
A Framework for Simultaneous Co-clustering and Learning from

Complex Data

Meghana Deodhar Joydeep Ghosh

{deodhar/ghosh}@ece.utexas.edu

IDEAL-2007-08∗

Intelligent Data Exploration & Analysis Laboratory

(Web: http://www.ideal.ece.utexas.edu/)

Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, Texas 78712
U.S.A.

March 28, 2007

∗ c© 2007 Meghana Deodhar and Joydeep Ghosh

Abstract

For difficult classification or regression problems, practitioners often segment the data
into relatively homogenous groups and then build a model for each group. This two-step
procedure usually results in simpler, more interpretable and actionable models without
any loss in accuracy. We consider problems such as predicting customer behavior across
products, where the independent variables can be naturally partitioned into two groups.
A pivoting operation can now result in the dependent variable to show up as entries in
a ”customer by product” data matrix. We present a model-based co-clustering (meta)-
algorithm that interleaves clustering and construction of prediction models to iteratively
improve both cluster assignment and fit of the models. This algorithm provably converges
to a local minimum of a suitable cost function. The framework not only generalizes co-
clustering and collaborative filtering to model-based co-clustering, but can also be viewed
as simultaneous co-segment-ation and classification or regression, which is better than inde-
pendently clustering the data first and then building models. Moreover, it applies to a wide
range of bi-modal or multimodal data, and can be easily specialized to address classification
and regression problems. We demonstrate the effectiveness of our approach on both these
problems through experimentation on real and synthetic data.

1 Introduction

While it is common practice to develop a single learned model (e.g., a classification or regres-
sion model, or a single ensemble of multiple base-learners) to characterize a given dataset,
for many problems it is practically advantageous to partition the population into multiple,
relatively homogeneous segments and then develop separate models for each segment [BG93,
DBSP93, OH01, LS00]. For example, an e-tailor may attract different types of browsers, from
casual shoppers to bulk purchasers, and one may want to model their purchasing inclinations
separately. Similarly while forecasting electric load usage, it is advisable to building separate
predictive models for weekdays, weekends and holidays. Advantages of such divide-and-conquer
approaches include not only improved accuracy and reliability in general, but also improved
interpretability as well, since the component models are often far simpler [Sha96]. For ex-
ample, the mixtures-of-experts model [JJ94] typically uses linear regression models composed
together to form non-linear maps. Note that this model achieves (soft) partitioning and learn-
ing simultaneously; more common are situations such as the load forecasting application, where
the partitioning is done apriori based on domain knowledge or a separate segmentation rou-
tine [BG93], [DBSP93].

This paper is concerned with situations where the independent variables can be naturally
partitioned into two (or more) groups that are associated with their corresponding modes. We
then simultaneously cluster along each mode, as well as fit a learned model to each co-cluster.
The approach can alternatively be viewed as a model-based generalization of biclustering or

co-clustering, which is a technique that simultaneously clusters along multiple axes and has
been successfully applied in several domains like text clustering and microarray data analy-
sis [CDGS04], [CC00], [DMM03]. Co-clustering, is traditionally applied to a matrix of data
values, where the rows are data points and the columns are features, e.g. in microarray data
the rows are genes and columns are experiments, in recommender systems the rows are cus-
tomers and the columns are products. Co-clustering exploits the duality between the two axes
to improve on single-sided clustering. In the alternative viewpoint, along with the data matrix,
a set of variables is associated with the rows, and another set with the columns. For each
co-cluster, a model is learned to predict a matrix cell value given the corresponding row and
column attributes. Generalization refers to predicting the missing values in the data matrix,
as well as values when new rows/columns are added.

Example: To concretize the above discussion, consider the problem of predicting customer
purchase decisions (recommending products to customers). The dataset in this case is a matrix
of customers by products, where the cell values are class labels representing whether a customer
buys a certain product or not. This matrix will have missing values where the corresponding
customer-product choice is unknown. Each customer is described by a set of attributes, for
example, demographics and each product also has attributes, which could include the price,
market share, quality, etc. The problem is to predict the choices for the missing customer-
product combinations, as well as behavior of new customers, or choices made for new products.
Note that collaborative filtering approaches for this problem will make use only of the matrix
entries and ignore customer/product attributes [HKBR99, GM05]. On the other extreme, a
typical classification model will form a map between the feature vector for a given customer-
product pair and the corresponding matrix entry, but will not consider nearby customers or
products in this process. For the classifier, the dependent variable values are nothing but the
matrix entries, and the independent variables are grouped into variables associated with the

1

rows and variables associated with the columns. For a diverse population of customers and
a wide range of different products, it is unlikely that all the customers have the same choice
models for all the products. It is more natural for a subset of the customers to have similar
choice models across a subset of products.

A co-clustering approach will simultaneously cluster the customers and products based
on the matrix entries. It will then use the entries of the corresponding co-cluster to predict
a missing value. If done properly, this gives better results than standard recommender sys-
tems [GM05], however this approach still ignores the customer and product attributes, i.e., the
prediction is solely based on the value of the dependent variable in a suitably identified neigh-
borhood. Our approach exploits both such neighborhood information as well as the available
customer/product attributes. The idea is to co-cluster the entire data matrix into blocks of
customers and products such that each block can be well characterized by a single predictive
model. Note that the similarity between two data entries is now determined not by the simi-
larity between the values themselves, but rather between the corresponding predictive models.
Moreover, our model based co-clustering-cum-learning algorithm achieves this by interleaving
clustering and construction of classification models to iteratively improve both cluster assign-
ment and fit of the models. This simultaneous approach is better than independently clustering
the data first and then building classification models. We also exhibit a cost function that is
steadily decreased in both steps of the iterative process, till one reaches a local minimum,
thereby guaranteeing convergence.

The above approach is not restricted to classification. To highlight this, we also consider the
problem of building multiple regression models, one for each co-cluster, for the application of
predicting the number of items of a given product purchased by a customer, using a formidable,
real data set in Section 8.2. The overall approach remains the same, only the specifics of the
learned models and of the measure of fit changes.

In the rest of the paper we refer to the data points as customers and axes as products, based
on our motivating applications. Our approach is however not restricted to a customer-product
matrix, and is applicable to any bi-modal data set. It can also be extended to multi-modal
data, e.g. a 3-D tensor (data cube) with sets of variables associated with one or more of the
axes.

Notation: Small letters represent scalars e.g. a,z, small, bold face letters represent vectors
e.g. b, c,β, capital letters like Z,W represent matrices. Individual elements of a matrix e.g.
Z are represented as zij where i and j are the row and column indices respectively.

2 Related Work

There are several examples of the use of localized prediction models in load forecasting systems,
where clustering is used to distinguish smaller, homogenous groups of data and a prediction
model is then fitted for each cluster in a two step sequential process [BG93], [DBSP93]. Cluster-
ing based prediction models have also been widely used in economics [OH01], [LS00]. Sfetsos
et al. propose an iterative algorithm to cluster time series data such that each cluster consists
of data points with similar linear models [SS04]. This is followed by a heuristic to identify
a single cluster to be used for future predictions. This clustering algorithm is one sided and
linear model based, a special case of our co-clustering algorithm.

In the bioinformatics domain, clustering of genes is often used as a preprocessing step for the

2

classification of experiments (samples) in microarray data analysis [LKM05], [CMHD03], [JY03].
A cluster is represented by the mean of the expression profiles across all its member genes, which
acts as a dimensionality reduction step for the classification process. This helps to reduce gene
redundancies and constructs parsimonious and more interpretable classification models. A si-
multaneous clustering and classification algorithm is proposed by Zhang et al. [ZNB05], which
uses a voting based classifier ensemble to improve a clustering solution. The labels assigned by
an initial clustering are used to train a set of diverse classifiers. Data points that lie on cluster
boundaries are relabeled by combining the classifier predictions using a majority vote. This
process is iterated to refine the clustering solution.

Co-clustering (also known as biclustering) has been used in several diverse data mining
applications like clustering microarray data [CC00], [CDGS04], text mining [DMM03] and
marketing applications. Most clustering or co-clustering approaches cannot handle missing
data and assume a full data matrix. However the formulation in [BDG+06] readily handles
missing data, and has been shown to perform better than traditional collaborative filtering
techniques in a recommender system setting [GM05], where the data is a matrix of customer-
movie ratings. The known ratings are used to simultaneously cluster customers and movies
and compute summary statistics for the co-clusters, which are then used to predict unknown
ratings, using an instance of the Bregman co-clustering algorithm [BDG+06]. Recently Ying
et al. proposed a recommendation model that emphasizes the importance of using missing
recommendation ratings as part of the model rather than ignoring them completely [YFW06].
They demonstrate that by jointly modeling whether and how an item was rated (selection and
rating respectively), the accuracy of existing recommendation systems can be substantially
improved.

The idea of simultaneous clustering and regression was introduced in the marketing lit-
erature in the paper by Wedel and Steenkamp, who proposed a generalized fuzzy clusterwise
regression technique to find both customer segments and market structure [WS91]. Each cluster
includes fractional membership from all customers and products and is hence a fuzzy co-cluster.
Each cluster has a regression model that predicts the preferences as a linear combination of
the product attributes. The cluster memberships and models are estimated so as to reduce the
total squared error between the actual preferences and the predicted preferences. But no one
has attempted simultaneous co-clustering and predictive modeling.

3 Problem Definition

We now describe the problem formulation for the classification setting. Let m be the total
number of customers and n the total number of products. The data can be represented as an
m× n matrix Z of customers and products, with cells zij representing the corresponding class
labels, e.g. whether customer i buys product j or not. Throughout the following discussion we
assume that we are dealing with a 2 class problem and zij ∈ {−1,+1}, however the algorithm
can easily be generalized to deal with multiclass settings. The problem formulation and solution
for regression models is given in Section 5. A weight wij is associated with each cell zij . The
weights of the known (training) matrix cell values are set to 1. The missing cell values, that
are to be predicted are given a weight of 0. In general, the weight is not restricted to 0 or 1
and can take values between 0 and 1. This formulation allows the prediction framework to deal
with data uncertainties, where less certain values can be given lower but non-negative weights.

3

A customer i has attributes Ci, and product j has attributes Pj. It is assumed that each
class label zij is primarily determined by the attributes of the corresponding customer-product
pair and is generated by a certain model involving these attributes. We assume this model to
be a logistic regression model 1 where the log odds is modeled as a linear combination of the
customer and product attributes given by

ln
P (zij = 1|xij)

1 − P (zij = 1|xij)
= f(xij),

where xij
T = [1,Ci

T ,Pj
T] is a vector consisting of the customer and product attributes, and

f(xij) = βT xij is a linear model with parameters βT = [β0,βc
T ,βp

T]. The similarity of the
cell values is now defined based on the similarity of their underlying logistic regression models.
The aim is to simultaneously cluster the rows (customers) and columns (products) into a grid
of k row clusters and l column clusters 2, such that the class labels within each co-cluster
are predicted by a single common classification model. The co-cluster assignments along with
the classification models for the co-clusters can be used to predict the class labels for missing
customer-product combinations.

Formally, let ρ be a mapping from the m rows to the k row clusters and γ be a mapping
from the n columns to the l column clusters. We want to find a co-clustering defined by (ρ, γ)
and associated set of classification models {βgh} that minimize the following objective function

k
∑

g=1

l
∑

h=1

∑

u:ρ(u)=g

∑

v:γ(v)=h

wuvln(1 + exp(−zuvβ
ghT

xuv)), (1)

where zuv is the original value (class label) in row u, column v of the matrix, with associated
weight wuv. Here βgh denotes the vector of coefficients of the model associated with the co-
cluster that the cell value zuv is assigned to. Since the weights for the missing zuv values are 0,
the objective function essentially ignores them and is simply the log loss summed over all the
known elements of matrix Z. Minimizing this objective function is equivalent to maximizing
the log-likelihood of the data.

4 Simultaneous Co-clustering and Classification

A co-clustering (ρ, γ), that reduces the cost function (1) can be obtained by a simple iterative
algorithm. Since the objective function is the log loss summed over all the elements of the
matrix, it can be expressed as a sum of row or column losses. If row u is assigned to row cluster
g (i.e. ρ(u) = g), the row error is

Eu(g) =
l

∑

h=1

∑

v:γ(v)=h

wuvln(1 + exp(−zuvβ
ghT

xuv)).

Since any missing values in the row u will have a weight 0, the error Eu(g) is effectively
computed only over the known values in row u. For a given column clustering and model

1The focus of this paper is on simultaneous co-clustering and classification, and not obtaining the best possible
classifier, therefore we have chosen a standard, fairly flexible classifier rather than experiment with a multitude
of classifier options.

2This form of co-clustering is often called partitional co-clustering [MO04]

4

parameter sets {βgh}, the best choice of the row cluster assignment for row u is the g that
minimizes this error, that is,

ρnew(u) = argmingEu(g).

Each row is hence assigned to the row cluster that minimizes the row error. A similar approach
is used to (re)-assign columns to column clusters. Such row and column cluster updates hence
decrease the objective function and improve the clustering solution. Note that updating column
cluster assignments could cause the best row assignments to change and vice versa. Thus
optionally, the row and column cluster reassignment steps can be repeated several times and
in arbitrary order until both row and column cluster memberships converge.

Given the current row and column cluster assignments, the co-cluster models need to be
updated, i.e. the co-efficient vector β has to be updated for each co-cluster. To update the
model for a row cluster g of size r and column cluster h of size c, train a logistic regression
model with the r∗c values within the co-cluster, weighted by their corresponding weight values.
The missing values present in the co-cluster have weights of 0 and are essentially ignored. The
logistic regression model is hence trained using only the known training samples (xij, zij). In
the more general case of arbitrary valued weights, this step involves updating a weighted logistic
regression model [LL03] rather than a simple logistic regression model. The output will be an
updated vector βgh of coefficients that minimizes the model log loss given by

L =
r

∑

u=1

c
∑

v=1

wuvln(1 + exp(−zuvβ
ghT

xuv)).

The model update step is hence guaranteed to decrease the objective function.
The resulting algorithm is a simple iterative algorithm described in Figure 1. Step 1 min-

imizes the objective function due to the property of logistic regression, steps 2(a) and 2(b)
directly minimize the objective function. The objective function hence decreases at every it-
eration. Since this function is bounded from below by zero, the algorithm is guaranteed to
converge to a local minimum. This algorithm could also be extended to classification models
other than logistic regression. In this case the loss function and the update models step will
be modified, but the overall approach will still be the same.
Predicting missing class labels: After the co-cluster assignments and the co-clusterwise
classification models are obtained by the algorithm, the missing class labels can be predicted
easily. Let zuv be a missing cell value that has been assigned to row cluster g and column
cluster h. xuv is the vector of attributes of row u and column v and βgh represents the model
parameters of the logistic regression model of the assigned co-cluster. The logistic regression
model is used to obtain the probability of zuv of belonging to the positive class as follows

P (zuv = 1) =
1

1 + e−βghT

xuv

A suitable threshold t is used to convert the probabilities into class labels i.e. zuv = 1 if P (zuv =
1) > t, zuv = −1 otherwise.

5 Simultaneous Co-clustering and Regression

In the regression setting, Z is an m×n matrix of “customers” and “products”, with cells repre-
senting the corresponding customer-product preference values, ratings or choice probabilities.

5

Algorithm
Input: Zm×n, Wm×n, C = [C1..Cm] , P = [P1..Pn]
Output: Co-clustering (ρ, γ) and co-cluster models β’s
1. Begin with a random co-clustering (ρ, γ)
2. Repeat

Step 1
3. Update co-cluster models
4. for g = 1 to k do
5. for h = 1 to l do
6. Train a logistic regression model with all the training samples (xij, zij) in
8. co-cluster (g, h), with associated weights wij , to obtain an updated βgh.
10. end for
11. end for

Step 2(a)
12. Update ρ - assign each row to the row cluster that minimizes the row error
14. for u = 1 to m do

15. ρ(u) = argming

∑l
h=1

∑

v:γ(v)=h wuvln(1 + exp(−zuvβ
ghT

xuv))

17. end for

Step 2(b)
18. Update γ - assign each column to the column cluster that minimizes the column error
20. for v = 1 to n do

21. γ(v) = argminh

∑k
g=1

∑

u:ρ(u)=g wuvln(1 + exp(−zuvβ
ghT

xuv))

23. end for
23a. Optional: repeat steps 2(a) and 2(b) until convergence

until convergence
24. return (ρ, γ) and β’s

Figure 1: Pseudo-code for simultaneous co-clustering and classification

Here we assume the generative model to be a linear model, where the preference value zij ∈ R
is modeled as a linear combination of the corresponding customer and product attributes. The
preference value is estimated as ẑij = β0 + βc

TCi + βp
TPj. Similar to the problem definition

in section 3, the aim is to simultaneously cluster the customers and products into a grid of
k row clusters and l column clusters, such that preference values within each co-cluster have
similar linear models and can be represented by a single common model. We want to find a
co-clustering defined by (ρ, γ) and the associated k ∗ l regression models that minimize the

6

following objective function

k
∑

g=1

l
∑

h=1

∑

u:ρ(u)=g

∑

v:γ(v)=h

wuv(zuv − ˆzuv)
2. (2)

where ˆzuv = (βgh)Txuv . The only difference here as compared to the classification case is
the loss function, which is now squared loss rather than log loss. A co-clustering (ρ, γ), that
minimizes the objective function can be obtained by an algorithm similar to the one described
in section 4. The cluster reassignment steps assign each row or column to the row or column
cluster that minimizes the row or column error.

The model for row cluster g of size r and column cluster h of size c is updated by solving

min‖w(r∗c)×1z(r∗c)×1 − X(r∗c)×pβp×1‖
2
2,

where z is a vector of all the r ∗ c preference values in the co-cluster and w is a vector of
the corresponding weights. X is the matrix of the corresponding row and column attributes.
p is the total number of co-efficients to be estimated, including the intercept. In case of 0/1
weights, this is equivalent to ignoring missing values and updating the β for each co-cluster by
least squares regression using only the non-missing (training) values within the co-cluster. In
case of a general set of weights, the β is a solution to a weighted least squares problem. Least
squares regression finds a solution for β that minimizes the sum of the squared errors between
the original values and the predicted values. The model update step is hence guaranteed to
decrease the objective function.

After the algorithm converges, the co-cluster assignments and co-clusterwise regression
models can be used to predict unknown customer-product preference values. A missing value

zuv is predicted as ˆzuv = βghT
xuv.

6 Reduced Parameter Approach

The simultaneous co-clustering and prediction approach constructs k × l independent models,
one per co-cluster, requiring a total of (1 + |C| + |P |) × kl parameters, where |C| and |P |
are the number of customer and product attributes respectively. This model will have many
parameters for large values of k and l and may overfit in cases where training data is limited.
The other extreme is a single prediction model for all the data, with (1+ |C|+ |P |) parameters,
which might not be adequate. We propose an intermediate approach, which constructs k × l

models but with smoothing or regularization achieved by sharing parameters across certain sets
of models. The co-cluster models are constructed in such a way that the customer coefficients
of all models for the same row cluster and the product coefficients of all models for the same
column cluster are constrained to be identical. This reduced setting has (1+|C|)×k+(1+|P |)×l

parameters, which will be considerably lower than (1 + |C| + |P |) × kl for large k and l. We
now describe how the model parameters can be obtained for the regression problem.

If zuv is the original value in row u, column v of the matrix Z that is assigned to row cluster
g and column cluster h, the predicted value ˆzuv is now given by

ˆzuv = β
g
c0 + βg

c
TCu + βh

p0 + βh
p

T
Pv,

7

where β
g
c0 and βh

p0 are the customer and product intercepts and βg
c and βh

p are the customer
and product coefficient vectors for the row cluster g and column cluster h respectively.

We still want to find a co-clustering defined by (ρ, γ) and associated regression models that
minimize the objective function (2). The row and column cluster assignment steps remain
the same. The update models step now involves solving a constrained optimization problem.
Instead of updating k × l linear models independently, this step now updates the k row cluster
models, such that the product coefficients are fixed, and the customer coefficients are updated,
and then the l column cluster models, in which the customer coefficients are fixed and the
product coefficients are updated.

To update the model for row cluster g with r rows and n columns solve

min‖wy − Xc[β
g
c0,β

g
c

T]T ‖2
2,

where Xc is an (r ∗ n) × (1 + |C|) matrix of the customer attributes, with the first column set
to 1 for the intercept. The response variable y is a vector with r ∗ n elements, given by

y = z− Xp[β
h
p0,β

h
p

T
]T ,

where z is a vector of all the r ∗n preference values in the row cluster g with associated weights

w, [βh
p0,β

h
p

T
] is a vector of the product coefficients of the corresponding column clusters and

Xp is a matrix of size (r∗n)×(1+ |P |) representing the product attributes corresponding to the
preference values. The column cluster models are updated similarly. This update ensures that
all the customer coefficients of models within the same row cluster and the product coefficients
of models within the same column cluster are updated simultaneously and are identical.

7 Experimental Evaluation of Classification Results

7.1 Synthetic Datasets

The algorithm described in section 4 was first evaluated on a number of synthetic datasets.
We used synthetic data for experimentation as an initial sanity check before working with
real data. These experiments also indicate the amount of improvement localized classification
models provide when the model assumptions match the generative model for the data. The
synthetic dataset is created by generating k × l blocks of data, each corresponding to a true
cluster of class labels generated by a logistic regression model. Each block has a different logistic
regression model, with its coefficient vector (β), consisting of the intercept and the coefficients
for the customer and product attributes, set randomly. The blocks are then appended together
in the form of a grid to form a data matrix, whose rows and columns are then randomly
shuffled. To assign a class label to a cell zij within each block, we begin by taking a linear
combination of randomly generated customer and product attributes with the co-efficient vector
yij = βT xij. We then add random gaussian noise with variance σ2 to all the y values. We
obtain the probability of a cell belonging to the positive class as P (zij = 1) = 1

1+e
−yij

. A

threshold of 0.5 is used to convert the probabilities into class labels (zij = 1 if P (zij = 1) >

0.5, zij = −1 if P (zij = 1) <= 0.5).
Table 1 describes the synthetic datasets that were used for experimentation. Dataset 1 and

2 are very similar, dataset 2 has more noise and hence a weaker relationship with the underlying
generative model as compared to dataset 1. Dataset 3 and 4 are larger, also with a substantial

8

amount of noise. The datasets along with details of their generative models can be accessed at
http://www.ece.utexas.edu/~deodhar/modelCCData.

m,n |C|,|P | k,l noise σ2

Dataset 1 100, 80 3,4 3,2 5
Dataset 2 100, 80 3,4 3,2 15
Dataset 3 500, 300 3,4 4,3 5
Dataset 4 900, 500 5,5 8,6 5

Table 1: Synthetic Datasets

7.1.1 Results on Synthetic Data

Figure 2 displays the ability of the algorithm to reconstruct the original data matrix on synthetic
dataset 2. The original data matrix is compared to the approximated matrix, where the class
labels are obtained by the logistic regression models within each co-cluster. The red and
blue cells represent positive and negative class labels respectively. One can observe that the
reconstruction is quite close to the original.

(a) Original Data Matrix (b) Reconstructed Data Matrix

Figure 2: Reconstruction ability of models

Mutual information, which is a symmetric measure that quantifies the statistical information
shared between distributions (Cover and Thomas, 1991) can be used to provide an indication
of the information shared between the assigned cluster labels and the true labels. Let X and Y

be two random variables that represent the assigned labels and the true labels respectively. Let
I(X,Y) denote the mutual information between X and Y . I(X,Y) can be normalized so that
it lies between 0 and 1 and allows easier interpretation and comparison. If H(X) denotes the
entropy of X, the normalized mutual information (NMI) [SG02] between X and Y is computed
as:

NMI(X,Y) =
I(X,Y)

√

H(X)H(Y)

NMI can hence be used as a measure for evaluating a clustering result. The Normalized Mutual

9

Information (NMI) of the row and column cluster labels with the true labels is computed on
the synthetic datasets. Table 2 shows that the NMI for the row and column clusters is very
high, indicating that even at high levels of added noise, co-clustering with clusterwise models
can recover the original clusters.

Dataset NMI (row) NMI (column)
Dataset 1 1 0.9154
Dataset 2 0.8445 0.619
Dataset 3 0.67 0.7124
Dataset 4 1 0.9426

Table 2: NMI with true labels

We now evaluate the ability of co-clustering with clusterwise classification models (Model
CC) to classify unknown matrix values in the synthetic datasets. The data is split as 90% train-
ing and 10% test (missing) and the technique in section 4 is used to predict the class label of the
missing values. The predicted labels are compared to the true labels and the classification qual-
ity is evaluated using precision, recall, F-measure and misclassification error. We compare this
approach to the partitional co-clustering algorithm, Bregman co-clustering [BDG+06], which
uses only the matrix Z without any attribute information. The Bregman co-clustering algo-
rithm is very flexible and can work with several distance measures and co-cluster definitions.
The special case of Bregman co-clustering that we compare with uses squared Euclidean dis-
tance as the distance measure and tries to find uniform co-clusters that minimize the distance
of the data points within the co-cluster to the co-cluster mean 3, since this case best matches
the data generation process.

In order to apply co-clustering (CC) to this problem, in matrix Z, we encode positive class
labels by the value 1 and negative by 0. The co-clustering algorithm approximates the cell
values within each co-cluster by the co-cluster mean µgh. If a missing cell zij is assigned to
row cluster g and column cluster h, with co-cluster mean µgh, we assign a class label to zij

using the rule zij = 1 if µgh > threshold , zij = −1 otherwise. If the threshold is selected to be
0.5 this rule can be interpreted as assigning a missing cell the majority class label within its
co-cluster. We also compare our approach with a single logistic regression classification model
(Global Model), which is Model CC with k = 1 and l = 1.

Table 3 displays the precision, recall, F-measure and misclassification error for simultaneous
co-clustering and classification (Model CC), co-clustering (CC) and a single logistic regression
model (Global Model). The results are averaged over 5 random 90-10% splits of the data.
The values in parentheses are the standard errors. The threshold is set to 0.5 for all these
experiments since the same threshold was used to obtain class labels from probability values
while generating the synthetic data. One can observe that on all the synthetic datasets Model
CC does significantly better than CC and Global Model in terms of both the F-measure and
the misclassification error.

On these datasets we also evaluate the ability of the simultaneous co-clustering and clas-
sification algorithm to reconstruct the original data matrix. We find that on all the datasets
this approach is consistently able to recover a close approximation of the original data matrix.
Additionally, the cluster assignments made by the algorithm closely match the true underlying

3This corresponds to scheme 2 of the Bregman co-clustering algorithm [BDG+06] with squared Euclidean
distance.

10

Algorithm Log Loss Precision Recall F-measure Misclassification Error
Dataset 1

Global Model 2025.969 (0) 0.894 (0.004) 0.952 (0.004) 0.922 (0.004) 0.131 (0.006)
CC - 0.881 (0.007) 0.948 (0.003) 0.913 (0.003) 0.149 (0.006)

Model CC 764.270 (2.286) 0.967 (0.003) 0.979 (0.002) 0.973 (0.002) 0.044 (0.002)
Dataset 2

Global Model 2410.106 (0) 0.883 (0.008) 0.927 (0.009) 0.904 (0.007) 0.151 (0.01)
CC - 0.910 (0.002) 0.880 (0.004) 0.895 (0.003) 0.159 (0.004)

Model CC 1872.862 (13.981) 0.908 (0.006) 0.937 (0.005) 0.922 (0.005) 0.124 (0.007)
Dataset 3

Global Model 30295.994 (0) 0.926 (0.001) 0.972 (0) 0.948 (0) 0.092 (0.001)
CC - 0.935 (0.004) 0.956 (0.004) 0.945 (0.001) 0.096 (0.001)

Model CC 13923.973 (115.886) 0.968 (0.002) 0.979 (0) 0.974 (0.001) 0.046 (0)
Dataset 4

Global Model 86777.68 (0) 0.928 (0) 0.971 (0) 0.949 (0) 0.09 (0)
CC - 0.931 (0.003) 0.968 (0.002) 0.949 (0.001) 0.09 (0.001)

Model CC 29413.8086 (7.651) 0.979 (0) 0.984 (0) 0.981 (0) 0.032 (0)

Table 3: Comparison of classification performance.

cluster labels.

7.2 Recommender System Application

This application deals with data based on course choices made by MBA students, in the business
school at UT Austin. The objective is to use the information of previous known course choices
of students to predict unknown choices. These predictions can be used to recommend the
right courses for students to take in the future. The data includes a matrix of students vs.
courses with class labels = 1 if the student took the course and -1 otherwise. Each student
has attributes including the student’s career type (investment banker, corporate finance, IT,
manager, consultant) and undergraduate degree. The course attributes include the department
offering the course (accounting, finance, MIS, marketing, management), the course evaluation
score and a binary variable indicating whether the course is quantitative. The dataset is skewed
with unequal priors of the positive and negative classes. Around 25% of the student course
choices are positive and the rest negative.

7.2.1 Classifying Missing Cell Values

In order to test the classification capability of Model CC on this problem, the data is split as
90% training and 10% test and the class labels in the test set, i.e. the unknown student-course
choices, are predicted using the co-cluster models. Results are obtained by averaging over 10
random 90-10% data splits. We compare the Model CC results with CC and Global Model.
For assigning class labels to the missing matrix entries we use a threshold that is varied from
0.1 to 0.9 to get a range of precision-recall tradeoffs.

Figures 3(a), 3(b), 3(c) display the precision-recall curves, the F-measure and the classifica-
tion error of the 3 algorithms at different values of the threshold. Beyond a certain threshold,
both CC and Global Model classify all the data points as belonging to the negative class, caus-
ing the F-measure to be undefined. Such points are excluded from the Precision-Recall curve

11

and the F-measure plot.

Model CC is significantly better than CC and Global Model in terms of precision and recall
as can be seen in the Precision-Recall curves and hence its F-measure is consistently better
than the other approaches at all values of the threshold. The classification error of Model CC
is also lower than CC and Global Model. At threshold value 0.2 however, CC has a lower error
as it has a much smaller number of false positives.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pr
ec

is
io

n

recall

Model CC
CC
Global Model

(a) Precision-Recall curve

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

F
−

m
ea

su
re

Model CC
CC
Global Model

(b) F-measure

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

threshold

er
ro

r

Model CC
CC
Global Model

(c) Classification error

Figure 3: Evaluation of classification of missing student-course choices in the recommender system application.

8 Experimental Evaluation of Regression Results

8.1 Synthetic Datasets

The algorithm described in section 5 is evaluated on a number of synthetic datasets. Each
synthetic dataset is created by generating k × l blocks of data, each corresponding to a true
co-cluster of real values generated by a linear regression model. Each block has a different linear
regression model, with its co-efficient vector β set randomly. The blocks are then appended
together in the form of a grid to form the data matrix Z. The cell value zij within each
block is obtained by taking a linear combination of randomly generated customer and product

12

attributes with the co-efficient vector i.e. zij = βTxij. We then add random gaussian noise to
all the values in Z. Due to the added noise, the clusterwise linear models do not have a perfect
fit. We quantify the linear relationships existing in the data in terms of the average R2 of the
linear models.

Table 4 describes the synthetic datasets 4 that were used for experimentation. Dataset 1
and 2 are very similar, dataset 2 has more noise and a weaker linear relationship as compared
to dataset 1. Dataset 3 is larger, also with a substantial amount of noise. Dataset 5 is similar
to dataset 4, but 0.1% of the data is perturbed to create outliers with large positive values.

m,n |C|,|P | k,l avg. R2 of linear models
Dataset 1 100, 80 3,4 3,2 0.5670
Dataset 2 100, 80 3,4 3,2 0.4120
Dataset 3 500, 300 3,4 4,3 0.3964
Dataset 4 800, 500 5,5 8,6 0.3713
Dataset 5 800, 500 5,5 8,6 0.1732

Table 4: Synthetic Datasets

8.1.1 Results on Synthetic Data

Figure 4 displays the ability of the Model CC algorithm to reconstruct the original data matrix
on synthetic dataset 1. The original data matrix is compared to the approximated matrix,
obtained by the linear combination of row and column attributes using co-cluster model co-
efficients. One can observe that the reconstruction is quite close to the original.

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

−4

−2

0

2

4

6

8

(a) Original Data Matrix

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

(b) Reconstructed Data Matrix

Figure 4: Reconstruction ability of models

In order to evaluate the cluster assignments made by the Model CC algorithm, the NMI
of the row and column cluster labels with the true labels is computed on the three synthetic
datasets. Table 5 shows that the NMI for the row and column clusters is very high, indicating

4Datasets available at http://www.ece.utexas.edu/~deodhar/modelCCData

13

that even at high levels of added noise, co-clustering with clusterwise regression models can
recover the original clusters.

Dataset NMI (row) NMI (column)
Dataset 1 1 1
Dataset 2 0.9583 0.9154
Dataset 3 0.6899 1
Dataset 4 0.9444 0.8587
Dataset 5 0.6187 0.6086

Table 5: NMI with true labels

We now evaluate the ability of co-clustering with clusterwise models to predict unknown
matrix values. The data is split as 90% training and 10% test (missing) and the technique
in section 5 is used to predict the missing values. The quality of the predictions is compared
using mean squared error. Table 6 displays the prediction errors for a single linear regression
model (Global Model), co-clustering, where no attribute information is used (CC), co-clustering
with clusterwise models (Model CC) and the reduced parameter model (Reduced Model). The
results are averaged over 5 random 90-10% splits of the data. Training Err. is the mean squared
error on the training data and Test Err. is the mean squared error on the test data. The values
in parentheses are the standard errors. Avg. R2 is the average R2 of the linear regression models
constructed on the training data. One can observe that on the synthetic datasets Model CC
does significantly better than the other approaches when the noise level is reasonable and there
are no outliers (datasets 1-4), since the generative model of the data matches most closely
with the data model assumed by Model CC. Under these conditions Reduced CC also does
better than CC and Global Model but not as well as Model CC. However, in the presence of
outliers (dataset 5) Model CC tends to overfit and Reduced CC does slightly better. On all
the datasets, the average R2 of the models reconstructed by Model CC is very close to that of
the original models, whereas if we try to fit a single linear model its R2 is substantially lower.

Figure 5 shows the plot of the predicted matrix values vs the actual values on synthetic
dataset 1. For perfect prediction the plot will be a straight line at 45 degrees. The plot for
simultaneous co-clustering and regression is closer to the ideal than that for co-clustering. In
case of co-clustering the 6 co-cluster means are used to predict all the missing values and hence
the predicted values are one of the 6 means. In simultaneous co-clustering and regression,
however, even though the set of linear co-efficients is common for all the values in a co-cluster,
each predicted value could be different due to different row and column attributes.

8.2 Real Marketing Dataset

We also applied the simultaneous co-clustering and regression approach to a challenging mar-
keting application. Given purchase information for a set of customers and products along with
customer and product attributes, we simultaneously clustered customers and products and
used the co-clustering solution to predict unknown customer product purchase information.
The obtained co-clusters also provide information about customer segments in the market and
equivalent product groups, achieving simultaneous market segmentation and structure. The
dataset that we use is the publicly available ERIM dataset 5 consisting of household panel

5URL:http://www.gsb.uchicago.edu/kilts/research/db/erim/

14

Algorithm Training Err. Test Err. Avg. R2

Dataset 1
Global Model 1.399 (0.002) 1.369 (0.020) 0.458

CC 1.67 (0.003) 1.697 (0.027) -
Reduced Model 1.276 (0.005) 1.291 (0.02) 0.258

Model CC 1.006 (0.002) 1.024 (0.021) 0.566
Dataset 2

Global Model 2.803 (0.008) 2.843 (0.072) 0.332
CC 3.118 (0.006) 3.258 (0.078) -

Reduced Model 2.647 (0.01) 2.770 (0.052) 0.171
Model CC 2.418 (0.028) 2.596 (0.051) 0.421

Dataset 3
Global Model 2.23 (0.001) 2.223 (0.008) 0.286

CC 2.177 (0.001) 2.184 (0.009) -
Reduced Model 2.0250 (0.002) 2.0291 (0.011) 0.18

Model CC 1.79 (0.017) 1.789 (0.019) 0.441
Dataset 4

Global Model 3.719 (0.002) 3.709 (0.017) 0.274
CC 3.729 (0.004) 3.749 (0.021) -

Reduced Model 3.638 (0.002) 3.651 (0.016) 0.147
Model CC 3.1102 (0.015) 3.114 (0.025) 0.368

Dataset 5
Global Model 12.9798 (0.089) 13.085 (0.804) 0.115

CC 12.8990 (0.086) 13.318 (0.798) -
Reduced Model 12.851 (0.089) 13.033 (0.803) 0.064

Model CC 12.363 (0.107) 13.064 (0.851) 0.258

Table 6: Prediction error on missing data.

−6 −4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

4

5

6

z true

z
pr

ed
ic

te
d

z predicted vs z true on missing data

(a) Simultaneous co-clustering and re-
gression (Model CC)

−6 −4 −2 0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

z true

z
pr

ed
ic

te
d

z predicted vs z true on missing data

(b) Co-clustering (CC)

Figure 5: Predicted values vs actual values.

data collected by A.C. Nielsen, which is well known in the marketing community and has been
used by several researchers [KR94, KS98, SAC99]. This dataset has purchase information for
six product categories over a period of 3 years from 1985-1988 for households in Sioux Falls,
South Dakota. The dataset includes household demographics as well as product characteristics.

15

Detailed information about each shopping visit including the total expenditure and advertising
information is also recorded.

The data preprocessing steps we took are similar to the data selection procedure by Seetharam
et al. [SAC99]. We have 6 product categories (ketchup, tuna, sugar, tissue, margarine and
peanut butter) with a total of 121 products. Brands with very low market share in each prod-
uct category have been omitted. We select households that made at least 2 purchases in each
product category, resulting in a set of 1714 households. We select 6 household attributes -
income, number of residents, male head employed, female head employed, total visits and to-
tal expense and 3 product attributes - market share, price, number of times the product was
advertised. The data can be represented by a data matrix of households and brands where the
cell values are the number of units of a brand purchased by a household, aggregated over the
time the household was tracked. The number of units purchased can be used as an indicator
of brand preference.

8.2.1 Dataset Properties

The data matrix is extremely sparse, with 74.86% of the values being 0. The distribution of the
number of units purchased is also very skewed as can be seen in the histogram of the matrix
entries in Figure 6. 99.12% of the values are below 20, while the remaining values are very
large and range upto around 200. These few, large values could be considered as outliers with
respect to the rest of the data.

0 25 50 75 100 125 150 175 200 225 250
0

2

4

6

8

10

12

14

lo
g

(f
re

q
.)

Figure 6: Histogram of Data Values

8.2.2 Standardization of the Data

The dimensions (items) in this application are products from 6 different product categories.
The product attributes such as price and extent of advertising could vary from one category
to another. When we construct a linear model for a co-cluster we weigh the attributes of all
the products in the co-cluster by the same set of co-efficients. However, the products in the
co-cluster could be from different categories with very different ranges of attribute values. We
hence need to standardize the product attributes to make them comparable across categories.
We transform each product attribute value a to a

′

= a−µc

σc
, where µc and σc are the mean and

standard deviation within the corresponding product category c. This problem does not arise

16

in case of the customer attributes since they are relatively comparable. The matrix cell values,
which are the number of units purchased could also be very different across categories and have
to be standardized. The cell values zij within each sub-matrix of all the products belonging to

a specific product category c are transformed to z
′

ij =
zij−µzc

σzc
where µzc

and σzc
are the mean

and standard deviation of the all the values in the sub-matrix. Since the standardization of
the data is a linear transformation, the dataset properties described in section 8.2.1 continue
to hold.

8.2.3 Data Reconstruction

Table 7 displays the mean squared error of the approximated data matrix obtained by the dif-
ferent algorithms on the entire standardized dataset, averaged over 10 runs. “Row Clustering”
is Model CC with the number of column clusters set to 1 and “Column Clustering” is Model
CC with the number of row clusters set to 1. Note that Model CC obtains the best recon-
struction of the original matrix as compared to the other approaches in terms of MSE (mean
squared error). Table 7 also shows the average R2 of the linear models constructed within each
co-cluster. The R2 values are actually quite low, indicating that a strong linear relationship
does not really exist in the data, which is to the disadvantage of the simultaneous co-clustering
and regression algorithm.

Algorithm MSE Avg. R2

Global Model (k=1,l=1) 0.930 (0) 0.0696
CC (k=10, l=4) 0.842 (0.003) -

Row Clustering (k=10, l=1) 0.887 (0) 0.0896
Column Clustering (k=1, l=4) 0.88 (0.001) 0.0714
Reduced Model (k=10, l=4) 0.876 (0) 0.0426

Model CC (k=10, l=4) 0.794 (0.005) 0.1308

Table 7: Reconstruction error on entire ERIM dataset.

8.2.4 Predicting Unknown Data Values

The prediction error of the different approaches on this problem is computed by averaging over
10 random 90-10% training and test data splits. Table 8 shows the training error (Training
Err.), the test set error (Test Err.) on the standardized data and the test set error on the
original, unstandardized dataset obtained by back transforming the standardized data (Test
Err. Original). Mean R2 is the mean R2 of the regression models.

As mentioned in section 8.2.1 the data is skewed with a few very large outliers. In the
presence of outliers the clusterwise models overfit the training data and do not generalize well
to the test data. Model CC is the most susceptible to overfitting since it is the most complex
and involves the most number of parameters. Model CC does better than Global Model but
slightly worse than CC. Reduced Model does better than Model CC in this scenario since it
has fewer parameters and a simpler overall model, which generalizes better. Reduced Model
does slightly better than CC as well, illustrating that using the attribute information in the
prediction process helps. However, this improvement is small, which is because the data does
not show a very strong linear relation, indicated by the low R2 values of the linear models.

17

Algorithm Training Err. Test Err. Test Err. Original Avg. R2

Global Model (k=1,l=1) 0.931 (0.003) 0.928 (0.023) 16.776 (0.584) 0.067
CC (k=4,l=4) 0.853 (0.003) 0.905 (0.022) 15.501 (0.511) -

Reduced Model (k=4,l=4) 0.878 (0.002) 0.887 (0.023) 15.339 (0.553) 0.056
Model CC (k=4,l=4) 0.823 (0.002) 0.905 (0.021) 15.688 (0.519) 0.113

Table 8: Comparison of prediction error on ERIM dataset.

Algorithm Training Err. Test Err. Test Err. Original Avg. R2

Global Model (k=1,l=1) 0.913 (0.001) 0.920 (0.01) 4.24 (0.06) 0.086
CC (k=4,l=4) 0.833 (0.001) 0.890 (0.009) 4.002 (0.056) -

Reduced Model (k=4,l=4) 0.849 (0.001) 0.872 (0.009) 3.893 (0.052) 0.074
Model CC (k=4,l=4) 0.804 (0.001) 0.883 (0.007) 3.965 (0.044) 0.138

Table 9: Prediction error on ERIM dataset (model for low valued entries).

Model CC has the highest R2 and its training error is the least, however its test error is quite
large, confirming the overfitting tendency of the models.

Linear “least squares” regression is very sensitive to outliers and a few outliers could influ-
ence the model very heavily and skew the results. Hence on this dataset, for a better comparison
of linear model based techniques with respect to prediction of missing values, we need some
way of dealing with outliers. The data matrix includes two very different sets of values for
the number of units purchased, low values (below 20 units purchased) that form the bulk of
the data and a few high values. It is unreasonable for a model based on linear regression
to capture both small as well as extremely large values (outliers) simultaneously and a more
suitable approach would be to separate out these two very different sets of values and model
them independently. A threshold of 20 for the number of units purchased was used to separate
the bulk of the matrix entries (99.12%) from the tail of high values. This separation can easily
be handled by the co-clustering algorithm by setting the weight of the outlier entries in the
data matrix to 0. The standardization steps described in Section 8.2.2 are carried out on the
separated lower valued matrix entries. We first focus on the model and the prediction problem
associated with these entries.

Model for low valued matrix entries: The different modeling approaches on this problem
are evaluated by comparing their average prediction accuracy over 10 random 90-10% training
and test data splits. Table 9 shows the training mean squared error and the test set error for
the different approaches. Model CC and Reduced Model do significantly better than Global
Model on the test set. Reduced Model also does better than CC.

Separate Models for low and high valued entries: Our complete model for the dataset
consists of a model for the low valued matrix entries as described above and a separate model
for the high valued outliers. The training data is divided into low and high valued entries using
the threshold of 20 number of units purchased and a different model is trained on each set of
values. For modeling the low values we compare the performance of co-clustering based models
(Model CC, CC) with k = 4 and l = 4 and a single regression model (Global Model). The model
for the high values is a linear regression model. The reason for choosing a very simple model
for the high values is that these values are very few in number and have a skewed distribution,
which may cause more sophisticated models to overfit. The attributes of the training data
points are used as features to train a classifier, which when given a new set of attributes will

18

be able to classify the corresponding cell value as high or low. The appropriate model can then
be used to predict the unknown value. This classification problem is also difficult since the two
classes (high and low) are heavily imbalanced, with the low class comprising more than 99%
of the training data. Most classifiers like decision trees and logistic regression get good overall
accuracy by simply predicting the target class for all the test points as the low class. Different
costs could be assigned for misclassifying the two classes since we would like all the high points
to be classified correctly, but would be tolerant to a few low points being misclassified as high.
We found k nearest neighbors with k = 3 to work reasonably in practice, although slow, with
an average accuracy of 0.9909. Figure 7 depicts the procedure outlined above.

Figure 7: Modeling the data entries with 2 separate models

Table 10 compares the performance of the above approach using Model CC, CC and a
single model for the modeling the low values. Training Err. Low and Training Err. High are
the training errors for the low and high value models and Test Err. and Test Err. Original
represent the overall test set error over all the missing values. The approaches that use Model
CC and Reduced Model do significantly better than the Global Model and CC approaches.
Overall the prediction error is higher than in 8, which is mainly due to the classification errors
that cause low values to be predicted by the high valued model.

Algorithm Training Err. Low Training Err. High Test Err. Test Err. Original
Global Model 0.459 (0.001) 16.931 (0.223) 1.001 (0.027) 19.332 (0.579)

CC 0.417 (0.001) 20.011 (0.214) 0.987 (0.027) 19.777 (0.561)
Reduced Model 0.427 (0.001) 16.931 (0.223) 0.970 (0.027) 18.647 (0.553)

Model CC 0.399 (0.001) 16.931 (0.223) 0.972 (0.027) 18.688 (0.577)

Table 10: Prediction error on ERIM dataset (separate models for high and low valued entries).

We now present an alternative way of dealing with outliers, which gives outliers very low
weight while constructing the models.
Weighting outliers less: An alternative way of dealing with outliers is to reduce the influence
of the extremely high values on the constructed models, allowing them to generalize better.
This can be done by giving high valued matrix entries a very small fixed weight, enabling
the linear models to focus on the bulk of the data, rather than fit a few high values. In this
approach we consider all the matrix entries together, but set the weight for entries greater
than 5 (after standardization) to a small value selected using 10 fold cross validation. The
experimental results are displayed in Table 11. Model CC now uses weighted least squares,

19

which reduces the overfitting problem, and Model CC and Reduced Model do better than a
single model. Model CC now does better than Reduced Model as well.

Algorithm Training Err. Test Err. Test Err. Original Avg. R2

Global Model (k=1,l=1) 0.385 (0) 0.919 (0.027) 17.141 (0.535) 0.091
CC (k=4,l=4) 0.337 (0) 0.886 (0.027) 15.873 (0.518) -

Reduced Model (k=4,l=4) 0.345 (0) 0.880 (0.027) 15.823 (0.501) 0.084
Model CC (k=4,l=4) 0.324 (0.001) 0.8769 (0.028) 15.771 (0.535) 0.148

Table 11: Prediction error after weighting outliers less.

Summary of Empirical Studies: Based on the results in Sections 7 and 8 we observe that
the simultaneous co-clustering and prediction approach holds promise for both classification
and regression problems, at least for the datasets examined so far. One should be able to
further improve the results by using alternative prediction models within each co-cluster that
more closely conform to the data characteristics. This is particularly true for the ERIM dataset
which is known to have significant outliers, but we still used linear least squares regression as it
is widely adopted and understood. Note that overfitting of the models to outliers is addressed
to some extent by the reduced parameter model. Further improvements can be achieved by
using a more robust error function rather than squared error [Hub81]. Moreover, non-linear
models would help because the limitations of linear models for this dataset is quite evident
by the low R2 values obtained by several researchers who previously applied such models to
ERIM.

9 Concluding Remarks

Simultaneous co-clustering and modeling is a promising framework that generalizes co-clustering,
collaborative filtering and traditional segment-wise modeling. Note that this approach is not
limited to the algorithms presented in Sections 4 and 5, but forms a broad framework for solv-
ing difficult classification and regression problems in general. The logistic regression models,
for instance, could easily be replaced by other classifiers by modifying the objective function
to optimize the corresponding loss function.

While this paper concentrated on synthetic and marketing data for illustration, there are
many other domains characterized by data matrices supplemented by annotated row and col-
umn entities. For example, this approach can be used to analyze microarray data with gene
and experiment annotations, social network settings with sets of attributes attached to persons
(rows) and relationships (columns), and clustering of web documents annotated by link as well
as semantic information. It will be worthwhile to investigate specific instances of this frame-
work (with specific choices of the co-clustering model used as well as of the classifier/predictor
used) in terms of their suitability for different problems within this wide range of application
domains.

Acknowledgments: The research was supported by NSF grants IIS 0325116 and IIS 0307792.
We would like to thank Prof. McAlister and Andrea Godfrey from the UT Business school for
the MBA dataset and insightful discussions.

20

References

[BDG+06] A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. Modha. A generalized max-
imum entropy to bregman co-clustering and matrix approximation. To appear

in JMLR, pages Downloadable from http://pegasus.ece.utexas.edu/~ghosh/

jmlr--coclust.pdf, 2006.

[BG93] T. Baumann and A. Germond. Application of the kohonen network to short-term
load forecasting. In ANNPS, pages 407–412, 1993.

[CC00] Y. Cheng and G. M. Church. Biclustering of expression data. In ICMB, pages
93–103, 2000.

[CDGS04] H. Cho, I. S. Dhillon, Y. Guan, and S. Sra. Minimum sum squared residue co-
clustering of gene expression data. In SDM, 2004.

[CMHD03] Lucia Conde, Alvaro Mateos, Javier Herrero, and Joaquin Dopazo. Improved class
prediction in dna microarray gene expression data by unsupervised reduction of
the dimensionality followed by supervised learning with a perceptron. Journal of

VLSI Signal Process. Syst., 35:245–253, 2003.

[DBSP93] M. Djukanovic, B. Babic, D. Sobajic, and Y. Pao. Unsupervised/supervised learn-
ing concept for 24-house load forecasting. IEE Proceedings-Generation, Transmis-

sion and Distribution, 140:311–318, 1993.

[DMM03] I. Dhillon, S. Mallela, and D. Modha. Information-theoretic co-clustering. In KDD,
pages 89–98, 2003.

[GM05] T. George and S. Merugu. A scalable collaborative filtering framework based on
co-clustering. In ICDM, pages 625 – 628, 2005.

[HKBR99] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for
performing collaborative filtering. In SIGIR, pages 230–237, 1999.

[Hub81] P. J. Huber. Robust Statistics. Wiley, New York, 1981.

[JJ94] M.I. Jordan and R.A. Jacobs. Hierarchical mixture of experts and the EM algo-
rithm. Neural Computation, 6:181–214, 1994.

[JY03] Rebecka Jornsten and Bin Yu. Simultaneous gene clustering and subset selection
for sample classification via mdl. BMC Bioinformatics, 19(9):1100–1109, 2003.

[KR94] B. Kim and P. Rossi. Purchase frequency, sample selection, and price sensitivity:
The heavy-user bias. Marketing Letters, pages 57 – 67, 1994.

[KS98] B. Kim and M. Sullivan. The effect of parent brand experience on line extension
trial and repeat purchase. Marketing Letters, pages 181 – 193, 1998.

[LKM05] Xiaoxing Liu, Arun Krishnan, and Adrian Mondry. An entropy-based gene selection
method for cancer classification using microarray data. BMC Bioinformatics, 6:76,
2005.

21

[LL03] W. Lee and B. Liu. Learning with positive and unlabeled examples using weighted
logistic regression. In ICML, 2003.

[LS00] Larisa Lokmic and Kate A. Smith. Cash flow forecasting using supervised and
unsupervised neural networks. IJCNN, 06:6343, 2000.

[MO04] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data analy-
sis: A survey. IEEE Trans. Computational Biology and Bioinformatics, 1(1):24–45,
2004.

[OH01] K. Oh and I. Han. An intelligent clustering forecasting system based on change-
point detection and artificial neural networks: Application to financial economics.
In HICSS-34, volume 3, page 3011, 2001.

[SAC99] P.B. Seetharaman, A. Ainslie, and P.K. Chintagunta. Investigating household state
dependence effects across categories. Journal of Marketing Research, pages 488 –
500, 1999.

[SG02] A. Strehl and J. Ghosh. Cluster ensembles – a knowledge reuse framework for
combining partitionings. JMLR, 3(3):583–617, 2002.

[Sha96] A. Sharkey. On combining artificial neural networks. Connection Science,
8(3/4):299–314, 1996.

[SS04] A. Sfetsos and C. Siriopoulos. Time series forecasting with a hybrid clustering
scheme and pattern recognition. Systems, Man and Cybernetics, Part A, IEEE,
34:399– 405, 2004.

[WS91] M. Wedel and J. Steenkamp. A clusterwise regression method for simultaneous
fuzzy market structuring and benefit segmentation. Journal of Marketing Research,
pages 385 – 396, 1991.

[YFW06] Y. Ying, F. Feinberg, and M. Wedel. Leveraging missing ratings to improve online
recommendation systems. Journal of Marketing Research, pages 355 – 365, 2006.

[ZNB05] Shuai Zhang, Daniel Neagu, and Catalin Balescu. Refinement of clustering solutions
using a multi-label voting algorithm for neuro-fuzzy ensembles. In ICNC, pages
1300–1303, 2005.

22

