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Abstract

In classical clustering, each data point is assigned to at least one cluster. However,
in many applications only a small subset of the available data is relevant for the problem
and the rest needs to be ignored in order to obtain good clusters. Certain non-parametric
density-based clustering methods find the most relevant data as multiple dense regions,
but such methods are generally limited to low-dimensional spatial data or are too slow for
larger datasets. On the other hand, the promising One Class Information Bottleneck (OC-
IB) method uses a fast iterative relocation scheme, and works on a large class of distortion
measures known as Bregman divergences, but can only find a single dense region. In
this paper, we first present a series of improvements and extensions over OC-IB to find k
dense clusters that includes a seeding algorithm that can automatically estimate the best k.
When k is forced to 1, our method gives rise to an improved version of OC-IB that yields
optimality guarantees. Furthermore, we construct a generative model that gives rise to the
proposed iterative algorithm for finding k dense regions as a special case. Our analysis
reveals an interesting and novel connection between the problem of finding dense regions
and exponential mixture models. The proposed methods provide a scalable approach for
finding multiple dense regions as measured using any Bregman divergence, thus extending
density based clustering to a variety of problems not addressable by earlier methods. We
present empirical results on various artificial and real-life datasets to show the relevance
and effectiveness of our methods.



1 Introduction

Clustering data is an important unsupervised learning problem that has been extensively ap-
plied in various domains [JD88]. In classical clustering, each data point is assigned to at least
one cluster. However, in many real-world problems, only a small subset, often containing mul-
tiple natural groupings, clusters well, while the rest of the data shows little or no clustering
tendencies. In a wide variety of domains where a large amount of (often noisy) real-life data
is available, situations frequently arise where it is more important to cluster a small subset of
the data very well, rather than optimizing clustering over all the data points.

For example, in Market-basket data, typically only a small subset of customers show coher-
ent buying behavior [SG03, GG01]. These are often the loyal customers who purchase regularly.
Another area is text mining, where recovering the most relevant items of key categories is more
important than obtaining an exhaustive list. Biometric identification systems is another do-
main where there are many positive examples from multiple known users, but the real goal is
to distinguish them from a variety of uncharacterized negative examples. Many types of bioin-
formatics datasets also exhibit this property. For example, gene-expression datasets measure
expression level of genes compared to a control across a few thousand genes. The experiments
typically cover only a specific “theme” such as stress-response, and therefore only a few genes
related to the conditions show good clustering. Biologists are interested in recovering small,
multiple clusters formed from a small subset of genes that show strongly correlated expres-
sion patterns. Often such clusters map to biological processes that are involved in the specific
context. For example, on the Gasch dataset [Gas00], which consists of only stress response
experiments and is a popular benchmark for testing gene clustering, over 5,500 genes out of
6,151 genes are not directly involved in stress response. These genes show insignificant change
in expression level with respect to the control sample, and should be pruned for good clustering.
Other types of biological data that share similar properties include protein mass spectroscopy
and phylogenetic profile data.

One way to handle such scenarios would be to prune the large fraction of “don’t care”
data as a pre-processing or a post-processing step, and use existing “exhaustive” clustering
methods. However, optimal preprocessing requires the knowledge of what subset would cluster
well, which can only be defined well in the context of the clustering step. Post-processing is
also not ideal since the optimization in exhaustive clustering is over the full dataset, and not on
the small subset that is relevant. A more natural approach would involve finding the multiple
dense regions and the “don’t care” set simultaneously.

Density based clustering methods such as DBSCAN [EKSX96] find relevant subsets as mul-
tiple dense regions, while the rest of the data get assigned to a “don’t care” set. These methods
focus on directly identifying the densest possible regions, and unlike exhaustive clustering, work
well in situations where only a small, densest fraction of the data is relevant. However, DB-
SCAN implicitly exploits triangle in-equality to find a set of densely connected points. This
may not be the appropriate for many clustering problems where the suitable divergence crite-
ria between points is not a metric. Furthermore, DBSCAN (and its derivatives) requires an
efficient database index to be scalable to large data sets, which is usually available for only
low-dimensional metric spaces [KPPS03]. Hence, applications of these algorithms have been
largely limited to spatial datasets.

One Class Information Bottleneck (OC-IB) [CC04] provides a novel local search based
approach for finding a single dense region in the data that is extremely fast, scalable to very
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high-dimensional datasets, and works with a large family of distortion measures known as
Bregman divergences (Section 2.1). However OC-IB can only find a single dense region, whereas
in many problems dense regions can form multiple natural clusters. Furthermore, OC-IB can
get stuck into a bad local minima and does not allow control over the size of the cluster returned,
which can vary greatly depending upon the quality of the local minima.

Our approach, which is motivated by OC-IB, is able to resolve all these issues and greatly
extends the current scope of density-based clustering. Our method is scalable to large, high
dimensional datasets, works with all Bregman divergences, can find multiple dense regions
simultaneously, and gives high quality clusters that are robust to initialization. We also propose
a generative model for our method that provides deeper insight into our framework, and show
several interesting connections between the problem of finding multiple dense regions, and
(1) mixture modeling, (2) a recent unification of iterative relocation based methods known as
Bregman Clustering [BMDG05], and (3) the problem of One Class Classification or Clustering
as formulated by OC-IB. These contributions are summarized as follows:

1.1 Contributions

1. For the problem of finding one dense region, we present an alternative local search
method, BBOCC-Q that optimizes the same cost function as OC-IB but gives better
results.

2. We present a dual formulation, BBOCC-S that takes cluster size as input, provides control
over the cluster size, and shows empirical improvements over OC-IB that are even more
significant than that of BBOCC-Q.

3. We extend BBOCC to Pearson distance, a biologically relevant distance measure. The
algorithmic difference between BBOCC and OC-IB is what makes BBOCC with Pearson
distance computationally efficient; a corresponding extension using OC-IB runs much
slower.

4. We present a generalization of BBOCC called Bregman Bubble Clustering (BBC) that
can simultaneously find k dense clusters. We present two versions of BBC: BBC-Q and
BBC-S corresponding to BBOCC-Q and BBOCC-S respectively. For both versions, BBC
reduces to the corresponding version of BBOCC for k = 1. With a time-complexity and
space complexity of O(nd) for each step (for a dataset with n data points in d dimensions),
BBC is scalable to much larger and higher-dimensional datasets than existing density-
based methods. BBC also extends density-based clustering to all Bregman divergences,
which includes a wide variety of popular measures such as Squared Euclidean distance,
K-L Divergence, Mahalanobis distance, Itakura-Saito distance, Hinge Loss and Logistic
Loss.

5. For medium-sized problems, we develop deterministic seeding algorithms called Hyper-
sphere One Class Clustering (HOCC) and Density Gradient Enumeration (DGRADE) for
initializing the local search in BBOCC and BBC respectively. HOCC and DGRADE give
extremely good empirical results at the cost of somewhat increased time complexity 1.
HOCC also provides strong optimality guarantee on the quality of the results. DGRADE

1and also somewhat increased space complexity for DGRADE.
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uses a novel approach to estimate the “density gradient” at all data points, and is able
to automatically identify all the distinct dense regions in the data, thus allowing an au-
tomatic estimation of the best k. For many problems such as clustering gene-expression
datasets, the more expensive time complexity of the seeding method is acceptable as it
results in substantial improvement in the quality of results. Furthermore, the determin-
istic nature of the seeded results is also a desirable property when using clustering for
discovering biochemical pathways, since the pathways within a biological organism that
we are attempting to discover are well-defined 2, albeit often unknown (hence the need
for clustering).

6. As a faster alternative to seeding, we present an extension to BBC called Pressurization
that substantially improves the quality of the local search and overcomes the problem of
local minima, while keeping the time and space complexity at O(nd). This is especially
important for very large problems (e.g. clustering millions of customers in a market-
basket dataset) where the deterministic seeding approach is too slow to apply against the
full dataset. In empirical evaluations, Pressurization gives results that are very robust to
initialization and have very small variations in quality over multiple trials.

7. We develop a generative model consisting of a mixture of k exponentials and a uniform
“background” distribution that leads to several insights into the problem of finding dense
clusters using Bregman divergences. We show that BBOCC-S falls out as a “hard” ver-
sion of a mixture of one uniform distribution and an exponential component, and that
BBC-S is a “hard” version of the mixture of k exponentials and one uniform distribu-
tion 3. Another subtle relationship that falls out from our framework is that the unified
framework of hard and soft (exhaustive) clustering methods presented in Bregman Clus-
tering [BMDG05], a generalization of K-Means and mixture modeling, can be viewed as
a degenerate case of our method that is obtained when the size (or the weight for the soft
model) of the don’t care set is zero.

8. Empirical studies are presented on a variety of datasets showing the effectiveness of our
framework on low, medium and very high-dimensional problems, as compared to Bregman
Clustering, Single Link Agglomerative and DBSCAN.

A brief word on notation: bold faced variables, e.g. x, represent vectors whose ith element
are accessed as either xi or x(i). Sets are represented by calligraphic upper-case alphabets such
as X and are enumerated as {xi}ni=1 where xi are the individual elements. |X | represents the
size of set X . Capital letters such as X are random variables. R and R

d represent the domain
of real numbers and a d-dimensional vector space respectively. Bold-faced capital letters such
as MD represent a two-dimensional matrix.

2The relationships between genes only change/evolve (with a few rare exceptions) over evolutionary time-
scales.

3This relationship was mentioned in passing by [CC04] for the Square Euclidean case for OC-IB, but we
present formal derivations for Bregman divergences and generalization to the k class case.
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2 Background

We now describe some key concepts and related work that will be important in describing our
methods.

2.1 Partitional clustering using Bregman Divergences

Bregman Divergences: Bregman divergences form a family of distance measures, defined as
follows: Let φ : S 7→ R be a strictly convex function defined on a convex set S ⊆ R

d, such that φ
is differentiable on int(S), the interior of S. The Bregman divergence Dφ : S×int(S) 7→ [0, inf)
is defined as:

Dφ(x,y) = φ(x) − φ(y) − (x − y,▽φ(y)), (1)

where ▽φ is the gradient of φ.

For example, for φ(x) =‖ x ‖2, Dφ(x,y) =‖ x − y ‖2, which is the Squared Euclidean
Distance. Similarly, other forms of φ lead to other popular divergences such as Logistic
Loss, Itakura-Saito Distance, Hinge Loss, Mahalanobis Distance and KL Divergence [PPL01,
BMDG05].

Bregman Information: An important property of all Bregman divergences is as follows:

Theorem 2.1. [BMDG05]: Let X be a random variable taking values in X = {xi}ni=1 ⊂
C ⊆ R

d following ν 4. Given a Bregman divergence Dφ : C × int(C) 7→ [0, inf), the problem

min
c∈C

Eν [Dφ(X, c)]

has a unique minimizer given by c∗ = µ = Eν [X].

Banerjee et al. [BMDG05] refer to the corresponding minimum Eν [Dφ(X, c
∗)] as the Breg-

man Information of X. Both variance and mutual information are special cases of Bregman
Information.

Bregman Hard Clustering: Banerjee et al. [BMDG05] describe a partitional clustering
algorithm called Bregman Hard Clustering that exploits Theorem 2.1. Starting with a random
initialization of k centers Bregman Hard Clustering repeats the following until convergence to a
local minima: (1) assign each point to the closest center, as measured by the particular choice
of Dφ, and (2) update the centers as the mean of points within each cluster. When Dφ is
Squared Euclidean distance, Bregman Hard Clustering reduces to the K-Means algorithm, so
one could view K-Means as a special case of Bregman Hard Clustering. A visible achievement
of [BMDG05] was to show that a K-Means type algorithm exists for any Bregman divergence.
However, a subtle but perhaps more consequential property of Bregman Hard Clustering is that
different choices of Dφ result in clustering algorithms that are appropriate for very different
types of datasets and problems; many of the special forms had been proposed, proven and
applied as independent algorithms, such as the celebrated Linde-Buzo-Gray algorithm [LBG80,
BGGM80], before Bregman Hard Clustering was formulated.

4Theorem 2.1 is more general in that it holds for any measure ν defined on the samples. Unless stated
explicitly otherwise, we assume all points to have the same weight.
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2.2 Density-based: Clustering a subset of data into multiple dense clusters

A variety of density-based methods have been developed that use different notions of “lo-
cal” density to cluster only a part of the data and to prune the rest. For example, in DB-
SCAN [EKSX96], given a point that has at least MinPts points enclosed by a hypersphere of
radius ǫ centered at the point, all points within the ǫ sphere are assigned to the same cluster.
DBSCAN has the ability to find arbitrary shaped clusters, which is useful in certain prob-
lems. However, different choices for ǫ and MinPts can give dramatically different clusterings.
OPTICS [ABKS99] proposed a visualization to make it easier to select these two parame-
ters. DBSCAN is computationally efficient only for low-d spatial data where efficient indexing
schemes are available, and is therefore popular in the database community for indexing 2-d and
3-d images.

DHC [JPZ03] is perhaps the first published work on applying density-based clustering to
biological data. It proposes a density-based hierarchical clustering algorithm for time-series
data. DHC provides a hierarchical grouping of time-series data that can be used to visually
browse similar genes. The cluster hierarchy built by DHC uses the heuristic of attraction that
assumes the data is uniformly distributed in a d-dimensional space. However, points in many
real-life high dimensional datasets tend to reside in much lower dimensional manifolds [TdSL00]
within the embedded space.

2.3 Finding a single dense region as a One Class

One Class Clustering: In One Class Clustering, also known as One Class Classification, the
goal is to find a single, relevant subset of the data. One Class Classification algorithms are
well-suited for problems where the space is well-sampled for the known positive classes, but the
negative class is hard to characterize or sample. For example, if the goal is granting access to
users of a facility based on a fingerprint identification system, the negative class can comprise
of all the people on Earth not belonging to the set of people granted access to a facility. In
such situations, it is more appropriate to characterize each target class separately rather than
learning a k-class classifier. One way to characterize each class separately is by using a One
Class Classifier.

OC-IB: Earlier approaches to One Class Classification [TD99, SBV95, SPST+01] used convex
cost functions that are good for finding large-scale structures, or correspondingly, for finding
a small number of outliers. However, [CC04] showed that such methods are not appropriate
when we want to find distinct dense regions covering only a small fraction of the data. For
example, suppose the data is generated by two low-variance Gaussians and a larger variance
background. On such data, One Class SVM based methods end up finding a solution centered
in between the two Gaussians. Instead, [CC04] proposed a One Class Clustering algorithm
called One Class-Information Bottleneck (OC-IB) that finds a Bregmanian ball centered on
one of the two low-variance Gaussians.

Formally, a Bregmanian ball Bφ(r, c) with radius r and centroid c defines a volume in R
d

such that all points x where Dφ(x, c) ≤ r are enclosed by the ball. Furthermore, given a set
X = {xi}ni=1 of n points in R

d , the cost of the ball is defined as the average Dφ(x, c) of all
points pi ∈ G ⊆ X enclosed by it:
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Qone(G, c) =
1

|G|

|G|
∑

i=1

D(pi ∈ G, c), (2)

OC-IB attempts to find the most number of enclosing points for some given cost threshold
qmax, where the cost of the ball is defined by equation 2. OC-IB uses an Information Bottleneck
approach described by [Slo02] to formulate the optimization problem. OC-IB takes a cost
threshold qmax as input and starts with some seed location in X as the initial centroid c
of the Bregmanian ball. Then, it uses a randomized iterative relocation algorithm to find a
new centroid that encloses a progressively “denser” Bregmanian ball. More specifically, each
iteration of OC-IB involves the following steps: (1) Randomly permute all the n data points.
(2) For each of the n data points in the randomly permuted order do the following: if the point
is not in G, then add it to G if adding it keeps Qone < qmax, else if the point is already in G,
remove it from G if before removing Qone >= qmax. After each addition or deletion of a point,
the Bregmanian ball centroid is re-estimated as the mean of the current member points and
corresponding Qone is updated in an efficient manner (see Appendix A for more detail). Steps
(1) and (2) are repeated until convergence.

2.4 Clustering a subset of data into multiple overlapping clusters

In the context of clustering microarray data, discovering overlapping gene clusters is popular
since many genes participate in multiple biological processes. Gene Shaving [Has00] uses PCA
to find a small subset of genes that show strong expression change compared to the control
sample, and allows them to be in multiple clusters. As we mentioned earlier, since only a small
fraction of the genes are relevant for clustering in a given dataset, the ability of Gene Shaving
to prune a large fraction of genes is particularly attractive. However, Gene Shaving greedily
extracts one cluster at a time, and is computationally very expensive (≥ O(n3)). Other greedy
methods such as Plaid [LO02] decompose treat the original data X as a matrix, and decompose
it into a set of sub-matrices that when added together reconstruct X . This allows Plaid to also
find overlapping clusters. However, matrix approximation methods for gene-expression datasets
have only had partial success, in large part due to the highly unbalanced nature of the matrix;
there are typically to the order of 102 experiments while there are to the order of 104 genes. A
critical issue therefore continues to be the ability to select a small number of highly relevant
genes for clustering, while selecting all the experiments as relevant.

3 Batch Ball One Class Clustering (BBOCC)

For the problem of finding a single dense region, OC-IB overcomes several limitations of tradi-
tional density-based clustering including: (1) being applicable to all Bregman divergences, (2)
scalable to large datasets, with each iteration having O(nd) space and time complexity, and (3)
scalable to very high-dimensional datasets. However, one problem with OC-IB is its inability
to control the size 5 of the cluster; because of problems with local minima, for a fixed qmax
as input, each trial of OC-IB starting from a different seed location can result in a different

5In this paper, the size of a cluster denotes the number of data-points in that cluster.
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and quite unpredictable cluster size and quality. Moreover, for some applications, the ability
to control what fraction of data would form the dense cluster is important.

There are two possible problem formulations corresponding the cost function Qone (Equa-
tion 2) used by OC-IB:

Problem definition 1: Find the largest cluster G ⊂ X with cost Qone ≤ qmax.

and,

Problem definition 2: Find a cluster G ⊂ X of size s that has the smallest cost.

OC-IB corresponds to problem definition 1. However, problem definitions 1 and 2 are dual
of each other, since for a given qmax there exists a largest s, and for a given s there exists a
smallest qmax. The main difference from a user’s point of view is that an algorithm based on
definition 1 takes an integer s as input and searches for a solution with the smallest cost, while
in definition 2, it takes a threshold qmax ∈ R as input and searches for a cluster with the largest
size with cost less than qmax.

3.1 BBOCC-Q

OC-IB uses a randomized algorithm to find a local minima for problem definition 1; points are
randomly added or discarded until convergence while constantly updating the cluster repre-
sentative after each addition/deletion. Alternatively, a “batch update” local search algorithm
can also be developed where points are added and discarded in batches. We start with the
observation:

Proposition 3.1. For a given centroid c and a threshold qmax, the largest cluster G with cost
Qone(G, c) < qmax consists of the points closest to c.

Batch Ball One Class Clustering-Q (BBOCC-Q, Algorithm 1), utilizes the same set of
inputs as OC-IB; a Bregman divergence Dφ, a seed start location c and a cost threshold qmax.
Then, it iterates through the following steps until convergence: (1) sort X by distance from c
(lines 9-10), (2) add points closest to c to an empty set G until adding more would cause cost
to exceed qmax (lines 12-17), and (3) update c as the mean of all the points in G (line 18).

Proposition 3.2. Algorithm 1 is guaranteed to converge to a local optima.

For the sake of completeness, we have included the proofs for Propositions 3.1 and 3.2 in
Appendix B.

If heap-sort is used at line 10 of Algorithm 1 and when clusters found are smaller than
n/ log(n), the resulting time complexity of BBOCC-Q is O(nd), same as OC-IB. In our empirical
comparisons however, we found that OC-IB takes lesser number of iterations to converge (Figure
6, (c)). However, with an O(max(nd, n log(n))) time complexity per iteration in general for
large cluster sizes, and a space complexity ofO(nd), BBOCC-Q is still quite fast and scalable
to very large datasets.
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Algorithm 1 BBOCC-Q

Input: Data points X = {x}ni=1 in R
d, Bregman divergence Dφ, initial cluster centroid cin (optional),

desired cost threshold qmax.
Output: Solution set G containing member points, and the corresponding cluster centroid c∗.

if cin = ∅ then
Pick randomly a point from X and assign it to cin

5: end if
c = cin;Gl = ∅;G = ∅; sp = ∞; sq = ∞;
repeat

cp = c; spp = sp; sp = sq;Gl = G
distAll = {Dφ(xi, c)}ni=1

10: [val, idx] = sort(distAll)
Gt = ∅; qt = 0; st = 0;
while (qt < qmax) do
q = qt;G = Gt; sq = st
st = st + 1

15: qt = (qt(st − 1) + val(st))/st
Gt = Gt ∪ xidx(st)

end while
c = 1

|G|

∑|G|
i=1 xidx(i)

until (Gl == G) ∧ (spp == sq)
20: c∗ = c

3.2 BBOCC-S

We now propose an alternative to BBOCC-Q that uses the dual problem definition (definition
2) where the input is a fixed cluster size s, instead of qmax. We begin with a property similar
to Proposition 3.1 that also holds true:

Proposition 3.3. For a given centroid c and cluster size s the cluster G with the smallest cost
Qone(G, c) consists of the s points closest to c.

This follows from the observation that for any given s < n, the subset P of size s picked
from a set Q of n real numbers having the smallest possible average value consists of the s
smallest numbers in Q. We can now modify Algorithm 1 by using Proposition 3.3 instead
of 3.1 for selecting points around a given centroid in each iteration, and obtain BBOCC-S.
Algorithm 2 requires a Bregman divergence Dφ, a seed start location c and the desired cluster
size s as input (instead of a cost threshold). Then, it iterates through the following steps until
convergence: (1) sort X by distance from c (lines 9 to 10), (2) form G as the set of s closest
points to c (line 11), and (3) update c as the mean of all the points in G (line 12).

Proposition 3.4. Algorithm 2 is guaranteed to converge to a local optima.

The proof for the convergence of BBOCC-S is similar to that of BBOCC-Q, and comes from
the observation that in each iteration the cost declines monotonically; after the center update
(line 12, Algorithm 2), the cost declines monotonically because of Theorem 2.1, and after the
reassignment (line 11) the cost declines because of Proposition 3.3.

The time and space complexity of BBOCC-S is similar to that of BBOCC-Q, withO(max(nd, s log(n)))
time-complexity for each iteration (when a heap sort is used at line 10 in Algorithm 2) and
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Algorithm 2 BBOCC-S

Input: Data points X = {x}ni=1 in R
d, Bregman divergence Dφ, initial cluster centroid cin (optional),

desired cluster size s.
Output: Solution set G containing s member points, and the corresponding cluster centroid c∗.

if cin = ∅ then
Pick randomly a point from X and assign it to cin

5: end if
c = cin;Gl = ∅;G = ∅; qp = ∞; q = ∞;
repeat

cp = c; qpp = qp; qp = q;Gl = G
distAll = {Dφ(xi, c)}ni=1

10: [val, idx] = sort(distAll)
G = {xidx(i)}si=1

c = 1/s
∑s

i=1 xidx(i)
q = Qone(G, c) (from Equation 2)

until (Gl == G) ∧ (qpp == q)
15: c∗ = c

a space complexity of O(nd). BBOCC-S contains two “enhancements” over OC-IB: (1) the
randomized updates are replaced by a batch update, and (2) the Bregmanian ball has a fixed
size rather than a cost in each iteration. BBOCC-Q can be considered as an algorithm with
only the first enhancement over OC-IB, i.e. the batch update.

Enhancement (1), i.e. the batch update, also makes BBOCC faster than OC-IB with
certain types of distance measures (see Note 2, Appendix A). Enhancement (2), i.e. the ability
to control the size of the resultant cluster also provides BBOCC-S a major usability advantage
over BBOCC-Q. However, we present empirical evidence in the Section 11.3 that BBOCC-S
also significantly outperforms OC-IB in terms of the quality of the local minima, and that both
these enhancements contribute to the improvement.

4 Bregman Bubble Clustering

Although the BBOCC-S algorithm proposed in the previous section provides some key advan-
tages over OC-IB, while inheriting all the other desirable traits 6, it can only find one dense
region. However, in many clustering problems, the useful subset consists of multiple dense
regions. One way to discover multiple clusters using BBOCC would be to apply it sequentially
to extract the clusters one by one. However, a more direct approach would be an algorithm
that can simultaneously find multiple, i.e. k > 1 dense regions, but preserves all the desirable
properties of BBOCC. In this section we present a straightforward generalization of BBOCC
that has such properties. First, the notion of a single dense Bregmanian ball is extended to the
idea of multiple dense regions called Bregman Bubbles. We then present an algorithm called
Bregman Bubble Clustering or BBC, that can find k dense Bregman bubbles using a local search
approach. BBC gives rise to BBOCC-Q and BBOCC-S as special cases when k = 1.

6such as scalability to large and high dimensional datasets, and applicability to all Bregman divergences.

9



4.1 Cost Function

Let X = {x}ni=1 ⊂ C ⊆ R
d be the set of data points. Let G ⊂ X represent a non-exhaustive

clustering consisting of k clusters {Cj}kj=1 with X \G points that are “don’t care”, i.e., they do
not belong to any cluster. For a given Bregman Divergence Dφ(x,y) 7→ [0,∞), and a set of k
cluster representatives {cj}kj=1 ∈ R

d for the k clusters in clustering G = {Cj}kj=1, we define the
cost Qb as the average distance of all points in G from their assigned cluster representative:

Qb(G, {cj}kj=1) =
1

|G|

k
∑

j=1

|Cj |
∑

i:xi∈Cj

Dφ(xi, cj), (3)

4.2 Problem Definition

Given s, k and Dφ as inputs, where s out of n points from X are to be clustered into a clus-
tering G ⊆ X consisting of k clusters, where 1 ≤ k < n and k ≤ s ≤ n, we define the clustering
problem as:

Problem Definition 3: Find the clustering G with smallest cost Qb such that |G| = s.

4.3 Bregman Bubbles

(a) (b)

Figure 1: An illustration showing (a) three Bregman bubbles, and (b) a Bregmanian ball (solid
line), and two other possible balls (dotted lines). The union of the points enclosed by the three
possible balls in (b) is the same as the set of points enclosed by the three bubbles.

Given a set of k cluster representatives, and a fixed s, it can be shown that the clustering
that minimizes Q consists of: (1) the assignment phase, where each point is assigned to the
nearest cluster representative, and (2) picking points closest to their representatives first until s
points are picked. Let rmax represent the distance of the last (sth) picked point from its cluster
representative.

These clusters can be viewed as k Bregman bubbles such that: (1) they are either pure
Bregmanian balls of radius r ≤ rmax or are (2) touching bubbles that form when two or
more Bregmanian balls, each of radius rmax overlap. Two Bregmanian balls Bφ(c1, r1) and
Bφ(c2, r2) are said to overlap when ∃x : (Dφ(x, c1) < r1) ∧ (Dφ(x, c2) < r2). At the point of
contact, the touching bubbles form linear boundaries7 that result from assigning points to the

7This can be shown to be true for all Bregman divergences [BMDG05].
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closest cluster representative. For the part of its boundary where a bubble does not touch any
other bubble, it traces the contour of a Bregmanian ball of radius rmax. Therefore, bubbles
arise naturally as the optimum solution for Q for a given s, k and Dφ.

Figure 1 illustrates a 2-D example of Bregman bubbles vs. balls. Unlike Bregmanian balls,
the boundary of the Bregman bubbles can only be defined in the context of other bubbles
touching it. It is important to note that the volume of the convex hull of points in one bubble
could be smaller than that of the adjacent touching bubble, and the bubbles could also have
different number of points assigned to them.

4.4 BBC-S: Bregman Bubble Clustering with fixed clustering size

For most real life problems, even for a small s, finding the globally optimal solution for problem
definition 1 would be too slow. However, a fast iterative relocation algorithm that guarantees a
local minima exists. Bregman Bubble Clustering-S (BBC-S, Algorithm 3) starts with k centers
and a size s as input. Conceptually, it consists of three stages: (1) the assignment phase, where
each point is assigned to the nearest cluster representative, (2) picking points closest to their
representatives first until s points are picked, and (3) updating the centers. It is interesting to
note that stages 1 and 3 of BBC-S are identical to the Assignment Step and the Re-estimation
step of the Bregman Hard Clustering (Section 2.1), properties that lead to the unification
described in Section 7. Stages 1, 2 and 3 are repeated until there is no change in assignment
between two iterations - i.e. the algorithm converges. Algorithm 3 describes a more detailed
implementation of BBC-S where line number 10 represents Stage 1, lines 14 to 18 map to Stage
2, while lines 22-24 represent Stage 3. We randomly pick k data points from X as the starting
cluster representatives, but alternative initialization schemes could be implemented.

Proposition 4.1. Algorithm 3 is guaranteed to converge to a local minima for all Bregman
divergences.

This follows from the observation that at each iteration the cost Qb either declines or stays
the same. It is easy to show that for a given set of cluster representatives, Stage 1 and 2 result
in assignments with the lowest possible cost. Therefore, after Stage 1 and 2, the cost cannot
increase but can decrease. If no cluster assignments change in Stage 1 and 2, the cost stays the
same and the algorithm converges. Similarly the cost Qb at Stage 3 can either decline or stay
the same because of Theorem 2.1. Using heap-sort at line 12 of Algorithm 3, each iteration of
BBC-S takes O(max(nkd, s log(n))) time making it really fast.

4.5 BBC-Q, dual formulation of Bregman Bubble Clustering with fixed cost

Just as BBOCC-Q is the dual of BBOCC-S, an alternative formulation of the Bregman Bubble
Clustering called BBC-Q is possible where a threshold cost qmax is specified as input rather
than the size s. Given qmax, k and Dφ as inputs:

Problem Definition 4: Find the largest G with cost Qb ≤ qmax.

We can show that this definition also results in Bregman bubbles as the optimal solution for
a set of k cluster representatives. Definitions 3 and 4 are equivalent, since for a given qmax there
exists a largest s for k bubbles, and for the same s, the same solution has the same smallest
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Algorithm 3 BBC-S

Input: Set X = {x}ni=1 ⊂ C ⊆ R
d, Bregman divergence Dφ, no. of clusters k, desired clustering size

s.
Output: Partitioning G∗ containing k clusters{Cj}kj=1, and the corresponding k cluster representatives

{c∗j }kj=1.
Method:

if {cj}kj=1 = ∅ then

5: Initialize cluster representatives: {cj}kj=1 ∈ C
end if
Gl = ∅;G = ∅; q = ∞; qp = ∞;
repeat

for i = 1 to n do
10: [dmini , labi] = minkj=1(Dφ(xi, cj))

end for
[val, idx] = sort(dmin)
qtmp = 0; sc = 0; {Cj}kj=1 = ∅

while (sc < s) do
15: sc = sc + 1;

qtmp = qtmp + val(sc)
Add xidx(sc) to cluster Clab(idx(sc))

end while
{cp

j }kj=1= {cj}kj=1

20: qpp = q; qp = q; q = qtmp/s
Gl = G;G = {Cj}kj=1

for j = 1 to k do

cj = 1
|Cj |

∑|Cj |
i:xi∈Cj

xi
end for

25: until (Gl == G) ∧ qpp == q
Return {c∗j }kj=1 = {cj}kj=1;G∗ = G

possible cost qmax. Algorithm 3 can be easily modified to work with qmax by modifying Stage
(2) to stop adding points when the cost is more than qmax.

Proposition 4.2. BBC-Q is guaranteed to converge to a local minima for all Bregman diver-
gences.

The proof for the above follows along similar lines as that for Proposition 4.1. It can also
be shown that BBC-S and BBC-Q reduce to BBOCC-S and BBOCC-Q respectively when
k = 1 (Section 7). BBC-S has the same type of advantage over BBC-Q that BBOCC-S has
over BBOCC-Q; while bubbles in BBC-S iterations in sparse regions expand until s points are
covered, BBC-Q has a fixed qmax and does not have this property. We show later (Figure
7, Section 11.3) that this difference results in BBOCC-S performing better than BBOCC-Q
when measured in terms of the intrinsic cost Qone. Similarly, as one might expect, BBC-S also
gives better results than BBC-S in terms of Qb, and it is not possible to control the number of
points that get assigned to clusters in BBC-Q. For brevity, we do not repeat these comparisons
between BBC-Q and BBC-S as they are analogous to that between BBOCC-Q and BBOCC-
S, the special cases (for k = 1) of BBC-Q and BBC-S respectively. Unless stated explicitly
otherwise, the discussion on Bregman Bubble Clustering in the rest of the paper is restricted
to BBC-S, i.e. BBC with a fixed s as input.
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5 Soft Bregman Bubble Clustering (Soft BBC)

5.1 Bregman Soft Clustering

In hard clustering, each point is assigned to one cluster. In soft clustering, each point can be a
“partial” member of all of the clusters. If the total assignment weights for a given point over all
clusters is normalized to 1, we can interpret the soft assignments as probabilities. One popular
way to model such probabilistic assignments is to assume that the set of observed points come
from a mixture of k distributions whose parameters are estimated based on the observed data.
Once the parameters are estimated, the probabilistic membership of each point to each of the
clusters can be computed. Banerjee et al. [BMDG05] proposed a soft clustering algorithm
called Bregman Soft Clustering as a mixture model consisting of k distributions, taken from
the family of regular exponential distributions. They went on to prove the following important
result:

Theorem 5.1. There is a bijection between regular exponential families and regular Bregman
divergences.

This bijection is expressed by:

p(ψ,θ)(xs) = exp(−βDφ(xs, µ))fφ(xs) (4)

where φ is a convex function, and the conjugate function of ψ, Dφ is the corresponding Bregman
divergence, p(ψ,θ) is the corresponding regular exponential distribution with cumulant ψ, fφ is
a uniquely determined normalizing function that depends on the choice of φ, β is a scaling
factor, µ is the expectation parameter, θ are the natural parameters of pφ, and xs is the
sufficient statistics vector corresponding to x. For the sake of notational simplicity, for the
rest of the paper, unless stated explicitly otherwise, when we mention x we implicitly refer to
the sufficient statistics of x, i.e. xs. The exact transformation of x to xs depends upon the
choice of the distribution p(ψ,θ) . For example, for the Squared Euclidean distance as Dφ, the
sufficient statistics space xs = x.

Regular Bregman divergences form a large class of divergences for which a correspond-
ing regular exponential distribution exists. Examples of regular Bregman divergences (and
the corresponding exponential distribution) that have been popular for both hard and soft
clustering models include squared Euclidean Distance (Gaussian distribution), KL-divergence
(multinomial distribution) and Itakura-Saito distance.

Banerjee et al. [BMDG05] not only showed a formal unification of the various hard parti-
tional clustering methods as special cases of Bregman hard clustering, and the corresponding
exponential distribution soft clustering models as special cases of Bregman soft clustering, but
went on to show that for all regular Bregman divergences, Bregman Hard Clustering falls
out as a special case of Bregman Soft Clustering. For example, for the Squared Euclidean
distance as Dφ, Bregman Hard Clustering maps to the standard K-Means algorithm, and
the corresponding Bregman Soft Clustering maps to a mixture of spherical Gaussians with
a fixed variance σ2, popularly known as soft K-Means, and µ maps to Gaussian mean a,
fφ(xs) = 1√

(2πσ2)d
, β = 1

2σ2 ,Dφ(xs, µ) = β||x−a||2, θ = a
σ2 , and ψ(θ) = σ2

2 ||θ||2. The soft

K-Means model reduces to K-Means when the variance σ2 of the k Gaussians is set to 0+ that
corresponds to β → ∞ in Equation 4.
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5.2 Motivations for developing Soft BBC

Bregman Bubble Clustering can be thought of as a non-exhaustive hard clustering where points
can belong to either one of the k clusters or to a “don’t care” group, while there is no such “don’t
care” grouping in Bregman Hard Clustering. The generative model for Bregman Soft Clustering
consists of a mixture of k regular exponential distributions of the form pφ corresponding to the
k clusters. Correspondingly, Soft Bregman Bubble Clustering (Soft BBC) can be formulated as
modeling the data as a mixture of k distributions from the exponential family and an additional
“background” distribution that corresponding to the “don’t care” points. Since we are trying to
find k dense clusters, for a good solution the “don’t care” group should be the least dense. One
way to model this low density background is with a uniform distribution. The goal of building
such a Soft BBC model is to give us deeper insights into the implicit modeling assumptions
behind BBC.

5.3 Generative Model

Let X = {xi}ni=1 be the dataset consisting of n i.i.d. points and k be the desired number of
clusters. We propose Soft BBC as a generative model containing k mixture components corre-
sponding to k dense clusters labeled 1 to k and one uniform background distribution labeled
0, where each data point is assumed to be generated by a unique but unknown component.
Let Y = {Yi}ni=1 be the hidden random variables corresponding to the mixture components
associated with the data points, where Yi can take one of k + 1 possible values from 0 to k.
In the absence of any other information, the distribution of Y only depends upon the priors.
Hence the model probability of the data points is given by:

p(xi) =
k

∑

j=1

αjp(ψ,θ)(xi|θj) + α0p0, [i]
n
1 (5)

where {αj}kj=1 and {p(ψ,θ)(·|θj)}kj=1 denote the priors and the conditional distributions of the
k clusters, while α0 and p0 denotes the prior probability and the probability density of the
uniform distribution. Since the data points are assumed to be i.i.d., the log-likelihood of the
observed data (or the incomplete log-likelihood) is given by:

L(Θ|X ) =

n
∑

i=1

log(

k
∑

j=1

αjp(ψ,θ)(xi|θj) + α0p0) (6)

where Θ denotes all the parameters (priors and mixture component parameters). Maximizing
the above data likelihood is a natural approach to fitting this generative model to the data.
However, it is non-trivial to directly optimize the likelihood function due to the presence of
mixture components.

5.4 Soft BBC EM Algorithm

Soft BBC (Algorithm 4) uses an EM [MK97, NH98] algorithm for mixture density esti-
mation using the hidden variables Y. For the observed information as the data-points X , the
hidden variables Y, the possible parameters over which we could try to maximize the likelihood
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Algorithm 4 Soft BBC

Input: Set X = {x}ni=1 ⊂ C ⊆ R
d, Bregman divergence Dφ, no. of clusters k, p0, specifying the

background distribution, α0 for Case B.
Output: Θ∗, local maximizer of L(Θ|X ) (equation 6) where Θ = {{θj, αj}kj=1, α0} for case (A) and

{θj, αj}kj=1 for case (B), soft partitioning {{p(Yi = j|xi)}kj=0}ni=1.
Method:

Initialize p0, {θj, αj}kj=1 with some 0 ≤ p0 < 1, θj ∈ C, αj ≥ 0, such that
∑k

j=0 αj = 1.
repeat
{The E Step}
for i = 1 to n do

for j = 0 to k do
p(Yi = j|xi) is computed from equation (8) and (9), where p(ψ,θ)(xi|θj) is defined by equation
4.

end for
end for
{The M Step}
for j = 0 to k do

Update αj using equation 11 for case A and 14 for case B.
Update θj using equation 13.

end for
until convergence

(Equation 6) are {αj}kj=0, {θj}kj=1 and p0, with the only constraint being that the priors should

sum to 1, i.e.
∑k

j=0 αj = 1.

Cannot optimize for p0: Since p0 is a uniform distribution by definition, 1/p0 defines the
volume of its domain. This domain should include the convex hull of X , which yields an upper
bound for p0. In Equation 6, keeping all other parameters constant, a lower value of p0 will
always result in a lower likelihood. For now, we only consider the case where p0 is set to a fixed
value.

Now, the only parameters we need to optimize over are the priors {αj}kj=0 and the expo-

nential mixture parameters {θj}kj=1. We consider two slightly different scenarios: (A) where α0

is a variable parameter, and (B) where α0 is a fixed value ≤ 1. To maximize the log-likelihood
function, we adopt a standard EM-based approach and first construct the negative free energy
function:

F (P̃ ,Θ) =

n
∑

i=1

Ep̃(Yi,xi)[log p(xi, Yi|Θ)] −
n

∑

i=1

Ep̃(Yi,xi)[log p(Yi|xi)]

where P̃ = {{p̃(Yi = j|xi)}ni=1}kj=1 are the current estimates of Y. It can be shown that the EM

procedure with the E and M steps alternately optimizing F (P̃ ,Θ) over P̃ and Θ is guaranteed
to converge to a local maxima P̃ ∗ and Θ∗. Furthermore, it can be shown that a local maxima
of F (P̃ ,Θ) leads to a local maxima on the original likelihood given by Equation 6. Hence we
will now focus on obtaining the updates involved in the E and M steps for the two cases.

Case (A): α0 is not fixed
E-Step: In this step we optimize F (P̃ ,Θ) (Equation 7) over P̃ under the constraints that
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the
∑k

j=0 p̃(Yi = j|xi) = 1, [i]n1 , and p̃(Yi = j|xi) ≥= 0,∀i, j. Using Lagrange multipliers
{λi}ni=1 for the n equality constraints and taking derivatives w.r.t. p̃(Yi = j|xi), we obtain the
update equation for re-estimating the probability of each point coming from any of the 0 to k
components, given the current model parameters:

log p(xi, Yi = j|Θ) − 1 − log p̃(Yi = j|xi) − λi = 0 (7)

where p(xi, Yi = j|Θ) is αjp(ψ,θ)(xi|θj) for 1 ≤ j ≤ k and α0p0 for j = 0. On eliminating the
Lagrange multipliers, we obtain:

p̃(Yi = j|xi)∗ =
αjp(ψ,θ)(xi|θj)

∑k
j=1 αjp(ψ,θ)(xi|θj) + α0p0

, 1 ≤ j ≤ k (8)

=
α0p0

∑k
j=1 αjp(ψ,θ)(xi|θj) + α0p0

, j = 0 (9)

M-Step: In this step we optimize F (P̃ ,Θ) over Θ under constraints
∑k

j=0 αj = 1 and
αj ≥ 0,∀j. It can be shown that the inequality constraints are not binding. Using Lagrange
multiplier ζ for the constraint and taking derivatives w.r.t. αj , [j]

k
0 , we obtain:

n
∑

i=1

p̃(Yi = j|xi)
αj

+ ζ = 0, [j]k0 (10)

and on eliminating ζ, we obtain:

α∗
j =

∑n
i=1 p̃(Yi = j|xi)

n
, [j]k0 (11)

Note that the update equation for the background distribution prior, α0, turns out to be
the same as that for the exponential mixture distributions α1 to αk. The optimal mixture
component parameter estimation can be obtained by setting derivatives over {θj}nj=1 to 0 as
follows:

n
∑

i=1

p̃(Yi = j|xi)∇θj
p(ψ,θ)(xi|θj) = 0 (12)

This results in the update equation for the exponential distribution mixtures {θ}kj=1 as the
weighted average of x [BMDG05]:

θj =

∑n
i=1 p(Yi = j|xi)xi

∑n
i=1 p(Yi = j|xi)

(13)

An example of re-estimation of mixture component parameters for Gaussians is described
in more detail in Section 8.

Case (B): α0 is fixed
E-Step: Since keeping α0 fixed does not result in any additional constraints, this step is

identical to that of case A.
M-Step: Keeping α0 constant modifies the constraints on the priors so that we now require

∑k
j=1 αj = 1−α0 and αj ≥ 0,∀j. As before, the inequality constraints are not binding and by

using a Lagrange multiplier and taking derivatives, we arrive at:
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α∗
j = (1 − α0)

∑n
i=1 p̃(Yi = j|xi)

∑k
j=1

∑n
i=1 p̃(Yi = j|xi)

(14)

The optimal mixture component parameters are obtained exactly as in case A.

5.5 Choosing an appropriate p0

For case (A) of the Soft BBC algorithm, one can argue that the parameter α0 is essentially a
function of p0 given by the relation (from the M step):

α0 =
1

n

n
∑

i=1

α0p0
∑k

j=1 αjp(ψ,θ)(xi|θj) + α0p0

(15)

Using this relation, for a given α0 and a set of mixture component parameters, it is possible
to solve for p0. But one cannot do this in the EM framework since the best value for p0 is
always the highest possible one. However this relationship allows us to calculate the value of
p0 for the initial seed parameters. Although an optimization routine can also be used, a fast
approximation of p0 can be estimated by (1) performing the first E step (Equations 8 and 9),
then (2) computing the pimax = maxkj=0(p(Yi = j|xi)) for each xi, and then (3) picking p0 as

the sth largest value in pimax[i]
n
1 where s = ⌈α0n⌉. In practice the following works better: (i)

Compute p0 = p1
0 using some initial {θj}kj=1 and {αj}kj=1 and run Soft BBC to convergence to

obtain {θ1
j}kj=1 and {α1

j}kj=1, and then (ii) recompute p0 using {θ1
j}kj=1 and {α1

j}kj=1 from Step
(i) and run Soft BBC a second time to convergence with this new p0.

6 Improving local search: Pressurization

6.1 Motivation

In Section 3.2, we theorized that BBOCC-S performs better than BBOCC-Q because of the
ability of the Bregmanian ball in BBOCC-S to expand to cover s points in each iteration, and
then shrink as the ball moves to a denser region. In contrast, BBOCC-Q uses a fixed cost
qmax, which causes problems in sparse regions; very few points get enclosed in the ball causing
premature convergence. BBC-S shows a similar advantage over BBC-Q, since the number of
points assigned to k clusters in BBC-S remains constant.

BBC is able to find locally dense regions because of its ability to explicitly ignore large
amounts of data by considering only points close to the cluster representatives for cluster mem-
bership. During each iteration, the bubble representatives move to a better nearby location.
But when the dense bubbles are naturally small, i.e. threshold s is small, only a few close
neighbors get assigned, thereby decreasing the mobility of the representatives at each iteration.
Although BBC-S and BBOCC-S “expand” the bubbles in sparse regions, this effect is still
limited for very small values of s. This makes it difficult for even BBC-S or BBOCC-S to find
small, dense regions far from the initial seed locations. On the other hand, starting with a large
s would be contrary to the goal of finding small dense regions. Is there a way to improve the
quality of the local search while still discovering clusters encompassing only a small number of
points?
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6.2 BBC-Press

We first introduce a concept called Bregman bubble pressure that has properties analogous to
that of pressure around air bubbles in a body of water on Earth; when air-bubbles rise in a
column of water, the outside pressure drops, and the bubbles expand. In the case of BBC-S,
we define this external pressure to be inversely proportional to the input threshold s; a larger
threshold corresponds to a smaller external pressure, leading to larger bubbles.

We now propose an algorithmic enhancement to BBC-S that we call Pressurization that
is designed to improve upon the quality of the local minima discovered. We start the first
iteration of BBC-S with a small enough pressure to cause all points to be assigned to some
cluster, and slowly increase the pressure after each iteration. An additional parameter γ ∈ [0, 1)
that controls the rate of pressure increase is used as an exponential decay parameter, and
sj = s + ⌊(n − s)γj−1⌋ is used instead of s for the jth iteration. Convergence is tested only
after (n − s)γj−1 < 1. A slower but more robust alternative involves running BBC-S to full
convergence after each recomputation of s, but in practice only yields slightly better or similar
quality results. Pressurization can similarly be implemented for the alternate formulation
BBC-Q, by varying the fixed cost qmax.

6.3 Soft BBC-Press

The Pressurization scheme can also be extended to Soft BBC for Case B when α0 is not
updated. When α0 and p0 are large (close to 1), only a small amount of data is “explained” by
the k exponential mixtures. This may lead to bad local minima problems similar to (although
less severe than) the one faced in BBC. Therefore, we propose a soft version of Pressurization
that takes a decay parameter τ ∈ [0, 1) and runs Soft BBC (Case B) multiple times as follows:
(1) start with some initial model parameters {θ1

j}kj=1 and run Soft BBC to convergence. (2) at

trial r set α0 to αr = α0(1 − τ r−1), and for r > 1 set current model parameters to the output
of last trial: {θrj}kj=1 = {θr−1

j }kj=1. Repeat step (2) until αr − α0 is smaller than ǫ, and then
perform a final run with αr = α0.

6.4 Pressurization vs. Deterministic Annealing

Although our concept of Pressurization conceptually resembles the approach of deterministic
annealing [UN98], they are not the same. For example, deterministic annealing in a Gaussian
mixture modeling setting would involve gradually reducing the variance term σ2 (Equation 19),
whereas Soft Pressurization involves gradually increasing the probability mass α0 (Equation
5) of the uniform background distribution. For the Gaussian setting where the variance is an
updatable parameter (Section 8.2), it may even be possible to combine deterministic annealing
with Pressurization. However, it is not clear if the concepts of deterministic annealing and
Pressurization share any common theoretical foundation, for exponential distributions in gen-
eral, or even just for the Gaussian distribution; it would be an interesting problem to explore
such a connection. A notable property of Pressurization is that it works on both hard and Soft
BBC, whereas deterministic annealing is only applicable in a soft setting. This has great signif-
icance for practical applications for large high dimensional datasets; a deterministic annealing
approach for improving local search would require us to use Soft BBC which contains expo-
nential mixtures, and exponential mixtures are generally hard to compute on high-dimensional
datasets because of rounding errors.
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7 A unified framework

7.1 Unifying Soft BBC & Bregman Soft Clustering

At first glance, the E and M steps of Soft BBC for case (A) and (B) resemble those of Bregman
Soft Clustering [BMDG05]; the M step in (A) is identical to the M step of Bregman Soft
Clustering, while that of (B) has an extra rescaling (Equation 14). The E step of Soft BBC
has an extra update equation for the uniform background distribution (Equation 9). More
specifically, we can show that:

Proposition 7.1. Soft BBC8 becomes identical to Bregman Soft Clustering when p0 = 0.

Proof. When p0 is set to 0, we note that: (1) Equation 9 becomes inconsequential making the
E step of Soft BBC identical to that of Bregman Soft Clustering, (2) the M step of case (B) for
Soft BBC becomes the same as the M step of (A) since the denominator becomes n, and the
M step of (A) is identical to that of Bregman Soft Clustering, and (3) the contribution of the
uniform distribution to the objective function(Equations 6 and 7) vanishes making it identical
to the objective function for Bregman Soft Clustering.

7.2 Unifying Soft Bregman Bubble & Bregman Bubble Clustering

We are now ready to look at how the generative model Soft BBC relates to the BBC problem,
specifically the formulation where the number of points classified into the k real clusters (ex-
cluding the “don’t-care” cluster) is fixed (Definition 3, Section 4.1), and show the following:

Proposition 7.2. BBC optimizes a lower bound on the log-likelihood objective function of Soft
BBC.

Proof. Let us consider the cost function:

L2(Θ|X ) =
n

∑

i=1

Ep†(Yi=j|xi,Θ)[log p(xi, Yi = j|θj)] (16)

where p†(Yi = j|xi,Θ) = 1 for j = argmax
0≤j≤k

p(xi, Yi = j|θj) and 0 otherwise, which is essentially

equivalent to the posterior class probabilities based on the hard assignments used in BBC. It
can be shown [KMN97] that for a fixed set of mixture parameters Θ = {θ}kj=1, and L(Θ|X )
being the log-likelihood objective of Soft BBC(Equation 6):

L2(Θ|X ) ≤ L(Θ|X ) (17)

This result is independent of the choice of priors {αj}kj=0. Note that while L(·) depends
upon the priors while L2(·) does not. For our choice of mixture components, based on Equations
4 and 17, one can readily obtain the following form for L2(·):

8For both cases A and B.
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L2(Θ|X ) =

k
∑

j=1

k
∑

∀Yi=j

log pφ(xi) − (18)

βDφ(xi, θj) +
∑

∀Yi=0

log(p0)[i]
n
i=1

If the number of points assigned to the uniform distribution is fixed to n − s, s points are
assigned to the k exponential distributions, and p0 and β are fixed, we can see from Equation
18 that:

Proposition 7.3. Maximizing L2(Θ|X ) is identical to minimizing the BBC objective function
Qb (Equation 3).

From Proposition 7.3 and Equation 17 we have the proof for Proposition 7.2.

Proposition 7.4. BBC with a fixed s as input (Definition 3, Section 4.1) is a special case of
Soft BBC with fixed α0.

Proof. Let us consider an extreme case when β → ∞ for Soft BBC (see Equation 6 and
4). Then the class posterior probabilities in Soft BBC converge to hard assignment (BBC)
ensuring that L(Θ|X ) = L2(Θ|X ) in Equation 18. Since BBC is equivalent to optimizing
L2(Θ|X ) (Proposition 7.3), we can also view BBC with fixed s (Definition 3) as input as a
special case of Soft BBC with fixed α0.

7.3 Unification of Bregman Bubble Clustering with BBOCC & Bregman
Hard Clustering

For k = 1, the cost function Qb (Equation 3) used in Bregman Bubble clustering becomes
identical to Qone (Equation 2). Furthermore, for k = 1, BBC-S and BBC-Q become identical
to BBOCC-S and BBOCC-Q respectively.

Proposition 7.5. Bregman Bubble Clustering becomes Batch Ball One Class Clustering when
k=1

The defining characteristic of BBC is its ability to find small, dense regions by modeling a
small subset of the data. However, when we force BBC to cluster all the data points by setting
s = n in BBC-S, or qmax = ∞ in BBC-Q, Stage 2 of BBC becomes inconsequential, and it
degenerates into the Bregman Hard Clustering algorithm, the generalization of K-Means to
Bregman divergences:

Proposition 7.6. Bregman Bubble Clustering becomes Bregman Hard Clustering [BMDG05]
when qmax = ∞ (for BBC-Q) or when s = n (for BBC-S).

Proposition 7.7. BBC is a special case of BBC-Press when γ = 0.

When γ = 0, BBC-Press reduces to BBC as the modifications to the input qmax and
s become inconsequential. Furthermore, if we think of BBC as a search under “constant
pressure”, then for Bregman Hard Clustering this pressure is zero.
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(a) (b)

Figure 2: Unification of various algorithms for a given Bregman divergence Dφ: (a) BBC,
BBOCC and Bregman Hard Clustering are all special cases of BBC-Press and are obtained by
fixing specific input parameters. (b) Bregman Hard and Soft Clustering, BBC-S, BBOCC-S
and a ”soft” BBOCC consisting of a mixture of one exponential and a uniform background are
all special cases of Soft BBC and are obtained from specific combinations of (i) whether β → ∞
or not, (ii) whether the background distributions weight α0 is 0 or not, and (iii) whether k is
1 or not. Note that Bregman Clustering (both hard and soft) with k = 1 does not result in a
useful algorithm.

Figure 2 summarizes the hierarchy of algorithms descending from BBC-Press. It is inter-
esting to note that for k = 1, Bregman Clustering is not very meaningful 9, whereas BBC
gives rise to BBOCC. BBC can therefore be thought of as a conceptual bridge between the
problem of one class clustering and exhaustive k class clustering, especially in the context of
finding dense regions in the data. It combines the salient characteristics of both Bregman Hard
Clustering and BBOCC resulting in a more powerful algorithm, and these combinations work
across all Bregman divergences. Furthermore, the connections described above show that the
generative models behind BBOCC-S and BBC-S are essentially the same; the difference is only
in having a single vs. multiple exponential distributions mixed with a uniform background.
This result also highlights the fact that BBC-S as an extension of BBOCC-S follows directly
from the underlying generative model and is not just a heuristic.

8 Example: Bregman Bubble Clustering with Gaussians

Now that we have developed the theoretical framework for Soft BBC to work with all regu-
lar exponential distributions, we describe a concrete example with the Gaussian distribution,
which is popularly used for many real-life applications. Let us consider spherical d-dimensional
Gaussian distributions of the form:

N(x|a, σ) =
1

√

2πσ2)d
exp(−||x − a||2

2σ2
) (19)

9For k = 1, Bregman Soft Clustering returns a single exponential distribution fit to the whole data while
Bregman Hard Clustering simply returns the mean of the whole data.
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where a ∈ R
d is the the mean, and σ2 ∈ R is the variance that is the same across all the d

dimensions. There are two major variations of the Soft BBC algorithm depending upon how
we treat the variance σ2:

8.1 σ2 is fixed

Soft BBC: The parameters {θj}kj=1 in equation 5 correspond to the parameters of the k
exponential distributions of the mixture model that are updated in the M step of Soft BBC
(Algorithm 4). For the Gaussian example, if we fix the values of {σ2

j }kj=1 for the k spherical

Gaussians mixtures then only parameter that can be updated are the k Gaussian means {aj}kj=1.
For the Soft BBC algorithm this corresponds to θ = a and the sufficient statistics xs is simply
x. 1

2σ2 is the scaling parameter β (equation 4) for the exponential function pφ, Dφ(x,a) =
||x − a||2 corresponds to the Squared Euclidean distance of x from Gaussian mean a, and
fφ(x) = 1√

(2πσ2)d
.

Therefore, the E step of Algorithm 4 involves computing pφ as N(x|a, σ) using the current
Gaussian means {aj}kj=1 and the fixed variances {σ2

j }kj=1 and then performing the rescaling
given by equation (8) and (9) to get p(Yi = j|xi) for all the n points. For the M step, the new
priors αkj=1 can now be re-estimated using either equation 11 or 14 depending upon whether

we keep α0 fixed or not (case A vs. B). The θj for jth exponential component represented by
the Gaussian mean aj can then be re-estimated as the weighted average of x as described by
equation 13.

BBC-S: The proof for Proposition 7.4 tells us that the BBC-S algorithm will fall out from
the Soft BBC when β → ∞. For our Gaussian model with fixed variance, since β = 1

2σ2 , this
corresponds to setting the variances {σ2

j }kj=1 → 0. This results in BBC-S, Definition 1 (Section
4.1) using Squared Euclidean distance as the Bregman divergences. Furthermore, when we set
s = n, this version of BBC-S also gives us the classical K-Means algorithm, or Bregman Hard
Clustering with Squared Euclidean distance as Dφ. An example of output from such a BBC-S
variant is shown in Figure 3 (d).

8.2 σ2 is optimized

Soft BBC: If the variances {σ2
j }kj=1 are also updated as a part of the EM, then both {aj}kj=1

and {σ2
j }kj=1 get updated in the M step of Soft BBC (Algorithm 4) and the sufficient statistics

xs becomes [x,x2]T . The E step of Algorithm 4 still involves computing pφ as N(x|a, σ) using
the current Gaussian means {aj}kj=1 and the current variances {σ2

j }kj=1 and then performing
the rescaling given by equation (8) and (9) to get p(Yi = j|xi) for all the n points. For the M
step, the new priors can also be re-estimated as before using either equation 11 or 14 depending
upon whether we keep α0 fixed or not. However, the θj for jth exponential component, now
a function of both the Gaussian mean aj and the variance σ2

j , needs to be re-estimated as
the weighted average over the sufficient statistics. It can be shown that this maps to: (1)
re-estimating the mean aj as the average of x over the n points weighted by p(Yi = j|xi) , and
(2) re-estimating the variance as a weighted average of (x−aj)

2 over the n points also weighted
by p(Yi = j|xi). An example of output from such a Soft BBC variant is shown in Figure 3 (b).

BBC-S: Unlike for the fixed variance case, the scaling parameter β cannot be thought of as
a function of variance since σ2 is a part of the updatable parameters. The corresponding Dφ,
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Figure 3: Comparison of bubbles generated using three variants of BBC on the simulated
2-D dataset: (a) Soft BBC with updated σ2 for k = 7 highlights the nonlinear nature of
boundaries where the bubbles touch each other. (b) Same as (a) except with k = 5, (c) BBC-S
corresponding to Soft BBC in (b), where the distances to clusters get scaled in proportion
to cluster variance, (d) BBC-S with fixed σ2. The boundaries of bubbles where they touch
each other (not shown) for cases (c) and (d) are linear. Note: Each point was assigned at
convergence to the cluster to which it had the largest soft assignment value.
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(which is not the Squared Euclidean distance) can be derived from the relationship defined by
equation 4 and corresponds to Mahalanobis distance in the original space of x. A corresponding
BBC-S algorithm obtained when β → ∞ is different from the BBC-S algorithm described for
the scenario where σ2 was fixed. One property of such a generative model is that in the
original space of x, bubbles of varying diameters can be discovered by both the Soft BBC and
the corresponding BBC-S algorithm, which could be suitable for domains where the natural
clusters have very different diameters. It can be shown that in each iteration of such an
implementation, the estimated distances to clusters need to be rescaled in proportion of the
variances of the respective clusters in that iteration. An example of output from such a BBC-S
variant is shown in Figure 3 (c).

8.3 “Flavors” of Soft BBC for Gaussians

For Soft BBC built using spherical Gaussians, there are eight possible flavors (Table 1) de-
pending upon whether (1) α0 is updated (Case A vs. B, Section 5.4), (2) the Gaussian mixture
variances are updated (Section 8.1 vs. 8.2), or (3) all cluster variances are forced to be equal.
For the cases where variance could be updated, forcing them to be equal requires computing
a weighted average of the variances of the k Gaussians after updating the variances in the M
step as described in Section 8.2, and then assigning this weighted average to the variances of
all the k Gaussians.

Table 1: 8 flavors of Soft BBC for spherical Gaussians arise depending upon the choice of Θ

Flavor Update σ {σj}kj=1 = σ1 Fixed α0

1 No No No
2 No No Yes
3 No Yes No
4 No Yes Yes
5 Yes No No
6 Yes No Yes
7 Yes Yes No
8 Yes Yes Yes

8.4 Illustration on a simulated dataset

Figure 3 shows a comparison of bubbles generated using three of the many variants that arise
out of BBC depending upon whether σ2 is updated or not, and whether we use Soft BBC or
the corresponding hard algorithm BBC-S. The results are shown for the simulated 2-D dataset
(Sim-2 dataset, Table 2, Section 11) that has points generated from 5 Gaussians of variances
varying from small to large and a uniform background. The results are summarized below:

Figure 3(a) shows results using a Soft BBC variant with Pressurization when σ2 are un-
equal and updated (Flavor 6, Table 1) and k=7. The k was kept large to highlight the nonlinear
nature of the boundaries between touching bubbles when σ2 is an updatable parameter. We
can also see an interesting scenario where a smaller Bregman bubble is completely engulfed by
a larger bubble.
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Figure 3(b) shows results using a flavor of Soft BBC with Pressurization that is the as that
in Figure 3(a) but with k = 5. The algorithm finds the five densest Gaussians and fits them
very well, especially the very dense but small cluster that corresponds to a class containing
only 30 out of 1,298 data points.

Figure 3(c) shows results using BBC-S with Pressurization when σ2 is updated with k = 5
and corresponds to the hard version of the soft model in Figure 3(b). We can see that although
such a hard model can give clusters with varying diameters, it is not as sensitive as the soft
algorithm. However, the hard algorithm scales well on very high dimensional datasets, which is
problematic for Soft BBC and exponential mixtures in general due to rounding errors (discussed
in more detail in the experiments section).

Figure 3(d) shows results using the simplest BBC algorithm with Pressurization; BBC-S
without σ2 update, when k was set to 5. Such a model falls out of a Soft BBC comprised of
a mixture of k Gaussians with equal and fixed spherical variances and a uniform background
(Flavor 4, Table 1).

8.5 Mixture-6: An alternative to BBC using a Gaussian background

For the Gaussian case where σ2 is optimized, we could also define an alternative mixture model
where the uniform background distribution is replaced by a background Gaussian distribution
with a large variance10. This results in a mixture of Gaussians model with k + 1 Gaussians
where the 0th Gaussian has a fixed large variance and only its mean is updated, while for all
other Gaussians both the mean and the variance are updated. Such a model can be viewed
as a “hybrid” of the models in Section 8.1 and 8.2 with the following update steps: (1) the E
step involves computing pφ as N(x|a, σ) using the current means and variances for Gaussians
1 to k and using the current mean and the fixed variance for Gaussian 0, and (2) For the M
step, the new priors can be estimated as before using either equation 11 or 14 depending upon
whether we keep α0 fixed or not. The variance of the Gaussian 0 is not updated, while that
of 1 to k Gaussians can be re-estimated using the procedure as described in Section 8.2. The
convergence guarantees for these steps follow directly from Bregman Soft Clustering since we
only use a mixture of Gaussians.

We call this model Mixture-6 since it is analogous to the flavor 6 of Soft BBC (Table 1).
Unlike in the Soft BBC where the background mass (and the corresponding fraction of data
assigned to the background after converting to hard assignment at convergence) is easy to
control and predict (Section 5.5), using a large variance background does not result in a stable
background; the final background mass varies substantially depending upon where the center
of the background Gaussian lies at convergence. Furthermore, it is not clear if (1) this model
could be generalize to all regular Bregman divergences, and (2) if a corresponding generalized
hard model exists. Mixture-6 mainly serves as another baseline for empirically evaluating Soft
BBC.

9 Extending BBOCC & BBC to Pearson Distance

In biological organisms, genes involved in the same biological processes are often correlated
in an additive or multiplicative manner, or both (Figure 4). Pearson Correlation captures

10Much larger than the cluster variances.
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Figure 4: Three common types of correlations observed between expression levels of genes. The
x-axis represents distinct measurements at different time points/across experiments, while the
y-axis represents the expression level of the gene.

the similarity between two variables in R
d that is invariant to linear scaling, such as a mul-

tiplicative and/or additive offset, and is therefore a popular similarity measure for clustering
gene-expression and other biological data [SS00, MTea04].

For two data points x,y ∈ R
d, the Pearson correlation P can be computed as P (x,y) =

zscore(x)•zscore(y)
d−1 , where zscore(x) represents the vector-based z-scoring of the data point vector

x, i.e. we z-score each of the data points separately across features values 11, and is equal to
x−µ(x)
σ(x) , where µ(x) is the mean of the elements of the vector x and σ(x) is the standard

deviation. We define the Pearson Distance as DP = 1 − P . Since P 7→ [−1, 1], therefore
DP 7→ [0, 2]. It can be shown that Pearson Distance is equal to the Squared Euclidean distance
between z-scored points normalized by 2(d − 1):

DP (x,y) =
‖ zscore(x) − zscore(y) ‖2

2(d− 1)
(20)

DP can also be viewed as the Squared Euclidean distance between points that have been
(1) rotated by subtracting the mean, and (2) by variance normalization, have been projected
onto a hypersphere of radius 1 (radius 1√

2
in Euclidean space) centered at the origin. When

Dφ is replaced by DP in Equation 3, we refer to Qb as Average Pearson Distance(APD).

Proposition 9.1. For any cluster Cj in G, the cluster representative cj
∗ that minimizes

contribution to APD by that cluster is equal to the mean vector of the points in Cj pro-

jected onto a sphere of unit radius, i.e. cj
∗ = argmin

cj

(APD(Cj , cj)) =
Cm

j

‖Cm
j ‖ , where Cmj =

1
|Cj |

∑|Ci|
i:xi∈Cj

zscore(xi).

The proof for the above proposition follows directly from the result used by [DM01] for up-
dating the center for their Spherical K-Means algorithm, which is a K-Means type of algorithm
that uses Cosine Similarity as the similarity measure. Pearson Distance and Cosine Similarity
are closely related; if we estimate the Squared Euclidean distance between points normalized

11This is different from the way z-scoring is often used in statistics, where it is performed for each col-
umn/dimension. We are performing it across rows of a data matrix, if the rows were to represent the data
points.
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by their L2-norm (
√

∑d
i=1 x2

i ) instead of between z-scored points, we obtain 2×(1−Cosine

Similarity). Note that (1−Cosine Similarity) of z-scored points is the same as Pearson Dis-
tance. Because of Proposition 9.1, for D = DP the optimal representative computation in
BBC involves the averaging of the z-scored points rather than the original points, and then
re-projecting of the mean onto the sphere. This minor modification to BBC allows it work with
DP and ensures convergence to a local minima 12. Since BBOCC is a special case of BBC, the
same modification works for BBOCC too for the problem of One Class Clustering.

Note: Because of the relationship between Cosine Similarity and Pearson Distance, BBC
will also work with Cosine Similarity, which is a popular similarity measure for clustering textual
data [DM01]. Note that for s = n, BBC with Cosine Similarity degenerates to Spherical K-
Means. For running BBC with Pearson Distance, since the z-scored data points have zero
mean across the d dimensions, the mean of the z-scored points Cmi used for center update only
needs to be normalized by its l2-norm to obtain zscore(Cmi ). For this reason, if we z-score
the individual data points in advance and run BBC using Cosine Similarity, it produces the
same results as running BBC with Pearson Distance. However, it is important to note that the
effect of not subtracting the mean gives rise to different distance measures (Pearson Distance
vs. (1−Cosine Similarity)) and can result in very different clusterings; points with additive
offsets will not necessarily be close when using only the Cosine Similarity. This difference could
be important depending upon the application. For example, Pearson Distance/Correlation is
more suitable for gene-expression data (Figure 4), while Cosine Similarity works better for
document clustering. A similar distinction should be kept in mind about Bregman divergences
in general; although BBC works with all Bregman divergences, it would produce radically
different results depending upon the choice of the divergence; the particular problem domain
and the underlying exponential distribution (Equation 4 and Proposition 7.4) should guide the
selection of the appropriate Bregman divergence for BBC.

10 Global Search, Model Selection & Seeding

We now present an alternative to Pressurization for alleviating the problem of local minima in
our local search. For k = 1, in Section 10.1 we present a deterministic global search algorithm
called HOCC that gives strong optimality guarantee for cost Qone. The output of HOCC can
then be used to seed BBOCC resulting in a “hybrid” search algorithm (Section 10.2) that
gives better results than either HOCC or BBOCC, and inherits the performance guarantee and
determinism. Then, in Section 10.3, for k > 1, we present another deterministic clustering
algorithm called DGRADE that is motivated by HOCC, but that can automatically determine
the number of distinct dense regions in the data, the location of these dense regions, and their
representative centroids in X . These k representatives can then be used to seed BBC, thus
alleviating the problem of local minima and resulting in deterministic results. By automatically
determining k, DGRADE also addresses the issue of determining the number of clusters in the
data.

12and the corresponding local maxima for average Pearson Correlation.
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Algorithm 5 HOCC
1: Input: Distance matrix M containing distance between all points, desired list of cluster sizes slist.
2: Output: Pairs of solution set containing indexes of best centroid followed by member points indices

for each cluster size specified in slist.
3: [radM, idxM] = sortrows(M)
4: for j = 1 to |slist| do
5: s = slist(j)
6: bestIdx = min(Qone({radM(i, s)}ni=1))
7: solution(j) = {bestIdx, {idxM(bestIdx, j)}sj=1}
8: end for

10.1 Global Search using One Class Enumeration: HOCC

For the problem of finding a single Bregmanian ball as described by Definitions 1 and 2 in
Section 3 using the cost function defined by Equation 2, BBOCC-S provides a local minima
solution, but does not provide any guarantee on the quality of the local minima. A local search
can get stuck in a bad local minima when the ball to be discovered is in a small region isolated
and far from the initial centroid input to BBOCC-S. One could improve upon the local search
by picking the best solution out of multiple trials of BBOCC-S with random seeding or use
Pressurization with BBOCC-S (by running BBC-Press with k = 1). However, neither approach
or their combination provides any performance guarantees. Is there an alternative? It turns
out that at least for the problem of One-Class clustering with a Bregmanian ball, there is. The
key idea is to first restrict the cluster representative to be one of the data points, i.e. c ∈ X ,
and then performing an exhaustive (global) search on this reduced problem. For the restricted
problem, the following holds true for cost Qone:

Proposition 10.1. If c is restricted to one of the sample data points X , then the number of
distinct 13 clusters of size 2 through n is n(n− 1), and can be enumerated.

Proposition 10.1 is the basis of Hypersphere One Class Clustering (HOCC, Algorithm 5).
It follows from Proposition 3.3 and the observation that the cluster representative and the
farthest point determine members of G and that such a tuple can only be picked from X . Such
clusters could be visualized as bounded by “hyperspheres” in the corresponding divergence
space. HOCC enumerates all such spheres and finds the one with the lowest cost for the
specified size s. To summarize Algorithm 5: the sth sorted index of row i represents the farthest
point in a cluster of size s with center as the ith point (line 3). The cumulative summation
of each row j of radM followed by division by the column index s gives the cost Qone of the
Bregmanian ball of size s centered at the ith data-point. The optimal solution is then picked
as the one with the smallest cost (line 6 and 7) from the n solutions of size s centered on each
of the n data points .

Note: It is also possible to use HOCC to find the best cluster if the cost is defined as
the maximum divergence rather than the average divergence value used in Qone. This can be
achieved by simply omitting the cost computation process in Algorithm 5 and using the sorted
distances (line 3) directly as the costs, and a variation of HOCC and BBOCC based on this
approach is discussed in detail in [GG05]. Our empirical evaluations in that paper showed that
the maximum distance formulation results in similar clusters on high-dimensional datasets.

13If a cluster is uniquely defined by G and c, the cost changes even if G remains the same but c changes.
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Complexity: Using HOCC, we can enumerate the lowest cost clusters of all possible sizes
in O(n2 log(n)) time. However, for seeding BBC-S, since s is known, using heap sort the
complexity reduces to O(ns log(n)). The corresponding space complexity is only O(n), since
n Bregmanian ball costs need to be saved before picking the best solution. Taking the initial
pairwise distance computation into account the total complexity of HOCC with a single s as
input is O(max(ns log(n), n2)).

Proposition 10.2. Optimality bound for Qone using HOCC: For a Bregman Divergence
Dφ where l ≤ φ′′ ≤ u, the average distance cost (Qone) of the cluster found by HOCC algorithm
is within 1 + u

l
times the optimal solution.

Proof. We can prove the above using the following Lemma:

Lemma 10.3. [BMDG05] For all Bregman Divergences Dφ, and points {pi}si=1, w, c∗ ∈ R
d,

where c∗ is the minimizer for Qone, the following is true:

1

s

s
∑

i=1

Dφ(pi, c
∗) +Dφ(c

∗,w) =
1

s

s
∑

i=1

Dφ(pi,w) (21)

For a cluster of a given size, if Q∗
one is the cost of the optimal solution, and Q∗

one−HOCC is
the lowest cost that appears in the HOCC algorithm when w = w∗ is the representative data
point that gives the lowest possible cost, then we can rewrite Equation 21 as:

Q∗
one +Dφ(c

∗,w∗) = Q∗
one−HOCC (22)

For a Bregman Divergence Dφ where l ≤ φ” ≤ u, it is also possible to show that:

D(c∗, w∗) ≤ u

l
× 1

s

s
∑

i=1

Dφ(pi, c
∗) = Q∗

one (23)

Substituting inequality from 23 into 22 we get:

(1 +
u

l
)Q∗

one ≥ Q∗
one−HOCC

For the Squared Euclidean distance, u = l = 2, therefore the above optimality guarantee
reduces to within 2 times of optimal. For an unbounded divergence applied to a given dataset,
it will be possible to bound l and u, in which case we would get the corresponding optimality
bounds.

HOCC for a specific cost qmax: A simple modification to the HOCC algorithm (which
follows from Proposition 3.1) makes it work with a fixed cost qmax as input. After sorting each
of the rows of the distance matrix M in Algorithm 5 (line 3), instead of picking the sth element
of a row i to compute cost, we perform a binary search on each of the sorted rows to find the
largest column index j such that the value of Qone(radM(i, j)) ≤ qmax. The value of j then
represents the size of the largest cluster at center i that has cost within the threshold qmax.
The best cluster is then found simply by picking the points from 1 to j corresponding to the
row that gives the largest j.
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10.2 Seeding BBOCC with HOCC: Hyper-BB

The hybrid search algorithm Hyper Batch Ball (Hyper-BB) is a simple combination of the
global approximation HOCC and the local search BBOCC. For either a fixed cluster size or
radius, given a particular Dφ and data to cluster X , it consists of the following two steps: (1)
Find the optimal cluster representative c∗hocc using HOCC, and (2) pass this center as seed to
BBOCC: cin = c∗hocc.

Hyper-BB inherits the same global guarantees that HOCC provides but has the added
advantage that the local search is likely to improve the results substantially. Empirical results
presented later in Section 11.4 supports this intuition. The global search seeds the local search,
and therefore Hyper-BB has a hybrid search bias that combines local and global search. Since
HOCC is deterministic and the output of BBOCC is determined by the initial seed, the output
of Hyper-BB algorithm is also deterministic.

Pressurization vs. HOCC, Speed tradeoff: When HOCC is used to seed BBOCC,
it provides a strong optimality guarantee and deterministic results 14. However, the tradeoff
is computational complexity. For example, HOCC with BBOCC-S is O(max(ns log(n), n2)),
which in practice runs slower than BBOCC-S with Pressurization whose iterations15 take
O(s log n) time. It is useful to have the choice of this tradeoff between optimality guaran-
tee vs. speed for improving BBOCC local search; for very large problems, it may be more
practical to run BBOC with Pressurization rather than performing a seeding using HOCC that
has a time-complexity between O(n2) and O(n2 log n).

10.3 Seeding BBC and determining k using Density Gradient Enumeration
(DGRADE)

The problem of finding a good seeding method for local search based on BBC for k > 1 is a
harder problem than for the One Class case, since the search space for possible initializations
gets much larger. For a given k, a simple extension of the strategy used in HOCC that involves
restricting the search for cluster representatives to the given data points, and then enumerating
all the

(

n
k

)

combinations of centroids, is prohibitively expensive. On the other hand, picking
the best solution over multiple trials of BBC-S or BBC-Press seems to give quite high quality
solutions in practice, but also requires k as an input. Is there a fast, HOCC-type algorithm
that can be used for seeding BBC 16 that could also be used to estimate k?

For a fixed s = sone, if BBOCC-S is run on all the n possible seed locations, and after
convergence the center is assigned to the nearest data point in X , we would end up getting a
small subset Cdense of X consisting of relatively dense points that would correspond to local
minima where BBOCC converges for all possible starting locations. We could view all the
starting points converging near the same final point in Cdense as belonging to same “basis of
attraction”. The size of set Cdense would give k, and the member points the centroids of the

14Pressurization on BBOCC would start from the mean of the data and would also be deterministic, but the
same would not be true for BBC-Press.

15This is true for the faster version of BBC-Press with k = 1 (Section 6) where the cluster size is shrunk after
each iteration. The average complexity of BBC-Press-Full would be O(ts(log(n))2), where after each shrinkage
BBC is run to full convergence. t represents the average number of trials to convergence for BBC.

16Which imposes an additional secondary requirement that just like BBC, the seeding algorithm should be
meaningful for all Bregman divergences.
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Algorithm 6 DGRADE
Input: Distance matrix M containing distance between all points, Bregmanian ball size sone, number

of points to be clustered s ≤ n.
Output: k, Partitioning G∗ containing k clusters{Cj}kj=1, and the corresponding k cluster centroids

{c∗j }kj=1.
[radM, idxM] = sortrows(M)
for i = 1 to n do

5: qlist(i) = Qone({idxM(i, j)}sone

j=1 ,xi)
end for
[val, idx] = sort(qlist)
k = 1; {lab}ni=1 = 0; {head}ni=1 = 0;
headidx(1) = ∅; labidx(1) = 1

10: for i = 2 to s− 1 do
[hCost, hIdxIdx] = min(val({idxM(i, j)}sone

j=1 ))
hIdx = idxM(i, hIdxIdx)
if hIdx == idx(i) then
k = k + 1; lab(hIdx) = k;head(hIdx) = ∅;

15: else
lab(hIdx) = lab(idx(i));head(hIdx) = idx(i);

end if
end for
Return k, {c∗j }kj=1 as the set of k points whose corresponding head pointers are ∅, the set of clusters
formed by non-zero values in lab as G∗.

k dense regions. However, for speed considerations it would be impractical to run BBOCC n
times on large datasets.

For a faster solution, let us constrain the problem a bit further by restricting the centers of
the Bregmanian ball movement during the local search also to one of the n data points. For a
given sone corresponding to s in BBOCC-S, a local search simulation is then possible that does
not require us to run BBOCC, and a local search “simulation” can be performed to find the k
densest locations in O(ns log n) time using heap sort. Algorithm 6 shows an implementation
of such an algorithm called Density Gradient Enumeration (DGRADE) that has the following
steps:

1. Input integers sone, and the number of dense points s to be classified into clusters.

2. Sort each row of the distance matrix and save the corresponding sorted sone nearest
neighbors indices into radM, idxM (just like in HOCC).

3. Compute cost Qone for each of n points as cost of a Bregmanian ball of size sone centered
on the point.

4. Sort the n points by increasing cost and save the cost of the first s points.

5. Set k = 1, labels of all points to 0. Create a pointer corresponding to each of the n points.

6. Assign cluster label 1 to the lowest cost point. Set its pointer to null.

7. Now pick the next s− 1 points in the order of increasing cost and perform the following:
for each point x find the lowest cost point y among the closest sone neighbors (including
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itself) of x. If y = x, set k = k+ 1 and set label of the point to k and set pointer of x to
null. Else assign the label of y to x and set pointer of x to point to y.

8. Return the clustering G consisting of the s densest points, and the k cluster centroids as
the k points with pointers set to null.

At the end of the process, we get a set G ⊆ X consisting of k clusters {Cj}kj=1 formed by a
subset of s points from X with the lowest cost. We also get a pointer from each of the s points
leading to a point of lower cost Qone. There are exactly k points from G that form k centroids,
one for each cluster Cj, and the centroid is the point in Cj with the lowest cost. The pointers
from each of the members of a cluster Cj form a path of lower cost leading eventually to the
centroid of the cluster. Figure 5 shows the output of DGRADE on the Sim-2 dataset when
(b) the assignments of all the points is performed, i.e. when s = n, vs. (a) when only s = 750
points are assigned. One way to think about DGRADE is that it finds an approximation of the
gradient of cost that would be observed if the BBOCC-S was executed n times with s = sone
starting with each data point as a seeding point. DGRADE consists of two distinct phases: (a)
the initial sorting of points by Bregmanian ball costs gives us the absolute measurement of cost
in various regions of the data, and (b) pointing each data point to the direction of maximum
decline in cost within the same Bregmanian ball in the second phase gives us an estimate of the
direction of maximum cost decline. The second phase generates a global map of the distinct
valleys that ultimately converge to the locally dense (restricted) centroids. Essentially, the
algorithm performs a global search for local density cost estimate and the gradient direction,
and unlike density-based clustering methods such as DBSCAN, is compatible with asymmetric
Bregman divergences 17. Interestingly, the cost function used (Qone) can be replaced with
another cost function such as the maximum distance cost function, but then the solution would
not match well with the cost functions of BBOCC and BBC. Although DGRADE can be used
as a algorithm to find dense regions, or as an exhaustive clustering algorithm (for s = n), our
main goal in designing it was to obtain a seeding solution for BBC-S. Therefore, we simply use
the centroids discovered by DGRADE to seed BBC-S.

Selecting DGRADE parameter sone:

HOCC does not require any additional parameters beyond BBOCC-S. However sone is
a parameter for DGRADE that needs to be input by the user. sone acts like a smoothing
parameter; a larger value typically results in a smaller k. When sone is increased, the number
of clusters found drops rapidly (Figure 5(c)), and beyond a certain value of sone a consecutive
set of values result in the same k. This characteristic enables several alternatives for selecting
sone automatically. We now present three common scenarios and the corresponding solutions
for them:

1. If k is known, we can find the smallest sone ≥ 2 that results in k clusters and a binary
search could be performed in O(n2 log(n)) time for finding the best centroids of the k
clusters using DGRADE. The clustering using this approach on the Sim-2 data is shown
in Figure 5 (a) and (b).

2. If k is not known and somewhat “over-split” clusters are preferred, a user can specify
a maximum stability integer value of m and a linear search could be performed for up

17Bregman divergences are generally not symmetric; Squared Euclidean is a notable exception.

32



0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

(a) (b)

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

s
one

N
o.

 o
f c

lu
st

er
s 

fo
un

d 
(k

)

k=4

s
one

=62

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1

23

4

(c) (d)

Figure 5: Clustering of Sim-2 data using DGRADE for various scenarios. For (a), (b) and (d),
lines show the path of the simulated local search converging at the locally lowest cost/densest
point, which also form the centroid of the corresponding cluster, and are marked as “x” and
numbered 1 to 6. For (a) and (b), k is known and set to 5, and sone was automatically
determined as 57. (a) shows clustering for s = 750, while (b) for s = n. For unknown k, (c)
shows the relationship between sone and k when s = n and how it can be used for choosing
sone and determining k automatically. The most stable k and the corresponding smallest sone
is shown using the dotted lines. (d) shows the four clusters discovered by DGRADE using the
automatic model selection described in (c).
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to a certain maximum value of sone to find the value of sone after which sone + 1 to
sone + m − 1 values all result in k clusters. This value of sone and the corresponding
solution of DGRADE is then returned. This technique is more appropriate for many
biological datasets where the signal-to-noise ratio is often very low, and the clustering
present is extremely weak.

3. For more robust datasets, we can simply select k with the largest stability for sone ranging
from 1 to the smallest value that returns k = 1. Then, we select the smallest sone that
gives k clusters. This selection method is shown in Figure 5 (c), where k = 4 is obtained
for 62 ≤ sone ≤ 214, corresponding to the largest stable interval. The smallest sone for
k = 4 is 62, which is the value used for the final clustering output (for s = n) shown in
Figure 5 (d). It is interesting to note that the densest cluster (numbered 3 in Figure 5
(b)) gets merged with a nearby larger cluster (numbered 1 in Figure 5 (b)) resulting in
k = 4, which is quite good for this completely parameterless, unsupervised setting.

Time and Space Complexity of DGRADE: The gradient traversal phase can be shown
to beO(ns), resulting in a total time complexity for DGRADE that isO(max(n2, sone log(n), ns),
and is similar to that of the one class seeding algorithm HOCC. In practice, this results
in an O(n2) algorithm, dominated by the initial distance computation. Since DGRADE
performs a sequential search for discovering the cluster labels, in an efficient implementa-
tion, the indexes can be saved onto secondary storage and accessed sequentially, requiring
only O(n) memory storage of labels and the head pointers. Since only the graph traversal
and column sorting needs to be recomputed for testing DGRADE with different values of
sone, the complexity of DGRADE with automatic selection of sone remains reasonably low at
O(max(n2, sone log(n), qn log(n), nsq), where q is the number of different sone values evaluated.

11 Experiments

11.1 Overview

We have divided our empirical evaluation into four main phases to verify various aspects of our
framework:

1. Evidence that the batch-update and fixed s approach is better for local search:
In Section 11.3, we present empirical evaluations to show the importance of the two
improvements in BBOCC-S over OC-IB; using a batch update rather than a randomized
update, and having a fixed size s as input rather than qmax.

2. Effectiveness of hybrid search for One Class: In Section 11.4, we present results
on the one class Bregmanian ball problem and show that both the local and the global
search components are important. We give comparison with the globally optimal solution
using the lower bound defined by Proposition 10.2, i.e. with half of the cost of the HOCC
solution. We show that the hybrid algorithm, Hyper-BB, which combines HOCC and
BBOCC, gives solutions very close to this optimal lower bound.

3. Effectiveness of BBC with Pressurization: In Section 11.5 we describe the exper-
imental setup, and in Section 11.6 the corresponding results for BBC-S, showing the
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effectiveness of BBC with Pressurization in finding high-quality, robust results as com-
pared with three other methods, against three real and three synthetic datasets.

4. Effectiveness of BBC seeded with DGRADE: In Section 11.5 we describe the ex-
perimental setup, and in Section 11.7 the corresponding results when using DGRADE
to seed BBC. Although on some datasets DGRADE gave good results by itself, more
consistently, seeding BBC with the centers found by DGRADE gave results that were
significantly better than using either BBC or DGRADE separately, and generally better
than even BBC with Pressurization. We show that it is also possible to combine all
three: BBC, Pressurization and DGRADE to achieve the best quality of clustering. Our
results also confirm that in practice, DGRADE can estimate k automatically, and the
deterministic, high quality results using BBC seeded with DGRADE is a good alternative
to Pressurization for biological datasets.

11.2 Datasets

We tested our algorithms on multiple real and synthetic datasets that are summarized in Table
2.

Table 2: A summary of the datasets used. D is the distance function used for clustering
while C represents the number of classes for labeled datasets only.

Dataset Source n d D k a C
Gasch Gene Microarray 6, 151 173 DP 10 NA
Gasch Array Microarray 173 6, 151 DP 12 12
Alizadeh Microarray 4, 026 40 DP 1 NA
Lee Microarray 5,612 591 DP 9 NA
Cleaned 20-NG Web documents 19,975 4,292 (1−Cosine Sim.) 6 6
Sim-2 Synthetic 1,298 2 Sq. Euclidean 5 5
Sim-10 Synthetic 2,600 10 Sq. Euclidean 5 5
Sim-40 Synthetic 1,298 40 Sq. Euclidean 5 5
Hard Synthetic 4, 026 40 Sq. Euclidean 1 1
Easy Synthetic 4, 026 40 Sq. Euclidean 1 1

a
k represents the number of clusters specified to the clustering methods that require it as an input.

Only used when testing BBC without seeding with DGRADE. When seeding with DGRADE, k output
by DGRADE was used for all methods that required it as an input.

Real Data: The Alizadeh data consists of expression profile of 4,026 genes from 46 B-Cells
Lymphoma cancer tissues, and also comes with the survival history for 40 patients, with 18
surviving long-term and 22 dying much earlier. The Gasch dataset [Gas00] consists of 6,151
genes of yeast Saccharomyces cervisiae responding to diverse environmental conditions over
173 microarray experiments. These experiments were designed to measure the response of the
yeast strain over various forms of stress such as temperature shock, osmotic shock, starva-
tion and exposure to various toxins. Each experiment is labeled with one of the 12 different
categories of experiments. The Alizadeh data was also used by [CC04], and the Gasch data
is a widely used benchmark for testing algorithms designed for clustering microarray data.
Gasch Array vs. Gasch Gene shown in Table 2 are actually the same dataset but with the
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dimension of clustering flipped: clustering genes vs. clustering the experiments (arrays). The
Lee dataset was obtained from Lee et al. [LDAM04], and consists of 591 gene-expression ex-
periments on yeast obtained from the Stanford Microarray database [Gol03] (http://genome-
www5.stanford.edu/), and also contains a Gold standard based on Gene Ontology(GO) an-
notations (http://www.geneontology.org). The Gold standard contains 121,406 pairwise links
(out of a total of 15,744,466 gene pairs) between 5,612 genes in the Lee data that are known
to be functionally related. The Gold standard was generated using Gene Ontology biological
process from level 6 through 10.

The 20-Newsgroup (20-NG) dataset is a popular dataset for text classification [Lan95], and
is widely available on the web including the KDD UCI repository (http://kdd.ics.uci.edu/). It
consists of 20,000 Usenet articles taken from 20 different newsgroup, 1,000 from each newsgroup.
The 20 groups can also be categorized into 6 high-level categories shown in Table 3, which are
then used as the class labels for evaluating the clustering algorithms. The 20-NG data contains
over 50,000 distinct words after removing punctuations, common words such as articles, and
stemming. Since we use the 20-NG data to evaluate (unsupervised) clustering algorithms, we
used an unsupervised approach for selecting features; we selected 4,292 most frequent words
(all words occurring ≥ 100 times over the 20,000 documents) as features.

Table 3: The 6 top-level classes (C) in the 20-Newsgroup data.

C |C| Member newsgroups
Computers 4,959 comp.graphics, comp.os.ms-windows.misc,

comp.sys.ibm.pc.hardware,comp.sys.mac.hardware, comp.windows.x
Recreation 3,984 rec.autos, rec.motorcycles, rec.sport.baseball, rec.sport.hockey
Science 3,989 sci.crypt, sci.electronics, sci.med, sci.space
Miscellaneous 988 misc.forsale
Talk 2,994 talk.politics.misc, talk.politics.guns, talk.politics.mideast
Religion 2,994 talk.religion.misc, alt.atheism, soc.religion.christian

Synthetic Data: These datasets are useful for verifying algorithms since the true labels are
known exactly. The Sim-2 dataset was generated using 4 2-D Gaussians of different variances
(Figure 3) and a uniform distribution. Similar datasets were generated with 5 Gaussians in
10-D and 40-D to produce Sim-10 and Sim-40 datasets.

We also created two high-dimensional data-sets to test the hypothesis that seeding local
search with a global search is more important when a dense region is small in mass and is
relatively isolated from the rest of the data. For this we created two high dimensional data-
sets, each consisting of 40 dimensions and 4,026 data points. The Hard data consists of 3
spherical Gaussians with one of the Gaussians containing 5% of the probability mass, and
being separated by a distance much larger than the standard deviation of two other wider and
highly overlapping Gaussians. For the Easy dataset, we use the same 3 Gaussians but place
the small dense Gaussian close to the center of the rest of the data.

11.3 BBOCC-S: an improved local search for One Class

BBOCC-Q tends to give better results than OC-IB on a variety of datasets, as measured by
the size of the clusters returned for the same cost threshold qmax. Figure 6 compares the two
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methods on two such datasets. Note that although OC-IB converges in a very small number
of “iterations” (Figure 6 (c)), each iteration of OC-IB actually moves the Bregmanian ball n
times.
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Figure 6: Comparison of performance of OC-IB with BBOCC-Q using Sq. Euclidean as Dφ:
(a) Comparison on Alizadeh dataset using average size of the cluster discovered (y-axis) for
a given cost threshold as input to both the algorithms (x-axis), including one +/- standard
deviation of the average. The results were averaged over 50 trials with random initialization.
(b) Comparison on Alizadeh dataset when the solution is picked as best of 50 trials for both
OC-IB and BBOCC, (c) Average number of trials to convergence for BBOCC-Q vs. OC-IB
(y-axis) for a given cost threshold (x-axis), averaged over 50 trials. (d) Results over 50 trials
on the Sim-2 dataset.

Does the use of a fixed size as input in BBOCC-S also have any positive effect on perfor-
mance? If both the enhancements over OC-IB lead to an improved local search, one should
expect BBOCC-S to do better than both OC-IB and BBOCC-Q, and BBOCC-S should beat
OC-IB by a larger margin than the margin by which BBOCC-S beats BBOCC-Q. However, a
straightforward comparison of BBOCC-S with the other two approaches is not possible since
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we cannot control the output cluster sizes in either BBOCC-Q or OC-IB.

Comparing BBOCC-S with OC-IB and BBOCC-Q using the duality: The fact
that BBOCC-S and BBOCC-Q (and OC-IB) use dual formulations of the same problem (Prob-
lem definitions 2 vs. 1 respectively) allowed us to experimentally compare the three methods
as follows: BBOCC-S was run with a random initialization using a given size as input. Then,
the output cluster’s cost Qone was measured, and a trial of BBOCC-Q and OC-IB each was
run with random initialization using this cost as input qmax. The corresponding output cluster
sizes and cluster costs for the two algorithms were then stored. This operation was repeated
for the particular cluster size 50 times with random initialization and the results from all the
three algorithms were stored. These experiments were repeated over a range of cluster sizes as
inputs to BBOCC-S (27 different sizes ranging from 2 to 2000), with 50 trials for each cluster
size, resulting in a total of 1,350 experimental trials for each of the three methods. Figure 7
(a) shows a plot of resulting individual runs using such an approach.

At the end of the process we obtained a range of cluster sizes generated by BBOCC-S,
BBOCC-Q and OC-IB for a given cost threshold qmax, and we measured the fraction of times
over the 50 trials that BBOCC-S gave a larger cluster size than BBOCC-Q. Similarly we also
measured the fraction of time over the 50 trials that BBOCC-S gave a larger cluster size than
OC-IB. We found that on the Alizadeh data, BBOCC-S does beat both OC-IB and BBOCC-
Q in most of the trials. Figure 7 (b) compares BBOCC-S with BBOCC-Q and OC-IB over
bucketed ranges of cost thresholds. Each of the six buckets had approximately equal number
of trials in them. Interestingly, BBOCC-S generally beats OC-IB by a larger margin than
BBOCC-Q. This supports the hypothesis that both the algorithmic enhancements in BBOCC-
S over OC-IB improve local search. We found similar results on other datasets.

Explanation for the improvements: Our explanation for the improvement observed in
BBOCC-S over BBOCC-Q is as follows: A fixed cost threshold as input required by definition 1
in BBOCC-Q produces an undesirable side-effect, when the goal is to find small dense clusters;
for a random seeding on a dataset where the small dense region comprises a small fraction of
the total number of data points, there is a high probability that the random seed is in a sparse
region. In BBOCC-Q, the ball can only “grow” to a point where adding another point would
cause the average distance of the points within the ball to be greater than qmax. In a sparse
region this causes very few points to get added to the ball. For example, in the extreme case
when the nearest point to the seed is farther than qmax, 0 points would get added to the cluster.
Since the next operation updates the centroid by averaging all the member points, when very
few points are present, the algorithm converges rapidly but prematurely, or in other words, the
search is unable to “move” much towards the distant dense region. The fixed cluster size input
used by problem definition 2 and BBOCC-S ameliorates this premature convergence problem
by “scaling” the cluster neighborhood to a larger region when the initialization is in a sparse
region. This happens because the number of points assigned in each iteration is fixed; a sparse
region causes the ball to automatically expand, and the ball shrinks as it moves towards a
denser region after each iteration.

To conclude, BBOCC-S and BBOCC-Q outperform OC-IB and that both the enhance-
ments; the batch updated and fixed size s as input (see Figures 6 and 7) contribute to the
improved quality of the local search.
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Figure 7: Comparison of performance of OC-IB [CC04] and BBOCC-Q w.r.t. BBOCC-S on
Alizadeh data. (a) Actual cluster cost distributions for various cluster sizes for OC-IB as
compared to BBOCC-S. (b) A comparison of BBOCC-S w.r.t to OC-IB and BBOCC-Q over
a range of cluster costs. y-axis represents the fraction of trials in a range of costs (x-axis)
that BBOCC-S had larger cluster sizes than BBOCC and OC-IB. For each cluster size used in
BBOCC-S, experiments were run 50 times, and the output cluster cost in each experiment was
used to run a corresponding trial of BBOCC-Q and OC-IB. Each bucket contains roughly 225,
or 1/6th of the total number of trials. Each trial was randomly initialized.

11.4 Effectiveness of HOCC and Hybrid Search for One Class

In Section 11.3 we showed the effectiveness of the local search method BBOCC-S. We now
present results that show the effectiveness of the global search algorithm HOCC presented in
Section 10.1, and lesion studies to show the usefulness of the hybrid combination of the two:
Hyper-BB and confirm that it finds solutions very close to the global optima.

Evaluation Methodology: We studied the importance of the local and global search in
our hybrid algorithm by comparing Hyper-BB against running HOCC and BBOCC separately.
We also compared our methods against “BBOCC-10”, where we pick the best of 10 trials of
BBOC, and against a “Naive” algorithm that picks the s closest points to the mean of data
X as the solution. We also show comparisons against the lower bound of the global optima,
guaranteed by Proposition 10.2, by plotting half of the cost of the solution HOCC. We plot
this lower bound as the legend “Optimal-LB”. For every tested cluster size, results of BBOCC
and BBOCC-10 were averaged over 50 trials.

Lesion Results: Figure 8 shows the results on four different datasets measured in terms
of the Bregmanian ball cost Qone. Clearly, the global search (HOCC) by itself performs sub-
stantially better than the local search (BBOCC) for all cluster sizes, but even the combination
(Hyper-BB) shows significant improvement over HOCC. The “Optimal-LB” legend shows the
lower bound for the globally optimal solution as half of the cost of HOCC solution. Clearly,
Hyper-BB gets very close to this theoretical lower bound, showing that in practice Hyper-BB
finds a solution very close to the global optima. Note that the (unknown) true globally optimal
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Figure 8: Comparison of performance of BBOCC, BBOCC-10, HOCC, Hyper-BB and the Naive
algorithm using Qone as training and evaluation cost functions on four datasets. BBOCC-S
was used for all the BBOCC evaluations shown. The (unknown) true global optimal solution
lies between the Optimal-LB (the theoretical lower bound) and the HOCC costs, which is the
region where Hyper-BB costs fall. The y-axis is the evaluation cost, while the x-axis is the size
of the cluster for which the evaluation was performed. For BBOCC and BBOC-10, the results
were averaged over 50 trials. For BBOCC and BBOCC-10, one std. dev. error bars are plotted
but are sometimes too small to be visible.
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solution would have a cost in between that of the Optimal-LB (lower bound) and HOCC (upper
bound). In light of this fact, the results for low coverages on the Hard, Gasch Gene and the
Alizadeh dataset are remarkably close to the lower bound, thus empirically demonstrating that
Hyper-BB gets very close to the globally optimal solution when finding a small, dense region.

The property that HOCC and Hyper-BB are deterministic while BBOCC’s performance
varies substantially across multiple trials (not plotted in Figure 8 for clarity) makes the im-
provement even more significant. On the Easy dataset BBOCC performed as well as Hyper-BB
for clusters of size larger than 10, while the naive algorithm that simply picks the data center
gave results as good as Hyper-BB. But for the other three non-trivial datasets, the Hybrid al-
gorithm clearly performs better than its components, and even compared to BBOCC-10. One
of the surprising observations to be made is that for the Hard dataset and for smaller cluster
sizes, BBOCC by itself performs worse than Naive, even though this dataset was not designed
to have the dense region at the center of the data. These lesion studies support our intuition
that both the local and global components of Hyper-BB are important in identifying small,
dense regions.

Results against labeled data: One-class clustering aims at finding one tightly knit cluster
rather than classifying all the data. However, one indication of the quality of the detected
cluster is its purity in terms of distribution of class labels, if such labels are available. In our
experiments, small clusters were invariably very pure. For example, when we applied Hyper-BB
to cluster the 173 experiments in Gasch Array data using the 6,151 genes as features, the closest
7 points to the densest region were all labeled as heat shock experiments. This represented a
precision of 1 for a recall of 0.41 for recovering an experiment type whose prior in the data was
0.1 (17 out of 173).

11.5 Evaluation Methodology for the k-Class algorithms: BBC and DGRADE

Now that we have shown the effectiveness of the local search BBOCC-S and the value of com-
bining global search and local search for the One Class problem, we present more extensive
results for the general case of finding multiple dense clusters using BBC-S (and for the corre-
sponding Soft BBC model), and the effectiveness of combining it with Pressurization and/or
with the global search method, DGRADE. We now describe various aspects of our evaluation
setup, before presenting the results:

Evaluation Criteria: Evaluating clustering is a challenging problem even when labelled
data is available [SGM00]. Depending upon the type of the labeled data, we performed the
following three different types of evaluations:

1. Adjusted Rand Index : Adjusted Rand Index was proposed by [HA85] as a normalized
version of Rand Index, and returns 1 for a perfect agreement between clusters and class
labels and 0 when the clustering is as bad as random assignments. ARI can be used on the
Gasch Array, 20-NG and the synthetic datasets since the true class-labels are available.

2. p-value: We use p-value to evaluate individual clusters of Yeast genes found using BBC for
the Lee dataset. Funspec (http://funspec.med.utoronto.ca/) is a popular Yeast database
query interface on the Web that computes cluster p-values for individual clusters using the
hypergeometric distribution, representing the probability that the intersection of a given
list of genes with any given functional category occurs by random chance. p− value is a
commonly used measure of individual cluster quality used by bioinformatics researchers.
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3. Overlap Lift : For evaluating the overall clustering quality, it is not possible to use ARI
to evaluate against the links in the Lee Gold standard. In general, measuring overall
clustering quality for genes is quite difficult since only an incomplete and partially verified
ground truth is known, such as the links in the Lee Gold standard. We propose Overlap
Lift as a measure of the statistical significance of our clustering results against the gold
standard as follows: A cluster containing w genes in one cluster creates w(w − 1)/2
links between genes, since every point within the cluster is linked to every other point.
Therefore, k clusters of size {wj}kj=1 would result in a total of lc =

∑k
j=1wj(wj − 1)/2

links. The fraction of pairs in the Gold standard that are linked flinked is known (for
example for Lee dataset flinked = 121, 406/15, 744, 466 = 0.007711). If we construct a null
hypothesis as randomly picking lc pairs out of n(n− 1)/2 pairs in the Gold standard, we
can expect lnull = flinkedlc pairs to be correctly linked. A good clustering should result
in (a lot) more correctly linked pairs than lnull. If ltrue is the number of correct links
observed (which will always be ≤ lc) in our clustering, then the Overlap Lift is computed
as the ratio ltrue

lnull
, which represents how many times more correct links are observed as

compared to random chance. A larger ratio implies better clustering.

Handling “don’t care” points in evaluations: All the evaluations are performed across
a range of coverage of the data; a coverage of s/n = 0.4 implies 40% of the points are in clusters
while the remaining 60% are in the “don’t care” or the background cluster. The points in
the background or the “don’t care” clusters are excluded from all evaluations. To keep the
comparisons fair, all methods are compared against each other only across the same coverage.

Evaluating Soft BBC: We tested Soft BBC using Gaussians as the exponential mixture
components. There are eight possible flavors of Soft BBC (Table 1) depending upon the choice
of the updatable parameters. We present results on the Soft BBC implementation, flavor 6, i.e.
with updatable, unequal variances with a fixed α0. We also compared Soft BBC for Gaussians
with the alternative soft model called Mixture-6 (Section 8.5).

Hard Assignments for Soft BBC: To compare Soft BBC against BBC and other hard
assignment methods, on convergence, the points are assigned to the mixture with the largest
probability, i.e. to j = argmax

j=0→K

p(Yi = j|xi). The estimation of p0 described in Section 5.5

results in approximately (n×α0) points getting assigned to the background. In order to ensure
that exactly (n−s)/n points are assigned to the “don’t care” set, a post-processing is performed

where we: (1) compute pimax = maxkj=0(p(Yi = j|xi)) for each xi, (2) set p†0 to the sth largest

value in pimax[i]
n
i=1, (3) put all points below p†0 into the “don’t care” cluster, and assign rest to

cluster j = argmax
j=1tok

p(Yi = j|xi). A similar conversion was required for evaluating Mixture-6.

Comparison against other methods: We also compared our method with Bregman
Hard Clustering, Single Link Agglomerative clustering and DBSCAN. Bregman Hard Clus-
tering assigns every data point into a cluster. To be able to compare it meaningfully with
BBC, we picked s points closest to their respective cluster representatives. This procedure was
also used for Single Link Agglomerative clustering. For the two DBSCAN parameters, we set
MinPts to 4 as recommended by [EKSX96], while we searched for Eps that resulted in s
points in clusters. k is automatically estimated by DBSCAN while for all the other methods
and datasets, when evaluating BBC with Pressurization, k was set to |C| (Table 2), except for
the Lee dataset (where |C| is not known) where we set k to 9.
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All five methods use the same and appropriate distance measure that corresponds to
the D listed for each of the datasets in Table 2; Sq. Euclidean for the synthetic Gaussian
datasets, Pearson Distance for the gene-expression datasets, and (1−Cosine Similarity) for the
20-newsgroup data.

11.6 Results for k > 1: BBC with Pressurization

For the lower dimensional datasets, both Soft and Hard BBC with Pressurization perform
extremely well, giving near-perfect results (ARI ≈ 1) for up to 40% coverage on Sim-10 data
and an ARI between 0.8 and 0.9 for up to 40% coverage on Sim-2 data. As expected, both
BBC and Soft BBC without Pressurization tend to be a lot more sensitive to initialization,
thus exhibiting noticeable error-bars 18. For Sim-40 and all the real datasets, results are only
shown for Hard BBC with Pressurization (BBC-Press). This is because exponential mixture
models in general, including Bregman Soft Clustering, Mixture-6 and Soft BBC, all suffer from
an inherent problem that makes them impractical for high dimensional datasets: there are
rounding errors while estimating the mixture membership probabilities, and these rounding
errors worsen exponentially with the dimensionality of the data d (e.g., for Gaussians, when
L.H.S. of equation 19 is substituted for p(ψ,θ) in equation 8), so much so that the models often
do not work well beyond d = 10. However, the main purpose of designing Soft BBC was to
show that a fundamental generative model lies behind BBC (Section 7). We tested the Soft
BBC and the Mixture-6 models on Sim-2 and Sim-10 datasets, mainly to validate Soft BBC and
Soft BBC-Press; figure 9(a) and (b) show that Mixture-6 has no clear performance advantage
over Soft BBC. Furthermore, Mixture-6 does not conform to the form required to incorporate
Pressurization and does not correspond to any known “hard” model for Bregman divergences.

On the Sim-40 dataset, BBC-Press continues to give an ARI ≈ 1 for up to 40% coverage
(Figure 9(c)). These results are impressive given that the ARI was obtained as averages of
multiple runs with random seeding. The improvement against labeled data using BBC Press
as compared to BBC is also quite remarkable for the two micro-array datasets Gasch Array and
Lee, and a similar trend is seen for 20-Newsgroup as well. This indicates that Pressurization
works well on a variety of real datasets; from very high dimensional gene experiments (Figure
10(a)) where most of the data is relevant, discovering small number of relevant gene clusters on
high-dimensional microarray data (10 (e)), to clustering large and high-dimensional documents
(10 (c)).

On both artificial and real datasets (Figure 9, 10), DBSCAN, Single Link Agglomerative and
Bregman Hard Clustering all perform much worse than BBC-Press in general, and especially
when clustering a part of the data. Note that these results are based on on labels that were
not used for clustering; using ARI on Gaussians, Gasch Array and the 20-newsgroup data, and
using Overlap Lift on Lee, and are therefore independent of the clustering methodology. Figure
10(f) shows that (1) BBC-Press not only beats other methods by a wide margin but also shows
high enrichments of links for low coverages (over 6 times for 5 % coverage), and (2) Single Link
Agglomerative clustering does not work well for clustering genes and gives results not much
better than random. On all datasets, Single Link tends to perform the worst; one explanation
might be its inability to handle noisy data. For 20-Newsgroup, the ARI of Single Link is not
clearly visible although it has been plotted because it hovers close to 0 for all coverages. In

18Note that the error bars were plotted on all the local search algorithms, but are often too small to be visible.
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Figure 9: Evaluation on synthetic Gaussian data of increasing dimensionality using ARI: (a),
(b) and (c) demonstrate the effectiveness of Pressurization. (d), (e) and (f) show effectiveness
of BBC-Press as compared to three other methods: Bregman Hard Clustering, Single Link
Agglomerative and DBSCAN. Error bars of one std. deviation are shown (but are sometimes
too small to be visible) for local search methods for which ARI is plotted as the average over
100 trials with random initialization.

44



0 0.2 0.4 0.6 0.8 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fraction of data classified

A
R

I

BBC−Press
BBC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fraction of data classified

A
R

I

BBC−Press
Breg. Hard
SL−Agg
DBSCAN

(a) Gasch Array (b) Gasch Array

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fraction of data classified

A
R

I

BBC−Press
BBC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fraction of data classified

A
R

I

BBC−Press
Breg. Hard
SL−Agg
DBSCAN

(c) Cleaned 20-Newsgroup (d) Cleaned 20-Newsgroup

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Fraction of data classified

O
ve

rla
p 

Li
ft

BBC−Press
BBC

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Fraction of data classified

O
ve

rla
p 

Li
ft

BBC−Press
Breg. Hard
SL−Agg
DBSCAN

(e) Lee (f) Lee
Figure 10: Evaluation of BBC-Press on real data using ARI for Gasch Array and Cleaned
20-NG and Overlap Lift for Lee, as compared to BBC, Bregman Hard Clustering, Single Link
Agglomerative, and DBSCAN. Local search results were averaged over 20 trials for Gasch Array
and Cleaned 20-NG, and over 10 trials for Lee. The corresponding one std. dev. error-bars are
plotted, but are sometimes too small to be visible.
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fact, for some situations (Figure 9(d) to (f)), DBSCAN and Single Link Agglomerative give
slightly worse than random performance resulting in ARI values that are slightly below 0. The
performance difference between our method (BBC-Press) and the other three methods is quite
significant on all the six datasets, given the small error bars. Additionally, if we were to pick
the minimum-cost solution out of multiple trials for the local search methods, the differences
in the performance between BBC-Press vs. DBSCAN and Single Link becomes even more
substantial.

Selecting size and number of dense clusters in the absence of DGRADE seeding:
In BBC-Press, s controls the number of data points in dense clusters. The dense clusters were
invariably very pure when using BBC-Press, with near-perfect clusters on the Gaussian data
for s of up to 40% of n, while on the Gasch Array dataset the performance peaks at a coverage
of around 0.3 but shows a general decline after that. The rapid increase in cluster quality
with decreasing s is more pronounced in BBC-Press than in the other methods, and shows
that on these datasets, dense regions are indeed highly correlated with the class labels. In
practice, selecting dense clusters with BBC-Press requires choosing an appropriate s and k.
If small amounts of labeled data is available, the best k can be estimated for a fixed s using
an approach such as PAC-MDL [BL04], while a reasonable s can be picked by applying BBC-
Press on a range of s and picking the “knee” (e.g. Figures 9(a),(b),(c) and 10(b) show a sudden
decline in ARI near s = 0.4 × n). Alternatively, in many problems k can be an input, while s
simply has to be a small threshold (e.g. for finding a small number of relevant web documents
or a small number of relevant genes).

Evaluating individual clusters: Although the results based on ARI and Overlap Lift
show the effectiveness of our method, visual verification serves as another independent vali-
dation that the clusters are not only statistically significant but also useful in practice. For
the Sim-2 dataset, it is easy to verify the quality of the clusters visually (Figure 3)(b). For
the Gasch Array clustering, most clusters were generally very pure using BBC-Press for lower
coverages. For example, when only 70 out of 173 experiments are clustered by repeating BBC-
Press 20 times and picking the lowest cost solution, the average ARI is around 0.6 over 12
classes. Some clusters are even purer, for example, one of the clusters contained 12 out of 13
points belonging to the class “YPD” 19. Similarly, for the Lee dataset, when clustering only
600 genes into 30 clusters and pruning the rest, we verified a high purity cluster using FunSpec;
10 out of 14 genes in one of the clusters belonged to the functional category “cytoplasmic and
nuclear degradation” (p-value of < 10−14). Many other gene clusters on the Lee dataset also
had low p-values for some of the categories recovered by FunSpec.

11.7 Model Selection using DGRADE

In an alternative setting where DGRADE is used to seed BBC, we compared both DGRADE
and BBC seeded with DGRADE with Bregman Hard Clustering, Single Link Agglomerative
clustering and DBSCAN. The experimental setup and evaluation was similar to when comparing
BBC with Pressurization against the other three methods, except that for a given coverage, k
was automatically determined by DGRADE, and this k was then used as input for methods that
require it; BBC, BBC-Press, Bregman Hard and Single Link. For DBSCAN, which determines
k internally, as before, we set MinPts to 4 as recommended by [EKSX96], while we searched

19Which represents one of the class of experiments set up by [Gas00]
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for Eps that resulted in s points in clusters. The input parameter sone required by DGRADE
was determined automatically by using the approach described in Section 10.3. DGRADE
then uses the same sone for smaller coverages, which can result in a smaller k (Figure 12) as
the lesser dense clusters become “don’t care” points, and the corresponding k is then used as
input to all the algorithms requiring it. When seeding (Hard/Soft/Pressurized) BBC with the
output of DGRADE, the cluster centroids output by DGRADE were used as the seed/initial
centroids. We now presents results on DGRADE when it used for seeding BBC, on two real
and three synthetic datasets.

Dataset sone k, when s = n User input
Gasch Array 4 11 a k = 12
Lee 10 9 stability > 1 b

Sim-2 62 4 None c

Sim-2 57 5 k = 5 d

Sim-10 104 5 k = 5
Sim-40 57 5 k = 5

aClosest possible k to 12 found when sone = 3. For sone = 3,
k increases to 14.

bSee plot (b) in this figure.
cFigure 5(c) and (d)
dFigure 5(b)
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Figure 11: (a) Automatically determined sone for DGRADE on various datasets, using the
approach described in Section 10.3. (b) For the Lee data, selecting the largest k (smallest sone)
with stability > 1 gives a stability = 3, sone = 13 and k = 9.

Ability to estimate sone automatically: In the table in Figure 11(a), the first column
shows the values of sone determined automatically using one of the three methods described in
Section 10.3, the second column shows the number of clusters discovered when clustering all of
the data (s = n), while the third column shows the user input, if any required by DGRADE.
For all the datasets except Lee, k was known and was used to determine sone automatically. For
the Sim-2 dataset, when both k and sone were determined automatically using the maximum
cluster stability criteria, we obtained k = 4 (Figure 5(c) and (d)). For the Lee dataset, by using
a cluster stability threshold > 1 we obtained k = 9 and sone = 10. Figure 11 (b) shows the
process of automatically determining both k and sone for the Lee dataset; interestingly, k = 9
also had the maximum stability of 3 in the range 2 ≤ sone ≤ 20, for which k ranged from 948
(for sone = 2) to 5 (for sone = 20).

Using cluster centroids from DGRADE for seeding and selecting k, for variable
coverages: For a constant sone, the results of DGRADE are not only deterministic for varying
values of s, but also have another useful property that follows directly from Algorithm 6; using
a smaller s gives clusters that are guaranteed to be subsets of the DGRADE clustering with a
larger s. This effect can also be seen in Figure 5(b) vs. 5(a), when s was reduced from from
1298 to 750. Eventually, some of the less dense clusters disappear completely resulting in a
decline in k returned by DGRADE . However, the remaining centroids output by DGRADE
remain unchanged. This phenomena can be seen for the 5 different datasets in Figure 12 and
provides us with a principled way of selecting centroids for seeding BBC; and for choosing the
corresponding k for coverages less than 1, when comparing with other methods that require k
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Min. Max.
s/n k s/n k

Gasch Array 0.1 3 1.0 11
Lee 0.05 6 1.0 9
Sim-10 0.1 3 1.0 5
Sim-40 0.1 4 1.0 5

(a) Sim-2 (b) Other datasets
Figure 12: (a) On Sim-2 data, the number of clusters k found by DGRADE declines asymp-
totically with the fraction of densest data clustered (s/n). (b) A summary of a similar trend
on the other datasets. The maximum k corresponds to s = n, and the minimum k corresponds
to the smallest coverage. sone was held constant for all coverages, and corresponded to the
automatically determined values of 4,10, 57, 104, and 57 for the Gasch, Lee, Sim-2, Sim-10 and
Sim-40 datasets respectively.

as an input. The k corresponding to those shown in Figure 12 for various coverages were used
as inputs to Bregman Hard and Single Link Agglomerative Clustering. Also, the corresponding
centroids output by DGRADE for various coverages were used as inputs for seeding any of the
forms of BBC (Hard/Soft/Pressurized).

DGRADE seeding works well with BBC: Figure 13 and 14 show results for BBC
seeded with DGRADE as compared to the other alternatives; BBC with Pressurization and
the other three benchmark algorithms. For the Sim-2 dataset, when DGRADE was used to
seed Soft BBC, the results were comparable to that of Soft BBC with Pressurization (Figure
13 (b)), while the results of DGRADE as a clustering algorithm by itself result were quite
good (Figure 13 (a)). Similar trends were seen on the Sim-10 (13 (c) and (d)) dataset. On
the Sim-40 dataset (13 (e) and (f)), although DGRADE does not perform well by itself, when
used for seeding BBC-Press, the combination gives results that are far superior to all other
algorithms, and beats even BBC-Press; an ARI close to 1 is observed for coverages as high
as 0.6 as compared to only until 0.4 for BBC-Press. One possibility is that the global search
bias behind DGRADE provides additional advantages to a robust locals search algorithm such
as BBC-Press, and especially on higher-dimensional datasets. This agrees with the intuition
that the local search problems should become more severe with increasing dimensionality of
the data (Sim-40 vs. Sim-2), and is similar to boost in performance observed for the One Class
scenario (Section 11.4). This phenomena of DGRADE and BBC-Press improving results as
a combination is also observed on the really high-dimensional real datasets- the Gasch Array
(Figure 14 (a) and (b)). However, this relationship is only seen for the lowest coverage of 0.05
on the Lee dataset (Figure 14 (e)), perhaps because the fraction of genes that are usually dense
when clustering genes is usually very small.
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Figure 13: Evaluation of BBC seeded with DGRADE using the synthetic Gaussian datasets:
as compared to BBC with seeding, and against three other methods. Error bars of one std.
deviation are shown (but are sometimes too small to be visible) for local search methods for
which ARI is plotted as the average over 100 trials with random initialization.
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Figure 14: Evaluation of BBC seeded with DGRADE on two real datasets as compared to
BBC without seeding, and against the three other methods. Performance was measured using
ARI for Gasch Array and using Overlap Lift for the Lee dataset. Results for Bregman Hard
clustering and BBC without seeding were averaged over 20 and 10 trials for Gasch and Lee
respectively, and the corresponding one std. dev. error-bars are plotted (but are sometimes
too small to be visible).
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12 Concluding Remarks

First, we significantly improved upon existing One Class clustering work by incorporating
a novel global search into an improved local search. The HOCC algorithm provides a global
approximation with optimality bounds under certain conditions, while our local search BBOCC
shows empirical improvement in the quality of the local minima compared to OC-IB. Hyper-BB
as a combination of HOCC and BBOCC, inherits the desirable properties of the two components
such as optimality bound and deterministic output, and the ability to take either the cluster
size or cost threshold as input. Empirical results confirm that both HOCC and BBOCC
are important components of Hyper-BB, and that Hyper-BB gives near-optimal solutions for
finding a small, dense region.

Bregman Bubble Clustering (BBC) extends our One Class local search method to a more
general setting of finding k dense regions. We also developed an alternative to seeding for
improving local search called Pressurization. Empirical results show that when clustering
only a (densest) fraction of the data, BBC-Press outperforms other potential alternatives by
a large margin and gives good results on both low and high dimensional data, where such a
bias is important. BBC-Press could therefore be seen as a powerful extension of One Class
Clustering to a multi-class setting where the goal is to find a few most relevant clusters in
the data. BBC extends the notion of “density-based clustering” to a large class of divergence
measures, and is perhaps the first that uses a local search/parametric approach. The low time
and space complexity of the local search approach, coupled with the robustness provided by
Pressurization, makes it possible to find multiple dense regions on extremely large and high-
dimensional datasets, thus opening up density-based clustering for applications to much larger
problems.

Motivated by both BBOCC and HOCC, DGRADE provides a k-class equivalent of HOCC
for seeding BBC. Empirical results show that DGRADE performs extremely well in combination
with BBC, giving very high-quality results on many datasets that are competitive or better
than BBC with Pressurization. Furthermore, DGRADE allows for automatically estimating the
number of dense clusters in the data, and BBC seeded with DGRADE is ideal for applications
such as bioinformatics where deterministic results are desirable. Also, for high-dimensional
datasets, when DGRADE is further combined with Pressurization for BBC, i.e. DGRADE is
used for seeding BBC-Press, the performance improves beyond that of either BBC-Press or
DGRADE seeded BBC. Thus, the combination of the three components provides an extremely
robust framework with several key properties in one method; robust, deterministic results,
scalability to large, high-dimensional datasets, and applicability to a wide variety of problem
domains.

Our local search framework, Bregman Bubble Clustering can also be thought of as a concep-
tual bridge between partitional clustering algorithms and the problem of One Class Clustering.
The Soft BBC model we developed shows that BBC and its One Class equivalent special cases
arise out of a more fundamental model involving a mixture of exponentials and a uniform
background, and explains how, by incorporating a model for the “noisy” background, BBC
performs better than Bregman Clustering when only some of the data should be clustered.

The extension of our methods to Pearson Correlation (Pearson Distance) makes our method
applicable to a variety of biological datasets where finding small, dense clusters is critical,
while the extension to Cosine Similarity makes it applicable to text clustering, where the goal
of retrieving a few of the most relevant documents belonging to a category maps well to our
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A Fast update of Qone in OC-IB

In this appendix we revisit the OC-IB algorithm introduced in Section 2.3 and examine the
centroid update at each iteration in more detail to highlight the difference between OC-IB
and BBOCC. One randomized iteration of OC-IB involves n updates of the centroid and the
corresponding cost Qone. Since the centroid is the mean of the member points, it can be updated
quickly for every addition or deletion of a point. However, the n re-estimations of Qone as the
average Bregman divergence of all the member points to the corresponding n updated centroids
could be quite slow. Fortunately, OC-IB uses a much faster update originally derived by [Slo02]
using the principle of Information Bottleneck, but which can also be derived from the following
lemma:

Let G1 ⊂ X be a set of data points, and the corresponding mean be µ1. Furthermore, let
µ2 be the mean of set G2 = G1 ∪ xnew. Then, the following follows directly from Lemma 10.3:

Qone(G1, µ2) = Qone(G1, µ1) +Dφ(µ1, µ2), (24)

Therefore, Qone(G2, µ2) can be estimated as:

Qone(G2, µ2) = Qone(G1, µ1) +Dφ(µ1, µ2) +Dφ(xnew, µ2) (25)

Thus, Equation 25 enables update of the cost Qone in OC-IB in constant time when a new
point xnew is added, instead of having to re-estimate Qone over all the points in G2. A similar
constant time update is possible if a point is deleted from G.

Note 1: The cost Qone estimated by OC-IB after each center update using Equation 25
actually corresponds to the Bregman Information of the set G, and at convergence OC-IB finds
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a Bregmanian ball enclosing a locally maximum of points with Bregman Information less than
qmax.

Note 2: Such an update will not work with either Pearson Distance and (1−Cosine Similar-
ity) described in Section 9, since they are “convex projections” of Squared Euclidean distance,
not directly a Bregman divergence. Thus, the standard OC-IB algorithm will not work on
these measures, and a modified version that recomputes the cluster cost from scratch would
be considerably slower for these two measures that are important for biological and textual
datasets respectively.

B Proofs for BBOCC-Q

Following is the proof for Proposition 3.1 in Section 3.1:

Proof. Let us add points to G in the order of increasing distance from c until adding one more
point would cause Qone(G, c) to become greater than qmax. Such a set forms a Bregmanian
ball enclosing s = |G| data points and is defined by the centroid c and a radius equal to the
distance from c of the last point added to G. Now, it can be observed that deleting one point
in G and adding another point from outside the Bregmanian ball, i.e. from set X/G cannot
decrease the cost Qone but can increase it. This follows from the fact that all the points in set
X/G are at a distance from c ≥ the distance of the point in G farthest from c. Furthermore,
adding the point closest to c in set X/G causes the average cost Qone to be more than qmax.
Therefore, the same would happen if any other points in X/G is added to G. Hence it is not
possible to obtain a set larger than s with cost less than qmax.

Following is the proof for Proposition 3.2 in Section 3.1:

Proof. From Proposition 3.1 and Theorem 2.1, it is straightforward to show that after each
step of Algorithm 1, the number of points in cluster G, cannot decline but can increase, and
that eventually this leads to convergence. Let c1 and c2 be the two centroids before and after
the centroid update in some iteration, and G1 be the set of points assigned to the cluster before
the centroid update. Let q1 = Qone(G1, c1) and q2 = Qone(G1, c2) be the costs of G1 before and
after the centroid update respectively. Then, q2 ≤ q1 because of Theorem 2.1. Furthermore,
because of Proposition 3.1, if we now reassign closest s1 points and get a new cluster set G2,
then q3 = Qone(G2, c2) ≤ Qone(G1, c2) because of Proposition 3.1. Hence, q3 ≤ q2 ≤ q1 < qmax.
Therefore, potentially more points can now be added to G2 making it larger than s1 while
keeping the cost below qmax. Therefore, the size of the cluster G can potentially increase after
each iteration of Algorithm 1, but cannot decline. If the size does not change, but the actual
cluster members do change in an iteration, the centroid c can still drift and eventually lead to
a larger cluster in some later iteration 20. However, in the event that the size of the G does not
change and the member points also remain unchanged, the algorithm converges (line 19).

20An implementation detail: line 19 of Algorithm 1 also checks to see if the cluster size has not changed in
two iterations. This prevents a rare but possible oscillation between two solutions of identical size and detects
convergence.
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