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Abstract

A key application of clustering data obtained from sources such as microarray, protein
mass spectroscopy, and phylogenetic profile is the detection of functionally related genes.
Typically, only a small number of functionally related genes cluster into one or more groups,
and the rest need to be pruned. For such situations, we present Automated Hierarchical
Density Shaving (Auto-HDS), a framework that consists of a fast, hierarchical, density-
based clustering algorithm and an unsupervised model selection strategy. Auto-HDS can
automatically select between clusters of different densities, present them in a compact
hierarchy and rank individual clusters using an innovative stability criteria. Our framework
also provides a simple yet powerful 2-D visualization of the hierarchy of clusters that can be
very useful for further exploring the dense clusters in high-dimensional datasets. We present
results on Gasch and Lee microarray datasets to show the effectiveness of our methods.



1 Introduction

In many real-world clustering problems, only a subset of the data actually needs to be clustered.
This could be due to the fact that only a subset of our data actually clusters well (e.g., market-
basket data, where only a subset of the customers exhibit consistent behavior) while the rest
can be treated as a “don’t care” set. In particular, many types of large, high-dimensional
bioinformatics datasets exhibit the above property. For example, consider gene-expression
datasets that measure expression levels of genes compared to a control across a few thousand
genes over several experiments. The experiments typically cover only a specific “theme” such as
stress-response, and therefore only a few genes related to the conditions show good clustering.
From this data, biologists are interested in recovering clusters formed from small subsets of
genes that show strongly correlated expression patterns 1. Other types of biological data that
share similar properties include protein mass spectroscopy and phylogenetic profile data.

A wide variety of parametric approaches [BMDG05] have been applied to exhaustively clus-
ter the data points based on the assumption that each cluster is a member of some parametric
family (e.g., Gaussians). However, in problems where the subset of data that clusters well is
proportionately small compared to the overall dataset, the “don’t care” points can overwhelm
an optimization method that optimizes over all the data points. An alternative to this ap-
proach consists of a class of non-parametric clustering algorithms (e.g., [EKSX96, ABKS99])
that use kernel density estimation [JNSRL94] at each data point to find dense clusters, where
the choice of the kernel determines the notion of density at a data point. In addition to being
non-parametric, these density based clustering algorithms are also capable of clustering only a
subset of data.

The first paper to exploit kernel density estimation for non-parametric clustering was per-
haps [Wis68], which proposed an algorithm called Hierarchical Mode Analysis(HMA), that
could also find a compact hierarchy of dense clusters. However, HMA seems to have gotten
lost in time (it was published in 1968) and is not known to most current researchers. One
reason could be that HMA is slow (O(n3)). In this paper, we present an improved framework
called Automated Hierarchy Density Shaving(Auto-HDS) that builds upon the HMA algorithm
and greatly broadens its scope and effectiveness. These improvements include: (1) creating a
faster (O(n2)) algorithm appropriate for larger datasets; (2) the ability to use a variety of
distance metrics including Pearson Distance, a biologically relevant distance measure; (3) a ro-
bust unsupervised model selection that enables discovery of small clusters of varying densities
and pruning of large amounts of irrelevant data, and (4) a novel, effective visualization of the
resulting cluster hierarchy.

The collection of these abilities in a single framework brings together a set of requirements
and features that are in great demand in bioinformatics and are yet to be fulfilled satisfactorily
by existing methods. High throughput biological datasets have several properties that match
the Auto-HDS framework, including: (1) “dense subsets” within the datasets can often have
variable densities; for example a large number of somewhat weakly correlated genes could form
a cluster that is as important as a small number of highly correlated genes; both could in
turn be surrounded by a large number of irrelevant genes, (2) biological sub-processes can
form sub-clusters within clusters, (3) a large number of irrelevant genes need to be pruned,
(4) the need for a completely unsupervised setting since there is often little or no labeled data

1Often such clusters map to biological processes that are involved in the specific context (e.g., stress).
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for selecting clustering model parameters, and consequently (5) the need for visualization of
the clustering hierarchy; Auto-HDS provides an extremely compact hierarchy, and an equally
compact visualization of the dense clusters that can further aid in cluster comprehension and
selection. Empirical tests of our framework on gene expression data show that we do indeed
obtain very good results.

Finally, we have also developed a Java based product called Gene Density Interactive Vi-
sual Explorer (Gene DIVER) that exploits an efficient heap data-structure and a serialization
API to provide a memory-efficient, scalable and platform independent implementation of our
framework that also includes a sophisticated SWING-based visualization and interactive user
interface.

Notation: Bold faced variables, e.g. x represent vectors whose ith element are accessed
as either xi or x(i). Sets of vectors are represented by calligraphic upper-case alphabets such
as X and are enumerated as either {xi}n

i=1 or {x(i)}n
i=1, where xi or x(i) are the individual

elements. |X | represents the size of set X . Bold faced capital letters such as M represent 2-d
matrices. R and R

d represent the domain of real numbers and a d-dimensional vector space
respectively.

2 Related Work

A variety of density-based methods have been developed that use different notions of density
to cluster a part of the data and to prune the rest. One of the most widely cited density based
algorithms is DBSCAN [EKSX96]. In DBSCAN, given a point that has at least MinPts points
enclosed by a hypersphere of radius ǫ centered at the point, all points within the ǫ sphere are
assigned to the same cluster. DBSCAN is particularly well suited for low dimensional data
(e.g., image data) due to the availability of efficient indices that allow a fast implementation.
However, one issue is the choice of ǫ and MinPts; different choices can give dramatically different
clusterings. OPTICS [ABKS99] proposed a visualization to make it easier to select these
parameters and also supports the discovery of a hierarchy on which additional, interactive
exploration can be achieved.

As mentioned earlier, HMA [Wis68] is perhaps the first method for finding dense regions
in data while allowing the pruning of the remaining non-dense regions. HMA is based on the
idea that, given a set of i.i.d. data points from a multivariate distribution, the “modes” or
dense regions of the data set need not satisfy any particular parametric shape. Available non-
parametric techniques of the time such as single link agglomerative clustering were unable to
deal with “chaining,” a problem that occurs when two valid clusters are connected by a chain
of spurious points, a problem that density based methods are able to overcome.

In addition, one of the salient features of HMA is its ability to find a highly compact
hierarchy representing all possible clusters/modes in the data. By searching for the location,
extent, and the hierarchical relationship between all of the modes/dense regions in the data,
HMA addresses two fundamental questions in clustering, namely, how many clusters are there

in the data, and where are they located. HMA is able to find a compact hierarchy by recovering
the actual modes or the generative distributions generating the data, which stems from its
ability to ignore the less dense or “don’t care” points while building the hierarchy. These
properties make HMA an extremely powerful unsupervised method, and in many ways it was
ahead of its time; one of the cluster labeling and selection methods suggested by [Wis68] results
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in an algorithm whose output is identical to that of DBSCAN. Furthermore, the method in
[Wis68] also contains a solution for selecting ǫ, a parameter in DBSCAN that is difficult to
choose for high-dimensional datasets. We describe HMA in more detail in Section 3.3.

DHC [JPZ03] proposes a hierarchical grouping of biological time-series data that can be
used to visually browse similar genes. Although the general idea and motivation of [JPZ03]
seems related to what we propose in this paper, the algorithms and the key issues that our
method resolves are significantly different. The cluster hierarchy built by DHC uses the heuris-
tic of attraction that assumes the data is uniformly distributed in the original d-dimensional
space. However, points in many real-life high dimensional data tend to reside in much lower
dimensional manifolds [TdSL00].

Specialized algorithms have been proposed that address other issues with clustering bio-
logical data [LO02, STG+03, STG+03, CDGS04]. For example, discovering overlapping gene
clusters is popular since many genes participate in multiple biological processes. Gene Shav-
ing [Has00] repeatedly applies Principal Component Analysis in a greedy fashion to find small
subsets of genes that show strong expression change compared to the control sample, and allows
them to belong to multiple clusters. For each discovered subset, Gene Shaving shaves a fraction
of least relevant genes at each iteration, and we reuse the word “shaving” in Auto-HDS in the
same context. However, Gene Shaving is different from our method in many ways. Gene Shav-
ing has an implicit Squared Euclidean distance assumption which does not handle additive and
multiplicative co-expression patterns, an important normalization needed for clustering genes.
While Gene Shaving requires the number of clusters k as an input, Auto-HDS finds k automat-
ically. Gene Shaving greedily finds overlapping clusters one at a time; the next cluster is found
by using orthogonalized residue obtained after removing the previous cluster. Gene Shaving
repeats the shaving sequence multiple times to obtain multiple clusters, while HDS finds all the
clusters from a hierarchy built by one shaving sequence. HDS performs shaving by ordering
points by density, whereas Gene Shaving orders and shaves genes with least correlation with
the principal component.

Table 1 compares key features of some of these approaches with our framework. Note
that only Auto-HDS is capable of automatic cluster selection. The ability to perform robust
clustering and model selection is a key aspect of our framework. The set of all the selected
clusters need not have the same density in Auto-HDS (last row in Table 1), while OPTICS and
DBSCAN are shown as being suitable for indexed low-d spatial data (their current popular
usage).

3



Table 1: Comparison of HDS with other related methods on some key features that make it ideally suitable for large, high-
dimensional biological datasets. “TC” stands for time complexity.

Method DBSCAN OPTICS HMA Gene Shaving DHC Auto-HDS
TC high-d n2 a to n2 log(n) > DBSCAN n3 n3 Unavail. n2 b to n2 log(n)
TC low-d n2 >DBSCAN n3 n3 Unavail. n2

TC Indexed low-d n logn >DBSCAN n3 NA NA n log n
Cluster Hierarchy No Yes Yes No Yes Yes
Compact Hierarchy No No Yes No Yes Yes
Overlapping Clusters No No No Yes No No
Data type low-d spatial c low-d spatial Unavail. d gene-exp. gene-exp. high-d bio. data e

Dist. Func. Euclidean f Euclidean g high-d, Euclidean Sq. Euclidean h time series Pearson Distance i

Visualization No Yes No No Yes Yes
Model Selection No No No No Yes Yes
Auto. Cluster Selection No No No No No Yes
Select mxd. dens. clust. j No No No Yes No Yes

aFor nǫavg < n/ log(n)
bFor nǫavg < n/ log(n)
cAs implemented by [EKSX96] using indexing; the current popular usage. A modification that works well for

high-d results in the DS algorithm (Section 4.3).
dWe have not found any large scale applications.
ePearson distance enables application to a variety of biological datasets.
fAs tested and applied popularly.
gSame as DBSCAN.
hAs a consequence of using PCA.
iAlso applicable with cosine similarity and Euclidean distance.
jAll the selected clusters need not have the same density.
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3 Preliminaries

3.1 Distance Measure

Let X = {xi}n
i=1 ⊆ R

d be a set of data points that need to be clustered. We assume that a
relevant symmetric distance measure dS(xi,xj) is defined for all pairs of points xi and xj in
X . One such distance measure is the Euclidean Distance. Let MS represent the corresponding
n×n symmetric distance matrix such that MS(i, j) = dS(xi,xj). The algorithms described in
this paper only require MS as input. Therefore, an explicit embedding of the data points in
R

d is not required.

3.2 Density Estimation

The following is a property of our notion of density that is required by our density-based
algorithms. Given some rǫ ∈ R : min(MS) ≤ rǫ ≤ max(MS) as an input, the density ρrǫ(x)
at any given point x is proportional to the number of points in X that are within rǫ of x 2:

ρrǫ(x) ∝ |{y ∈ X : dS(y,x) ≤ rǫ}| (1)

This notion of density corresponds to a uniform sphere as the kernel 3, since the points
within the sphere rǫ contribute equally to the density irrespective of their distance from the
center of the sphere.

3.3 Hierarchical Mode Analysis

Given a dataset X consisting of n points in R
d, [Wis68] uses the notion of density defined by

Equation 1 and describes the Hierarchical Mode Analysis(HMA) algorithm for discovering the
distinct modes corresponding to the dense regions in X . Let us now present the HMA algorithm
in detail. Since [Wis68] is not easily available, what follows below is presented exactly as in
[Wis68] except with the substitution of notation used in this paper.

1. Select the density threshold as integer nǫ < n, compute the inter-point distance matrix
MS and the distances dnǫ from each point to its nth

ǫ nearest point.

2. Order the distances dnǫ so that the smallest is first using the array anǫ as an index.
Thus anǫ defines the order in which the data points become dense: point anǫ(1) has the
smallest nth

ǫ distance dnǫ(1) and is first to become dense when rǫ = dnǫ(1), point anǫ(2)
is second at dnǫ(2), and so on.

3. Select distance thresholds rǫ from successive dnǫ values, initializing a new dense point at
each cycle. As the second and each subsequent dense point is introduced, the method
tests the new point to determine one of three possible fusion phases: either (i) the new
point does not lie within rǫ of another dense point, in which case it initializes a new cluster
mode, (ii) the point lies within rǫ of dense points from one cluster only, and therefore the
point is directly fused to that cluster, or (iii) the point falls in the saddle region, lying
within rǫ of dense points from separate clusters, and the clusters concerned are fused.

2The set of points within rǫ distance of x includes x.
3Other possible kernels could be a Gaussian or a Bregmanian ball [GG05]. Selecting a particular kernel for

Equation 1 is similar to selecting a particular smoothing function for Parzen window based density estimation.
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4. Finally, a note must be kept of the nearest-neighbor distance rmin between dense points
of different clusters. When rǫ exceeds rmin, the direct fusion of the two clusters separated
by rmin is indicated.

Using the above procedure, HMA is able to find a very compact hierarchy of clusters that
correspond to the actual “modes” or generating distributions. An illustrative example is as
follows; if the data was generated by two closely located low (but not necessarily spherical or
equal) variance Gaussian distributions A and B, a third somewhat distant Gaussian C, and a
uniform background distribution, then HMA finds a compact hierarchy that consists of only
five nodes; a root node (1) consisting of all the data points, two child nodes with (2) consisting
of most of the points from A and B while the other, (3) consists of mostly points from C, and
finally (2) further contains two child nodes, (4) consisting mostly of points from A, while (5)
consists mostly of points from B. We will later see how the ability of HMA to discover such
a compact hierarchy stems from its ability to treat less dense points as “don’t care” points or
outliers.

3.4 Pearson Distance for biological datasets

An example of a symmetric distance measure is Pearson Distance (dp) [GG05] computed as
1 − p, where p is the Pearson Correlation, a popular similarity measure for clustering gene-
expression and other biological data [SS00, MTAea04]. It can be shown that Pearson Distance
is equal to the Squared Euclidean distance between z-scored 4 points normalized by 2(d − 1):

dp(x,y) =
‖ z(x) − z(y) ‖2

2(d − 1)
(2)

where z represents the z-scoring function. Pearson Correlation is popular among biologists
for clustering genes since it captures correlation that is invariant to linear scaling; it is useful
for a variety of high throughput biological datasets such as gene-expression, protein-expression,
phylogenetic profiles, and protein mass spectroscopy, among others. We use the corresponding
distance measure, Pearson Distance, on biological data presented in this paper. In particular,
it is reasonable to do so with HMA (and for our Auto-HDS framework derived from HMA)
for the following reasons: (1) the triangle inequality property is exploited indirectly in the
graph-traversal process that connects the clusters in HMA, (2)

√
dp gives a semi-metric that

is the Euclidean distance between z-scored points, and (3) the clustering using
√

dp and dp

would be identical for the density kernel used in HMA (Equation 1) since the relative ordering
between points is the same for

√
dp and dp. For the same reasons, it can be shown that 1-cosine

similarity [DM01] would also be an appropriate distance measure with HMA and Auto-HDS.
Although any arbitrary symmetric distance measure could be used, it is not clear if HMA or
Auto-HDS would be meaningful for all such distance measures.

4 Density Shaving (DS)

For the labeled points (i.e., the dense points) from the ith iteration of HMA, it can be shown
that two dense points x,y ∈ G (where G is the set of dense points), belong to the same dense

4Normally performed between points across a dimension. Here we perform it between dimensions for each
data point.
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Algorithm 1 DS
Input: Distance matrix MS , nǫ, fshave.
Output: Cluster labels {labi}n

i=1
corresponding to the n data points.

Initialize: {labi}n
i=1

= 0
nc = ⌈n(1 − fshave)⌉

5: // Sort each row of the distance matrix
[Mnbr

rad,M
nbr
idx ] = sortrows(MS )

//Sort nǫ
th column of matrix Mnbr

rad

[radxnǫ , idxnǫ ] = sort(Mnbr
rad(·, nǫ))

// Recover the rǫ threshold
10: rǫ = radxnǫ(nc)

// Recover the nc densest points
G = {x(idxnǫ(i))}nc

i=1

/* Lines 17-33: For each point in G, find other dense points
within rǫ distance of it and make sure they have the same

15: labels, if not, relabel */
for i = 1 to nc do

/* Find the position of the last point within
distance rǫ of dense point x(idxnǫ(i)). */
idxb = binSearch({Mnbr

rad(idxnǫ(i), j)}n
j=nǫ

)
20: /* Neighbors of x(idxnǫ(i)) are the idxb closest points, all

within rǫ distance. */
Xnbrs = Mnbr

idx (idxnǫ(i), l)idxb
l=1

// save the neighbors
// Identify neighbors that are dense points

25: Xdnbrs = Xnbrs ∩ G
// Recover their labels that are not 0
Ldnbrs = unique(lab(Xdnbrs))/{0}
// Relabel all points that share this label to label i
∀y ∈ lab if ∃y ∈ Ldnbrs : y = i

30: lab(indexOf(Xdnbrs)) = i
end for

Count clusters: k = |unique(lab)|/{0}
Remap the non-zero labels in lab to the range 1 to k.

cluster represented as C if d(x,y) < rǫ. That is,

∀x,y ∈ G : d(x,y) < rǫ ⇒ x,y ∈ C (3)

As a consequence of Equation 3, for any two points x1 and xm ∈ G, if there exists a chain
of points x1,x2, ...,xm−1,xm ∈ G such that {dS(xi,xi−1) < rǫ}m

i=2, then x1 and xm also belong
to the same cluster in a given iteration of HMA.

This leads to an algorithm that can compute the cluster labels in the ith iteration of HMA
directly without the iterative process required in HMA. This algorithm is called Density Shav-

ing (DS), and a pseudocode for DS is presented in (Algorithm 1). DS essentially takes two
parameters as inputs: (1) fshave, the fraction of least dense points to shave or exclude from
consideration, and (2) nǫ, the number of points that must be within a distance rǫ of a given
point xi in order for xi to be considered dense. Note that rǫ is not needed as a parameter.
Instead, given fshave and nǫ, the DS algorithm computes the corresponding rǫ using the same
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approach as HMA using rǫ = dnǫ(i), where i = ⌈n(1 − fshave)⌉. DS then applies a graph
traversal process to discover the clusters composed of the dense points, where, as stated in
Equation 3, two dense points are in the same cluster if the distance between them is less than
rǫ. The output of the algorithm consists of k clusters labeled 1 to k formed by the set G of nc

densest points and a “don’t care” set O containing the remaining points which are labeled 0.

The indexof(x) is a special function used in Algorithm 1 (and elsewhere in this paper)
that returns the original integer index of a given point x ∈ X while indexOf(Y), where Y ⊆ X ,
returns a sorted vector of indexes corresponding to points in Y. We use this function mainly
to make the pseudocode for the algorithms compact. We have provided C++ style inline
comments in Algorithm 1 that explains the algorithm in detail. For clarity, note that at Line
6 of Algorithm 1, we sort each row of the distance matrix MS by increasing distance, to get
an ordered list of neighbors of each point as matrix Mnbr

idx , and their corresponding distances
as matrix Mnbr

rad. For each point in G, the binary search (between nǫ and n) at Line 19 allows
efficient recovery of the set of all the dense neighbors Xnbrs that are within a distance of rǫ of
the point.

4.1 Properties of DS
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Figure 1: The effect on clustering when nǫ is changed from 5 (left) to 50 (right), showing the
robustness of DS with respect to parameter nǫ. “o” represent dense points and “+” are outliers.
Increasing nǫ by small amounts results in a smoothing effect on the density estimation that
prunes the smallest dense regions and grows the larger ones, thus preserving the large-scale
structures in the clustering. Data: Sim-2 (see Section 9.1).

DS requires only nǫ and fshave as inputs, and, just like HMA, estimates an rǫ corresponding
to fshave automatically. This could be important for high-dimensional biological data sets when
using Pearson Distance (which scales between 0 and 2), since there would be no intuitive value
of rǫ that can be computed. For example, in our experiments on very high-dimensional data,
we found that the difference in the value of rǫ when clustering 10 % less points is usually
small (e.g., ∼0.01 for clustering 500 vs. 550 points for Gasch genes, Table 2), and does not
follow volumetric intuitions of a uniform distribution. This makes the parameters nǫ and fshave

preferable over nǫ and rǫ. In addition, for a constant fshave, nǫ acts as a smoothing parameter

in DS (Figure 1). While DS can be applied as a clustering algorithm, we mainly use DS to
construct the HDS algorithm described in the next section.
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4.2 Time Complexity of DS

It is possible to implement each iteration of the graph traversal in only O(n) steps 5. This
results in a graph traversal with time complexity O(n2) and a time complexity of O(n2 log n)
for Algorithm 1. Furthermore, by using heap sort to find the neighbors within rǫ of dense
points, a faster implementation of DS with a time complexity of O(max(n2, nnavgǫ log(n))) is
possible 6, where navgǫ is the average neighborhood size within distance rǫ of the dense points.
Note that navgǫ ≥ nǫ, and is usually small for small nǫ.

4.3 Connection between DBSCAN, DS and HMA

The ith of the n iterations of HMA corresponds to an rǫ = dnǫ(i), and results in three types
of points: (a) a set of dense points that have cluster labels, (b) a set of non-dense points that
are within the current rǫ of at least one dense point, and (c) a set of non-dense points that are
neither of the two. It can be shown that for the particular values of rǫ = dnǫ(i) and nǫ at the ith

level, if the set of non-dense points within rǫ distance of a dense point are clustered with their
nearest dense point (in a specific order to break ties), you get a clustering that is identical to
that of the DBSCAN algorithm, using the corresponding rǫ and nǫ used in HMA as inputs. As
mentioned earlier in Section 2, this alternative form of clustering non-dense points was noted
in [Wis68]. Since DS computes the ith iteration of HMA directly, one could consider DS to
be the HMA equivalent of DBSCAN. That is, DS obtains the same clustering as DBSCAN for
points of type (a) but does not cluster points of type (b), whereas DBSCAN clusters points of
both types (a) and (b).

5 Hierarchical DS (HDS)

In this Section we describe a framework called Hierarchical Density Shaving (HDS) that finds
a good approximation of the HMA hierarchy in two steps. We first use the DS algorithm to
compute a subset of the HMA iterations, and then we perform a relabeling of the DS clusterings
to create a noise-tolerant version of the HMA hierarchy. We start by observing the following
property of HMA:

Proposition 5.1. The cluster labels in each of the n iterations of the HMA hierarchy can be

computed independently of one another.

This proposition follows as a consequence of the DS algorithm that can compute the ith

iteration of HMA directly without using the iterative procedure originally proposed by [Wis68].
Computing all the n levels of HMA using either the original algorithm (Section 3.3) or DS
results in a time complexity of O(n3). However, since the HMA iteration cluster labels are
nested (which follows from HMA directly), and because of Proposition 5.1, any subset of
DS executions corresponding to some subset of the n HMA iteration clusterings also forms a
hierarchical clustering.

Therefore, an obvious way to produce such a hierarchy faster would be to compute DS
clusterings only for nc = n, n− r, n − 2r and so on, where r is some small integer greater than

5The details of such an implementation and the corresponding time complexity proof are being omitted here
for brevity.

6Section 8 describes an implementation based on this approach.
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1, thus skipping some of the HMA iterations and reducing the total runtime by a factor of r.
However, we propose an alternate scheme that works as follows: at each iteration, a constant
fraction of dense points are removed (“shaved”) from the set of dense points from the previous
iteration. This process has the ability to perform finer shavings as clusters get smaller, thus
preserving the ability to discover small-scale but highly dense structures. This process can also
be thought of as an exponential shaving, where we specify a “shaving rate” 0 < rshave ≤ 1.
Then, the value ncr ∈ R obtained by applying the exponential shaving t times on n is given by:

ncr = n × (1 − rshave)
t (4)

HDS level: The level of an iteration in HDS that clusters nc points is computed using a
function flevel(nc) defined as follows:

flevel(nc) =
log(nc) − log(n)

log(1 − rshave)
(5)

flevel measures the number of shavings of fraction rshave required to obtain nc, starting
from n, and can be derived from Equation 4 by substituting t = flevel and nc = ncr. Note that
unlike t, flevel is a real number and takes into account the fact that nc is an integer.

HDS iterations: By substituting nc = 1 in Equation 5, we can show that, for a given
rshave and n, at most jmax = ⌈− log(n)

log(1−rshave)⌉ iterations are needed. In practice, for small
rshave, since many such iterations result in the same nc, the number of distinct HDS iterations
is upper-bounded by jmax. These distinct values of nc are used for the iterations of HDS, and
can be obtained as a sorted list of positive integers (from Equation 4) as follows:

nnclist = sortd(unique({⌈n × (1 − rshave)
t⌉}jmax

t=0 )) (6)

where sortd represents a sort by decreasing value. Let niter = |nnclist| represent the number
of iterations of HDS, with the jth entry of nnclist now corresponds to the jth iteration of HDS.
The level of the jth iteration of HDS can be obtained using Equation 6 and 5:

level(j) =
log(nnclist(j)) − log(n)

log(1 − rshave)
(7)

Since a smaller nc corresponds to a larger level (Equation 5), the iterations represented by
nnclist are also ordered by increasing HDS level. For the first iteration, nnclist(1) = n and the
corresponding level is 0, and in general, the level in the jth iteration roughly corresponds to
(j − 1).

HDS vs. HMA iterations: Although each distinct iteration of HDS could be computed in
any order because of Proposition 5.1, they are organized as a shaving order listed by Equation
6. This ordering is required for the faster algorithm known as Recursive HDS introduced
later in Section 5.3. Note that the first iteration of HDS maps to the last iteration of HMA;
HMA iterations are “top-down” whereas HDS iterations are defined bottom up. Also note
that the HDS iterations have a level defined on them given by Equation 7 that corresponds
to the exponential shaving and not to the iterations of HMA; this difference is critical for the
automatic cluster selection described in Section 6.
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5.1 A Simple HDS Algorithm

We showed earlier that HDS consists of less than ⌈− log(n)
log(1−rshave)⌉ iterations, which is O(log(n)).

Therefore, repeated calls to Algorithm 1 to compute each iteration of HDS results in a time
complexity of O(n2(log(n))2). A faster alternative is to modify Algorithm 1 as follows:

Algorithm C: (1) Sort the distance matrix only once, and (2) Recompute the rǫ for each
nc in nnclist, the corresponding neighbor memberships, and the graph traversal. It can be
shown that the graph traversal in each iteration of DS has a time complexity of O(nnc). In
HDS, since nc decays exponentially with the shaving iterations, it can be shown that the total
time complexity of the graph traversal for all values of nc (Equation 6) is only O(n2), resulting
in a time complexity that is the same as that of DS.

5.2 Extracting a smoothed HMA hierarchy

The hierarchy produced by HMA involves top-down “growing” clusters; the algorithm starts
with the densest point and then repeatedly merges an additional point in each iteration, either
(1) starting a new cluster, (2) merging with an existing cluster, or (3) merging with two or
more existing clusters. Although Algorithm C produces a subset of the full HMA iterations
(represented by matrix L), the labels are not based on labels in previous iterations. Hence,
there is no correspondence between the different iterations of Algorithm C. In order to produce
labels that also correspond to the HMA labels on a hierarchical basis, a re-labeling of L needs
to be performed. Such a relabeling can also be viewed as a “compaction” of the hierarchy
generated by Algorithm C.

Additionally, we introduce the notion of a particle, a cluster that emerges from a parent
cluster but is considered spurious due to its small size. Particles are ignored when compacting
L. We define a particle as any dense cluster of size less than npart points (note that we can
include particles simply by letting npart = 0). Starting from the left most column, relabeling of
L proceeds as follows: (1) find the unique cluster IDs at iteration j−1. (2) Repeat the following
for each of the clusters found in Step 1: (2.1) If all points belonging to a cluster in iteration
j − 1 are either: (a) clustered in the same cluster in iteration j, (b) are assigned to the don’t
care set O, or (c) are assigned to a cluster that is a particle, then we assign the child cluster at
iteration j the label of the parent cluster at iteration j − 1. That is, one can view the cluster
on iteration j as a continuation of the corresponding cluster on iteration j − 1, barring those
points which are now part of O or a particle. If the condition in (2.1) is not satisfied, then (2.2)
a cluster has split into two or more child clusters. Each of these child clusters is assigned a new
cluster ID. The relabeled label matrix LHDS output by this procedure represents a smoothed
HMA hierarchy, which we refer to as the HDS hierarchy.

5.3 A faster “Recursive-Iterative” Algorithm

A property of the HDS hierarchy is that two distinct clusters from an earlier shaving
iteration stay distinct as we keep shaving, and eventually disappear (i.e., all their points become
“don’t care”). This makes it possible to apply Algorithm 1 recursively to each of the clusters
found in L(·, j) to obtain the cluster labels in L(·, j + 1). However, using recursive function
calls to implement such an algorithm would require that relevant data be saved on a stack for
each such call. This operation is extremely memory intensive and can cause stack overflow.
Fortunately, a more efficient iterative implementation of this conceptually recursive algorithm
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Algorithm 2 Recursive HDS
Input: Distance matrix MS , nǫ, rshave

Output: n × niter Cluster hierarchy matrix L.
Initialize all values in L to 0.
[Mnbr

rad,M
nbr
idx ] = sortrows(MS )

5: [idx
nǫ , radx

nǫ ] = sort(Mnbr
rad(·, nǫ))

Compute nnclist using Equation 6.
rǫlist = radxnǫ(nnclist)
nc = nnclist(1)
rǫ = rǫlist(1).

10: Initialize: L(·, 1) = lab, Gall = G, and N using Algo. 1.
for j = 2 to niter do

Glast = Gall

N o
last = N/Gall // non-dense nbrs.

Compute Lrow
last as unique rows of matrix {L(,̇i)}j−1

l=1

15: klast = |Lrow
last| // no. of dense clust. found in iteration j − 1

N = ∅, Gall = ∅

for m = 1 to klast do

Cm = // members of the dense cluster
{∀x ∈ Glast : {L(indexOf(x), i)}j−1

i=1
= Lrow

last(m)}
20: // combine cluster pts with non-dense nbrs. from

// iteration j-1 to create a working set of points
Xwork = Cm ∪ N o

last

Gall = Gall ∪ Cm // keep track of dense points found
//recover the distance matrix subset for working set

25: Mwork
s = Ms(indexOf(Xwork), indexOf(Xwork))

// Recover sorted rows and corresponding indices
Snbr

rad = Mnbr
rad (indexOf(Xwork), indexOf(Xwork))

Snbr
idx = Mnbr

idx (indexOf(Xwork), indexOf(Xwork))
[idxnǫ , radxnǫ ] = sort(Snbr

rad(·, nǫ))
30: rǫ = rǫlist(j)

Compute nc as index pos. in radxnǫ with value rǫ

Find cluster labels L(indexOf(Xwork), j), nbr. set
Nwork and cluster set Gwork using Ln. 12-20, Algo. 1.
N = N ∪Nwork

35: end for

end for

is possible and is described in Algorithm 2. Recursive HDS works by applying DS at iteration
j + 1 to each of the clusters found at level j. An extra step required is the recomputation of
the nc used for each of the clusters. Although Recursive HDS has the same time complexity as
Algorithm C (Section 5.1), it usually runs much faster in practice. An HDS iteration involving
dense, well-separated clusters can run up to k times faster using Recursive HDS as compared
to Algorithm C, resulting in overall speed gains that are significant for practical applications.

5.4 Properties of HDS

Besides a faster time complexity, the exponential shaving used in HDS has several advantages
over a linear shaving. For one, smaller clusters of higher density get shaved more finely leading
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to a good approximation of the HMA hierarchy. The exponential shaving also has certain other
properties that leads to an unsupervised cluster selection that we describe in Section 6.

For npart = 0, the relabeled HDS hierarchy is identical to a subset of the HMA hierarchy. A
larger npart acts as a smoothing parameter, somewhat similar to the effect produced by a larger
nǫ. However, there is a subtle but important difference between the two; while nǫ “smooths”
the notion of density, resulting in less significant dense regions getting ignored (Figure 1), npart

has a smoothing effect on the HDS hierarchy generation, preventing insignificant child clusters
from forming from parent clusters. The use of npart in HDS is also similar to runt pruning used
in [Stu03].

Since the hierarchy compaction process is extremely fast (O(n log n)), npart can be selected
interactively 7 by the user to smooth clustering. In Section 7, we describe an illustrative
example of how this can be achieved in conjunction with the Visualization framework. These
properties make HDS a good but much faster approximation of HMA, and makes interactive
HMA-type analysis for finding small dense regions practical on much larger datasets.

6 Model Selection

We now describe a method for ranking the clusters in the HDS hierarchy using a novel stability
criteria, and a simple algorithm for selecting the clusters based on the ranking.

6.1 Ranking Clusters

The compact hierarchy generated using the process described in 5.2 makes it easier to select
clusters. For many applications, such a hierarchy by itself may be the end goal. However, in
the absence of any supervision, a notion of cluster quality that we call stability can be used to
rank clusters, where a higher stability gives a higher rank to a cluster. We define stability as
the number of levels a cluster exists in the HDS hierarchy. For a given cluster C 8, the stability
can be calculated as:

Stab(C) =
log(nclist(je)) − log(nclist(js − 1))

log(1 − rshave)
(8)

where js is the iteration of HDS where C first appears and je is the last iteration where C
survives (after which it either splits into child clusters or disappears completely). This notion
of cluster stability has the following properties that makes ranking of clusters of various sizes
and densities using stability robust and meaningful: 1) When ordering clusters by cluster sta-
bility, the ordering is independent of the shaving rate, and 2) Scale Invariance of Stability:
Ordering clusters by stability results in the same ordering as when ordering clusters by the
fraction of data shaved from the entire dataset between the first iteration where C appears and
the last iteration before C disappears.

The first property follows from the fact that the denominator in equation 8 is a constant
for all clusters C. The second property is due to the fact that since the fraction of data shaved
between two levels is constant, the fraction of points shaved between Stab(C) levels is also

7In contrast, modifying nǫ for smoothing is too slow to be interactive for large problems.
8Clusters can only be found at iteration 2 or greater.
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Figure 2: (a) to (f): Effect of DS applied with varying nc (fshave) for nǫ = 20, resulting in a
hierarchy of clusters. For nǫ = 20, npart = 5, HDS visualization after cluster identification (g),
and cluster selection (h). Unlike DS, Auto-HDS can discover clusters of different densities (i).
The fourth row shows Auto-HDS results for nǫ = 7: (j) shows the degradation of hierarchy
compaction with npart = 0, (k) shows hierarchy compaction and cluster selection using npart =
30 that result in clusters (l) very similar to those in (i). An rshave of 0.1 was used for HDS.
Dataset: Sim-2 (see Section 9.1). 14



constant and is given by the equation fC

shave = (1 − rshave)
Stab(C), which can be derived from

equation 8.

Note that if one were to use a linear shaving rate, i.e. shaving off the same number of
points, the second property would no longer hold true. That is, stability is meaningful only
because of the exponential shaving rate, i.e., shaving off the same fraction of points in each
iteration.

To summarize, we can now discover all the significant clusters in the relabeled hierarchy
and can compare all clusters with each other (e.g., clusters with different number of member
points and densities, and parent and children clusters).

6.2 Selecting Clusters

Picking the most stable clusters proceeds iteratively as follows. First, make a list of all clusters
eligible for selection (i.e., all clusters that are not particles). Second, pick the eligible cluster
with the largest stability. Third, mark all parent and child clusters of the selected cluster as
ineligible. Repeat steps two and three until there are no more eligible clusters. Note that
the cluster members of the selected clusters are all the points assigned to that cluster on the
first level the cluster appears in the HDS hierarchy. Using such an assignment, we are able
to select clusters that satisfy different notions of density, which is not possible using DS. This
also impacts the points that are assigned to the “don’t care” set as well; they now correspond
to all the points in X not belonging to any of the selected clusters. An illustrative example
highlighting the difference between HDS selected clusters and DS is shown in Figure 2, where
(a) through (f) show Density Shaving applied to the Sim-2 data when clustering from 1,100
to only 200 points. Notice the difference in clustering between Figure 2, (c) and (i) where
approximately the same number of points were clustered: in 2(c), DS is used to cluster 580
points, while in 2(i), HDS with model selection is used to cluster 610 points.

7 Visualization with HDS

xi Cluster IDs

x1 1 1 2 2 0 0 0 0
x2 1 0 0 0 0 0 0 0
x3 1 1 3 4 0 0 0 0
x4 1 0 0 0 0 0 0 0
x5 1 1 0 0 0 0 0 0
x6 1 1 3 5 5 0 0 0
x7 1 1 3 0 0 0 0 0
x8 1 1 3 4 4 4 0 0
x9 1 1 3 4 4 4 4 0
x10 1 1 0 0 0 0 0 0

xi Cluster IDs

x2 1 0 0 0 0 0 0 0
x4 1 0 0 0 0 0 0 0
x5 1 1 0 0 0 0 0 0
x10 1 1 0 0 0 0 0 0
x1 1 1 2 2 0 0 0 0
x7 1 1 3 0 0 0 0 0
x3 1 1 3 4 0 0 0 0
x8 1 1 3 4 4 4 0 0
x9 1 1 3 4 4 4 4 0
x6 1 1 3 5 5 0 0 0

(a) (b)

Figure 3: Example of the dictionary sort on LHDS for n = 10 and niter = 8, npart = 0. (a)
shows the unsorted label matrix LHDS , while (b) shows the result of the sorting.
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Each row of the n×niter matrix LHDS representing the HDS hierarchy contains the cluster
label of each point in all the HDS iterations. We now sort the rows of LHDS using a dictionary
sort, such that we give higher precedence to labels with smaller column indices. An example
of the effect of this sorting is shown on a toy example in Figure 3.

A simple yet powerful visualization of the HDS hierarchy can be achieved by plotting this
sorted matrix, assigning separate colors to each distinct positive value in the matrix, and a
background color to the values that are 0. Figure 2(g) shows such a visualization for the 2-D
Sim-2 data, while Figure 6(a) shows the same for the 6,151 dimensional Gasch data. The
corresponding plots where the clusters have been selected using the model selection described
in Section 6 is shown in Figure 2(h) and Figure 6(d) respectively, wherein, the visualization
also labels the selected clusters with their actual stability.

We call the combination of HDS, model selection, cluster selection, and visualization the
Auto-HDS framework.

Note that just as in HMA, for a range of iterations of HDS (for example Figure 2, (d) vs.
(e)), the number of clusters often does not change, and each of the clusters at iteration j − 1
simply loses some points to the “don’t care” cluster at iteration j. However, since HDS uses
exponential shaving, the iterations of HDS are on a log-scale (x-axis) as compared to HMA
and therefore show the smaller, denser clusters well. Furthermore, the length of the clusters
approximately corresponds to the stability of the clusters, while the relative separation of two
points or clusters along the y-axis is proportional to their distance in the original space, since
dense points in the same clusters are closer in the dictionary sort; the process of labeling used
by HDS results in a novel and amazingly simple projection of high-d data density and clusters
onto a 2-d space that is at the same time tightly integrated with the clustering methodology.

The Auto-HDS visualization also enables easy visual verification of the cluster selection
process. The cluster selection process selects clusters from the first level that they occur, and
this can be seen in the toy example in Figure 3(b), where the first level of cluster 4 occurs at the
fourth column from left, and thus the member points of cluster 4 are x3, x8 and x9. Another
example of the cluster selection process with visualization is shown in Figure 2, (g) and (h).
Figure 2(g) shows the relabeled and sorted HDS hierarchy on the Sim-2 data, while 2(h) shows
the corresponding clusters selected automatically, along with their stability values. Figure 2(i)
shows the clusters corresponding to 2(h) in the original 2-d Euclidean space. It can be seen
that Auto-HDS finds five clusters and a compact hierarchy with only eight nodes, and that the
results match remarkably well with the actual dense regions and their relative positions in the
Sim-2 data.

It is important to note why the hierarchy produced by Auto-HDS (e.g. in the Sim-2 example
above) is extremely compact, a key property that distinguishes it from traditional hierarchical
clustering methods. The Auto-HDS hierarchy at any level corresponds to only the dense subset
of the data; that is at any given level, the least dense points are assigned to the “don’t care”
set. Therefore, the number of clusters does not grow rapidly as one moves up or down the
Auto-HDS levels; as we move up the levels, new clusters only appear when a cluster splits,
and old, less dense clusters disappear. In contrast, traditional hierarchical methods, such as
Agglomerative clustering, cluster all of the data at all levels, and in the presence of noise (a
common characteristic of real-life data) they end up discovering numerous spurious clusters.

Auto-HDS visualization can also aid in choosing the two HDS smoothing parameters nǫ and
npart. It is possible to prevent small, insignificant clusters from being found by selecting either
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a larger value of nǫ or npart. If the user changes npart, Auto-HDS clustering can be updated
fairly quickly (usually interactively, within seconds), since the hierarchy compaction process
is very fast. In contrast, changing nǫ requires the regeneration of the HDS clustering. It is
therefore possible to chose a very small nǫ to start with, obtain a noisy clustering, and then
slowly increase npart until clusters obtained stop changing substantially. Once the clustering
appears stable and satisfactory, the user can then either use the resultant clustering as the final
output, or use the optimum value of npart as a rough estimate to select a larger nǫ and run the
HDS clustering from scratch. An example of using this approach for finding good clustering on
the Sim-2 data is shown in Figure 2, (g) through (l)), where a small nǫ was first used to generate
a “noisy” hierarchy (Figure 2(j)), and was subsequently smoothed using a larger npart (Figure
2(k)). A larger nǫ was later found to be sufficient for obtaining a good hierarchy (Figure 2(h)).
The hierarchy of clusters found using the two alternatives, i.e. a larger nǫ vs. a larger npart,
shows very similar clustering results ( Figure 2, (i) vs. (l)), organized in a very similar topology
(Figure 2, (h) vs. (k)).

To summarize, the visualization provides a powerful, compact, informative hierarchy and
a spatially relevant 2-D projection of a high-dimensional density distribution. While many
visualization tools are built on top of clustering results, the Auto-HDS visualization directly
corresponds to the clustering methodology. The visual feedback provided also allows the user
to go back, if desired, and adjust the smoothing parameters npart and nǫ. Typically, however,
the results are quite stable over a range of parameter values.

8 Gene DIVER: A Scalable Java implementation

The Gene DIVER product website is at:
http://www.ideal.ece.utexas.edu/∼gunjan/genediver

The results presented in this paper were mostly produced using a Recursive HDS imple-
mentation in Matlab, which is ideal for rapid prototyping and testing. By exploiting some of
the advantages provided by a heap based implementation (briefly mentioned in Section 4), we
also implemented a highly scalable and sophisticated version of Auto-HDS in Java called Gene

DIVER (Gene Density Interactive Visual Explorer). This product has several key features that
make Auto-HDS scalable on modest computers for reasonably large clustering problems. Gene
DIVER provides a sophisticated SWING-based user-interface that not only makes it usable by
non-programmers, but also provides the ability to perform interactive clustering. Furthermore,
the Java implementation is an open-source implementation makes the application immediately
runnable on most platforms, and does not bind the user to a specific commercial platform such
as Matlab or SAS. Some of the salient features of the Gene DIVER 1.0 product are as follows:

1. Computes and stores distance matrices on secondary storage instead of loading the O(n2)
distance matrix in memory. By loading and sorting only one data row at a time in memory,
the memory usage by Gene DIVER is only O(nnavgǫ), where navgǫ is the number of
neighbors within the rǫ neighborhood, averaged over all the clustered data points. This
is usually much smaller than O(n2). For example, when clustering all the genes in the
Lee dataset (Table 2) across all the experiments, Gene DIVER requires only 40 MB
of memory. In contrast, a single copy of the distance matrix of the Lee dataset would
correspond to over 120 MB in Matlab. A corresponding implementation of HDS that
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computes and performs traditional sorting on such a distance matrix also requires many
intermediate copies of such a matrix, along with Matlab itself to reside in memory; this
ends up requiring a machine with approximately 1 GB of RAM. The improvements in
both memory and speed efficiency usage are so large that the Java implementation of
Auto-HDS is now suitable for much larger clustering problems.

2. Heap Sort is not available in JDK 1.5 SDK, the current version of Java from Sun Mi-
crosystems (java.sun.com). We implemented a custom Heap Sort API that uses sorting
of referenced integer indices, rather than of Java objects made of an {index,value} pair.
This results in a much faster implementation of heap sort.

3. A custom serialization of the distance matrices and the row heaps with large buffering
for reading/writing to secondary storage makes the O(nnavgǫ) memory implementation
practical, by keeping the disk read/write overhead very small.

4. Partially sorted heaps are also saved to secondary storage for future clustering. When
the user tries to cluster a dataset which she/he had clustered before, Gene DIVER auto-
matically reuses the heaps created and stored earlier to estimate the neighbors within the
specified radius rǫ, and only incrementally sorts the heaps if needed. Gene DIVER per-
forms checks for all possible combinations of changes in inputs by the user and maximizes
the degree of reuse of the older heaps, thus greatly reducing the amount of additional
processing needed. This allows for much faster and almost interactive clustering for
reasonably large problems.

5. Ability to skip clustering of some of the least dense data. Gene DIVER allows the user
to specify a fraction of the least dense data to skip clustering upon, and only to build
the HDS hierarchy beyond that. This allows the clustering in practice to be considerably
faster.

6. Allows user to choose between three important distance measures: (1) Squared Euclidean,
for spatial data- the classical domain of density based clustering algorithms, (2) Pearson
Distance (Section 3.4), a useful measure for clustering many types of biological data, and
(3) 1-Cosine Similarity, which is useful for text clustering- an application area that we
have not yet tested, but which could be a useful domain to explore with Gene DIVER.

7. Ability to specify either a precomputed distance matrix, or a vector space as input data.
The ability to specify a precomputed distance matrix in a file makes it possible for
users to incorporate their own custom distance measure into Gene DIVER. This could
be important for applications in bioinformatics such as clustering of phylogenetic data
where the ideal distance measure may not be Pearson Distance, or in situations where
the distance between genes is computed using an ensemble of information over multiple
types of datasets [LDAM04]. In such cases, the distance between two genes could be
precomputed using the external model; the resulting distance matrix could then be passed
as an input to Gene DIVER.

8. A Java Swing based user interface allows users to select data and other parameters and
options for clustering. Furthermore, the novel visualization and model selection of the
HDS cluster hierarchy is also a part of the Java Swing user-interface, and allows the
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user to select and browse the resulting clusters. For some of the clustering parameters
such as the npart (runt) parameter, Gene DIVER can re-cluster the results in seconds;
the SWING interface thus enables the user to perform interactive clustering, a desirable
property for biologists. The user interface currently also allows one to specify the class
label data as input, and then shows the users the class label distribution statistics for the
generated clusters.

9. For more Java savvy users who want to incorporate Auto-HDS in their own applica-
tions/programs, Gene DIVER also provides an equally efficient and scalable command-
line version of Auto-HDS that does not use the user interface.

We are currently working on Gene DIVER version 2.0 which will have several new features,
such as the ability to automatically label selected gene clusters using known functional link-
ages between genes, and the ability to modify the automatically selected clusters and cluster
boundaries in order to discover overlapping gene clusters. These modifications will make Gene
DIVER even more powerful, especially for discovering new functional relationships between
genes using a variety of biological datasets. Another enhancement will be the ability to zoom
in and out of the clusters for better visualization of small, dense clusters on large data sets. This
could be particularly useful for large gene-expression datasets, where often the most significant
gene clusters are usually very small.

9 Experimental Evaluation

Additional results are available at:
http://www.ideal.ece.utexas.edu/∼gunjan/hds/readme.html.

9.1 Datasets

Table 2: A summary of the datasets used. Mic. stands for gene-expression data from microarray
experiments, Euc. stands for Euclidean distance, and D is the distance function used for
clustering.

Dataset Source n d D true k kA

Gasch Mic. 173 6, 151 dp 12 11
Lee Mic. 5,612 591 dp NA 9
Sim-2 Sim. 1,298 2 Euc. 5 5

We tested our framework on two real and one artificial datasets. In Table 2, which sum-
marizes the properties of these datasets, true k corresponds to the number of known classes
in the dataset, while kA refers to the number of clusters automatically found by Auto-HDS.
The Sim-2 dataset was generated using five 2-D Gaussians of different variances (which roughly
correspond to the clusters in figure 2 (i)) and a uniform distribution. Two of the Gaussians had
relatively small mass, and one of them had very low variance. This dataset is useful for verifying
algorithms since the true clusters and their spatial distributions are known exactly. The Gasch
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dataset [Gas00], a widely used benchmark for testing clustering algorithms on microarray data,
consists of 6,151 genes of yeast Saccharomyces cervisiae responding to diverse environmental
conditions over 173 microarray experiments. These experiments were designed to measure the
response of the yeast strain over various forms of stress such as temperature shock, osmotic
shock, starvation and exposure to various toxins. Each experiment was categorized into one of
12 different categories based on the experiment label. Many of the categories are closely related
such as “temperature”, “cold shock” and “heat shock”. Furthermore, each of the 173 exper-
iments have a description associated with them. The Lee dataset [LDAM04] consists of 591
gene-expression experiments on yeast obtained from the Stanford Microarray database [Gol03]
(http://genome-www5.stanford.edu/) and also contains a Gold standard based on Gene On-
tology(GO) annotations (http://www.geneontology.org). The Gold standard contains 121,406
pairwise links (out of a total of 15,744,466 gene pairs) between 5,612 genes in the Lee data
that are known to be functionally related. The Gold standard was generated using levels9 6
through 10 of the Gene Ontology biological process.

9.2 Evaluation Criteria

We use the following three criteria for performing evaluations against labeled data. Note that
the labels were only used for evaluations. Auto-HDS, DS, and all benchmarks were executed
in a completely unsupervised setting.

1. Adjusted Rand Index : Adjusted Rand Index was proposed by [HA85] as a normalized
version of Rand Index, and returns 1 for a perfect agreement between clusters and class
labels and 0 when the clustering is as bad as random assignments. ARI can be used on
the Gasch Array and the Sim-2 datasets since the true class-labels are available.

2. p-value: We use p-value to evaluate individual clusters of Yeast genes found on the
Lee dataset. Funspec 10 is a popular Yeast database query interface on the Web that
computes cluster p-values for individual clusters using the hypergeometric distribution,
representing the probability that the intersection of a given list of genes with any given
functional category occurs by random chance.

3. Overlap Lift : The Go annotation Gold standard provides labels for the Lee dataset in
the form of a set of pairwise links between functionally related genes; one could also
view these labels as an undirected graph. It is not possible to use ARI with such a
set of labels. Furthermore, the p-value described above is only relevant for individual
clusters. For evaluating the overall clustering quality on the Lee dataset using the Go
annotation Gold standard, we can compute the statistical significance of all the clusters
simultaneously using Overlap Lift, which we define as follows: A cluster containing w
genes in one cluster creates w(w− 1)/2 links between genes, since every point within the
cluster is linked to every other point. Therefore, k clusters of size {wj}k

j=1 would result in

a total of lc =
∑k

j=1 wj(wj−1)/2 links. The fraction of pairs in the Gold standard that are
linked flinked is known (e.g., for Lee dataset flinked = 121, 406/15, 744, 466 = 0.007711).
If we construct a null hypothesis as randomly picking lc pairs out of n(n − 1)/2 possible

9Note that the term “level” is used here only in the context of the GO annotation and should not be confused
with levels of HDS.

10http://funspec.med.utoronto.ca/
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pairs, we can expect lnull = flinkedlc pairs to be correctly linked. A good clustering
should result in more correctly linked pairs than lnull. If ltrue is the number of correct
links observed (which will always be ≤ lc) in our clustering, then the Overlap Lift is
computed as the ratio ltrue/lnull, which represents how many more times correct links are
observed as compared to random chance. A larger ratio implies better clustering.

Note that the points in the background or the “don’t care” clusters were excluded from the
evaluation.

9.3 Benchmark Algorithms

Most labeled evaluation measures for clustering are sensitive to the number of clusters dis-
covered and the percentage of data clustered. To get around this problem we ensure that
the benchmark algorithms use the same nc and k as our methods by applying the following
procedure that we call MaxBall :

1. For a given benchmark clustering algorithm, find k clusters {Cj}k
j=1, where k corresponds

to the number of clusters found by DS for a particular nc.

2. Compute cluster center cj for cluster Cj as the mean of the cluster’s member points.

3. Assign each of the n points to the cluster center among {cj}k
j=1 that is closest 11 to it.

4. Select nc points closest to their assigned cluster centers as the final clustering. Reassign
remaining n − nc points to the “don’t care” set.

Using MaxBall, we modified K-Means and Agglomerative clustering as follows:

K-Means: Since the centers output by K-Means are means of the k clusters generated,
we can directly apply MaxBall step 3 to obtain a clustering of nc points. We refer to the
resultant algorithm as MaxBall K-Means. Since K-Means uses Squared Euclidean distance, it
is not suitable for clustering gene-expression data. However, it is easy to modify K-Means to
work with Pearson Distance, a biologically relevant measure (equation 2). This modification is
similar to that of spherical K-Means [DM01], except that the recomputed centers are required
to be z-scored (just as the points are z-scored in equation 2) after each iteration. This modified
version of K-Means is used to run experiments on Lee and Gasch datasets.

Agglomerative: One way to obtain k clusters from Agglomerative clustering is to split the
cluster dendrogram at a level that gives exactly k clusters. Applying the MaxBall procedure
to clusters found using Agglomerative Single Link results in MaxBall-SL, while other variants
such as Agglomerative Complete Link and Average Link result in MaxBall-CL and MaxBall-

AL respectively. The performances of average and complete link derivatives were comparable
to that of the single link derivate. Therefore, for brevity, we present results on Auto-HDS for
Single Link and Complete Link, and for DS against Single Link.

The MaxBall procedure was also applied on DS in order to compare it with Auto-HDS.
DBSCAN: For the sake of discussion, we define coverage as the fraction of points clustered

(i.e., nc/n). As discussed earlier, the clustering obtained using DBSCAN is similar to that of
DS, and identical to a special case of HMA described by [Wis68]. However in contrast with

11using the same distance measure as that used by DS.
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DS, it is not possible to control the coverage directly in DBSCAN, which is essential for a
fair comparison against other methods. Therefore, for the two DBSCAN parameters, we set
MinPts to 4 as recommended by [EKSX96], and then perform a search for an Eps that results
in the desired fraction of data in clusters.

Comparing DS and Auto-HDS with Benchmarks: For DS, comparisons with other
benchmarks were performed across a range of coverages. Since varying the coverage for DS
results in varying k, the corresponding k is used as an input to the benchmark algorithms
except for DBSCAN.

For Auto-HDS, which is a deterministic algorithm, it is not possible to vary nc; the corre-
sponding k and nc output by Auto-HDS are used along with the MaxBall procedure described
earlier to obtain results summarized in Table 3, except for DBSCAN for which we used the
same procedure to control the coverage as that for DBSCAN comparisons with DS. Note that
the number of clusters k cannot be controlled for DBSCAN.

9.4 Results
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Figure 4: ARI comparisons of DS with other methods on Gasch (a) and on the Sim-2 (b)
datasets. (c) compares DS with other benchmarks on the Lee dataset using Overlap Lift.
Results for MaxBall K-Means were averaged over 100, 10 and 3 trials for the Sim-2, Gasch and
Lee datasets.

Table 3: Comparisons of the benchmarks with Auto HDS using ARI on Gasch and Sim-2 data.
For Gasch data, k = 11 and coverage was 62.4%. For Sim-2 data, k = 5 and the coverage was
48.4%.

Dataset: Gasch Sim-2
Auto-HDS 0.3509 0.6985

MxBll-DS 0.1533 0.5414
MxBll-KMN 0.2301 0.6433
MxBll-SL 0.1304 0.1948
MxBll-CL 0.2511 0.5114
DBSCAN 0.0234 0.5711
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General results: Figure 4(a) and (b) compare DS with the other three benchmark algo-
rithms on the Gasch and Sim-2 dataset using ARI over a range of fraction of data clustered
(x-axis) respectively, while 4(c) shows performance comparison on the Lee dataset using Over-
lap Lift. In general, for lower coverages that correspond to dense regions, DS tended to perform
very well. Auto-HDS, which selects clusters automatically, performed better than the other
methods for detecting the most significant dense regions in the data, and the discovered k
matched well with the number of classes (Table 2). Furthermore, Auto-HDS clusters also
matched well with the true labels in the target classes. This can be seen in the highly cor-
related expression patterns across gene experiments (e.g. Figure 6 (b), (c), (e), (f), (i), and
Figure 5), when evaluating against known functional categories (Table 4) or class labels (Figure
6 (g) and (h), Figure 2 (i) and (l), and Table 3). It should be stressed that since k is discovered
by our framework and is given as an input to the benchmarks (except for DBSCAN where it
is not possible to directly control k), they are not a viable alternative to our framework for
finding dense regions automatically. Also, DBSCAN tended to over-split the clusters for the
Sim-2 dataset, resulting in a much larger number of clusters (between 17 and 48) than the
number of classes, which was 5.

Robust model parameters: Auto-HDS is also very robust to the choice of the two major
model parameters nǫ and npart (Figure 2, (i) vs. (l)). For high-dimensional gene-expression
data, usually small values for both works well. Furthermore, rshave is only a speed parameter
and does not effect the shape of the HMA hierarchy discovered; smaller values of the shaving
rate rshave give slightly higher resolution hierarchies and more precise cluster boundaries. For
all experiments we used rshave in the range of 0.01 and 0.05.

Clustering Gasch experiments: The hierarchy found by Auto-HDS on the extremely
high-dimensional Gasch dataset is quite compact and easy to interpret (Figure 6(a)). Many of
the 11 clusters discovered by Auto-HDS (Figure 6(d)) contain highly correlated experimental
descriptions, while others that form siblings have closely related descriptions. For example, a
particularly interesting pair of sibling clusters A and B are shown in Figure 6, (g) and (h).
Both clusters contain heat shock experiments. However, the heat shock experiments in cluster
A involve a constant heat (37 degrees) and variable time, while the heat shock experiments in
cluster B involve variable heat and constant time. Additional such examples can be found at
our website.

Table 4: Example high purity clusters from Auto-HDS, Lee dataset. Note that Funspec returns
multiple categories (column 3) with low p-values for a given cluster; (x/y) stands for the
coverage, where we found x out of y known members of a category.

C. Id. |C| Cat(Cov.) p-val

2 8 Nucleosomal protein complex (8/8) <1e-14
3 7 PF00674-DUP (6/7) 1.132e-14
5 11 glycolysis (7/16) 3.175e-14
5 11 cytoplasm (11/554) 3.175e-14
6 120 Cytoplasmic ribosomes (111/138) <1e-14
7 7 PF00660-SRP1 TIP1 (6/30) <1e-14
7 7 stress (5/175) <1e-14
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Clustering Genes, Lee: Automating clustering for biological data sets in general, and
gene-expression datasets in particular, is a hard problem that motivated the design of Auto-
HDS. One of the critical issues facing biologists analyzing the vast stream of biological data
is that obtaining pure gene clusters often requires significant manual pruning of the clustering
results. With nǫ = 4 and npart = 2, Auto-HDS found 9 clusters in the Lee dataset formed by
182 out of 5,612 genes. After pruning such vast numbers of genes, most of the clusters were
very pure when evaluated using FunSpec and show very small p-values. Some of the high purity
clusters with extremely low p-values are summarized in Table 4. More details on these clusters
are available online on our website. The most surprising among these clusters is Cluster 6
where 111 out of the 120 genes in the cluster belong to a known biological process category -
Cytoplasmic ribosomes that has only 138 known members. Given that there are 5,612 genes to
pick from, this accuracy is remarkable.

Another popular approach for quickly verifying the quality of gene-expression clustering is
by visualizing the clustered genes in the original feature space. For five of the clusters from
Table 4, Figures 6(b), (c), (e), (f) and (i) show the gene-expression level of a sample of genes
from the corresponding cluster across 591 experiments in the Lee dataset. Clearly the genes
are highly correlated. A high degree of correlation is also visible in the middle plot in Figure
5, where the (182) genes belonging to all the clusters discovered from the Lee data were sorted
based on the discovered HDS hierarchy.

10 Concluding Remarks

In this paper, we have introduced Auto-HDS, a framework that is well-suited for unsupervised
learning on large, high-dimensional datasets such as those in bioinformatics, where the labeled
datasets are complex and incomplete and where the solution set is often hidden in a small
subset of the data. A key property of our framework is the ability to find a compact hierarchy.
This stems from the ability to ignore less dense points while generating the hierarchy. Auto-
HDS is also able to automatically discover the size, number and location of dense clusters. In
particular, the remarkably pure gene clusters discovered by Auto-HDS on Lee data (Table 4)
lend support to the hypothesis that Auto-HDS is suitable for the problem of clustering genes
for pathway discovery.

The Gene DIVER product, a highly scalable and memory efficient implementation of
Auto-HDS, includes several key innovations that make interactive clustering of large biological
datasets practical on modest computers. We hope that Gene DIVER will eventually become
a popular clustering tool for many clustering problems in general, and for bioinformatics in
particular.

Acknowledgments: This research was supported by NSF grants IIS-0325116 and IIS-
0307792.
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(x-axis) for a sampling of genes within clusters discovered by Auto-HDS on the Lee dataset are
highly correlated.
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