of constraints in a co-clustering basis Sec 4.2
r Index over the set {1, · · · s} Sec 4.2

Λ∗
Gr

,ΛGr
(Optimal) Lagrange multipliers associated with Gr Sec 4.2

wGr
Induced measure on Gr Sec 4.2

J(·) Lagrangian for the minimum Bregman information problem Sec 4.2
L(·) Lagrange dual of the Bregman information Sec 4.2
SA Set of random variables preserving summary statistics Sec 4.2

ẐA MBI solution in SA Sec 4.2
Z ′ Element of SA Sec 4.2
ψ Legendre conjugate of φ Sec 4.4
Θ Domain of ψ Sec 4.4
θGr

Random variables corresponding to E[Z|Gr] in Θ Sec 4.4
ΘB Set of generalized additive models of θGr

in Θ space Sec 4.4
θ′′ Element of ΘB Sec 4.4
SB Set of generalized additive models of summary statistics in Θ space Sec 4.4

ẐB Random variable, best approximation to Z in SB Sec 4.4
Z ′′ Element of SB Sec 4.2

fr(·), gr(·), hr(·) Arbitrary functions of E[Z|Gr] and θGr
Sec 4.4

ζ(ρ, γ,Λ) Functional form of the min. Bregman information solution for (ρ, γ) Sec 5.2
with Lagrange multipliers Λ possibly instead of optimal Λ∗

ξ(U, ρ(U), V, γ(V )) Objective function E[dφ(Z, Z̃)] Sec 5.2

z, ẑ, z′ Vectorized versions of Z, Ẑ and Z
′ respectively Sec 5.5

z̄ mn × 1 vector with all values = E[Z] Sec 5.5
A Matrix corresponding to the linear conditional expectation constraints Sec 5.5
c Number of linear constraints (rows in A) Sec 5.5
Lφ Legendre-Bregman projection derived from φ Sec 5.5

λi,λ Lagrange multipliers corresponding to Ai and A resp. Sec 5.5
z′0 Initial choice of z′ Sec 5.5
sij Sign of Aij Sec 5.5
Nj Upper bound on L1 norm of jth column in A Sec 5.5
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Table D.18: Notation used in the paper
Notation Usage Introduced in

W m × n matrix corresponding to the measure w Sec 6.1
Em (En) constant m × 1 (n × 1) vector consisting of all ones Sec 6.1

Z̄G Matrix of conditional expectations over G Sec 6.1

Zf
G m × n matrix expansion of Z̄G Sec 6.1

Z̃ Matrix corresponding to Z̃ Sec 6.2
ρ′, γ′ Candidate row and column clustering Sec 6.2
R′,C′ Candidate row and column membership matrices Sec 6.2

Z̃rowV ar Coefficient of R′ in Z̃ (size k × n) Sec 6.2

Z̃rowConst Constant part of Z̃ during row clustering (size m × n) Sec 6.2
Zrow Constant matrix determining row-clustering (size m × n) Sec 6.2

ZrowRed Reduced representation of Zrow (size m × l) Sec 6.2

Z̃rowV Red Reduced representation of Z̃rowV ar (size k × l) Sec 6.2

Z̃colV ar Coefficient of C′ in Z̃ (size m × l) Sec 6.2

Z̃colConst Constant part of Z̃ during column clustering (size m × n) Sec 6.2
Zcol Constant matrix determining column clustering (size m × n) Sec 6.2

ZcolRed Reduced representation of Zcol (size k × n) Sec 6.2

Z̃colV Red Reduced representation of Z̃colV ar (size k × l) Sec 6.2
Em×n m × n matrix consisting of all ones Sec 6.2
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