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Abstract—A variety of Coupled HMMs (CHMMs) have
recently been proposed as extensions of HMM to better
characterize multiple interdependent sequences. This pa-
per introduces a novel distance coupled HMM. It then
compares the performance of several HMM and CHMM
models for a multi-channel EEG classification problem.
The results show that, of all approaches examined, the
multivariate HMM that has low computational complex-
ity surprisingly outperforms all other models.

I. INTRODUCTION

Classification of EEG is an important part of EEG-
based brain-computer interfaces. An overview of EEG-
based brain-computer interface systems is presented by
Pfurtscheller and Neuper [1]. They summarize several
approaches, such as linear discrimination analysis (LDA),
artificial neural networks (ANN) and HMMs, for classify-
ing features extracted from raw EEG data. When a neu-
ral network is used for EEG analysis, it is often modified
to exploit time information. For example, Haselsteiner
and Pfurtscheller [2] use a time-delayed neural network
and collect features using an adaptive autoregressive (AR)
model.

HMMs have been heavily researched and used for the
past several decades, especially in the speech recognition
area [3], and successfully applied to a wide variety of ap-
plications, including EEG classification [4], [5]. Works
on EEG classification usually apply HMMs to the time-
changing feature vectors extracted by an AR model or by
some other digital signal processing techniques. Huang et
al [4] use the mean frequency features, calculated from
FFT spectrum, for detecting the arousal state changes.
Obermaier, Guger, and Pfurtscheller [5] compare LDA
and HMMs on bandpass-filtered feature vectors and ex-
periment with the structure parameters of HMMs.

Penny and Roberts [6] conclude, based on experiments
on synthetic data, that HMMs are capable of detecting
nonstationary changes and are thus ‘perfect’ for EEG
analysis. They point out that operating HMMs on AR
coefficients is fundamentally flawed because the window-
ing procedure used in AR models may lead to incorrect
estimates of state and state transitions in an HMM model.

In this paper, we use HMMs to model the (scaled) raw
EEG data instead of the extracted features. This ap-
proach avoids the need for expert knowledge to construct
a feature extractor. After all, why bother to construct
features if the raw data can be well modeled? Our ex-
perimental results strongly support the feasibility of this

approach.
Furthermore, we want to model multiple EEG chan-

nels simultaneously since EEG data often come as cor-
related time series from multiple electrodes on the scalp.
There are many ways to do this. Using one HMM with
multivariate gaussian observations is the most straight-
forward approach. Using one univariate HMM for each
channel and then combining these HMMs is another one.
Recently, CHMM models have been proposed to better
model multiple interacting time series processes [7], [8]
and they seem to work better than HMMs. Also some
generalized HMM models have been suggested to enrich
the HMM model for specific applications [9], [10]. In this
paper, we propose a new CHMM formulation, named dis-
tance coupled HMM (DCHMM), that is related to the
mixed memory Markov models [11]. We examine some
of these sophisticated models on the EEG classification
problem and compare their performance against the sim-
ple aforementioned HMM models.

The organization of this paper is as follows. Section II
reviews HMMs and discusses several CHMM formula-
tions. Section III details our DCHMM formulation with
the extended forward-backward procedure and training
algorithm. Section IV presents our experimental results
on an EEG classification problem. Finally, section V con-
cludes this paper.

II. HMM and CHMM MODELs

A. Hidden Markov Models

The standard HMM model uses a discrete hidden state
at time t to summarize all the information before t and
thus the observation at any time depends only on the
current hidden state. The hidden state time sequence
in an HMM is a Markov chain. In this paper we use
first order HMMs with gaussian observations, in which
the observation distribution is normal at any state and
the state sequence is a first order Markov chain. Such an
HMM unrolled over several time slices is shown in Fig. 1.

A standard HMM is usually denoted as a triplet λ =
(π, A,B). π = {πi} (where

∑
i πi = 1) is the prior

probability distribution of hidden states. A = {aij}
(where

∑
j aij = 1) is the transition probability distri-

bution between hidden states. For discrete observation
case, the observation distribution is B = {bj(k)} (where∑

k bj(k) = 1). For the continuous observation case, the
observation distribution is usually modeled by a mixture
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Fig. 1. A first order HMM model. The empty circles {st} are
hidden states and the shaded ones {ot} observation nodes.

of gaussians

bj(o) =
∑

l

cjlN [o, µjl, Ujl], and
∑

l

cjl = 1 (1)

where o is the observation vector being modeled, cjl the
mixture weight, µjl the mean vector of the l-th gaussian
mixture for state j, Ujl the covariance matrix of the l-th
mixture for state j, and N is the gaussian density func-
tion. When modeling EEG time series, we set the length
of observation vector to be the number of channels. We
call the HMM with scalar observations univariate HMM
and the HMM with multivariate gaussian observations
multivariate HMM.

Three basic problems of interest for HMMs are: eval-
uating the likelihood P (o|λ) of an observation sequence
o given the HMM λ; finding the most likely hidden state
sequence S corresponding to an observation o given the
model λ, and learning the parameters of a model λ given
a set of observations O. The evaluation and learning of
an HMM both exploit an efficient forward-backward infer-
ence procedure [12]. The inference is exact for standard
HMM but can often only be approximate for more com-
plex models discussed in next section.

B. Coupled HMMs

Various extended HMM models have been used to solve
coupled sequence data analysis problems, such as com-
plex human action recognition [13], traffic modeling [14]
and biosignal analysis [8]. These new models aim to en-
hance the capabilities of standard HMM model by using
more complex architectures, while still being able to uti-
lize the established methodologies (e.g. EM algorithm) for
standard HMM models. Several typical examples from re-
cent literature are CHMMs [7], event-coupled HMMs [15],
factorial HMMs (FHMMs) [10] and input-output HMMs
(IOHMMs) [9], as shown in Fig. 2.

Fig. 2(b) is a specific type of coupled HMMs, devel-
oped by Kristjansson, Frey, and Huang [15], for model-
ing a class of loosely coupled time series where only the
onsets of events are coupled in time. Bengio and Fras-
coni [9] develop the IOHMMs (Fig. 2(d)) to address the
input-output sequence pair modeling problem. While the
IOHMMs may be viewed as a superset of CHMMs (in
which the hidden states from the previous time slice are
treated as the inputs at current time slice), the inputs in
IOHMM and the hidden states in CHMM are inherently

(a) (b)
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Fig. 2. Various new HMM architectures. The empty circles are the
hidden states and the shaded ones the observation nodes (except for
(d) where the lightly shaded ones are the input nodes). (a) Standard
coupled HMMs; (b) Event-coupled HMMs; (c) Factorial HMMs; (d)
Input-Output HMM.

different. A certain independence assumption of inputs
does not apply to the hidden states and the EM algo-
rithm used in [9] cannot be used for general CHMMs.
The FHMM shown in Fig. 2(c) enriches the representa-
tion power of hidden states by putting in multiple hidden
state chains for one HMM. It makes model training diffi-
cult or even impossible when the number of hidden state
chains is large. Approximate inferences have to be used.

This paper focuses on the CHMMs wherein the state of
one model at time t depends on the states of all models
(including itself) at time t− 1. Fig 2(a) shows two HMM
chains coupled together. For C chains coupled together,
the state transition probability is

P (S(c)
t |S(1)

t−1, S
(2)
t−1, ..., S

(C)
t−1) (2)

instead of P (S(c)
t |S(c)

t−1) as in a standard HMM model.
Here S

(c)
t is the hidden state of model c at time t. It is easy

to see that the number of free parameters in the transition
probability matrix is NC (if the number of hidden states
is N for every chain), which is exponential in the number
of HMMs coupled together. This is not a desirable feature
as it hinders accurate parameter learning.

There have been several variations of the standard
CHMM for which the model size and inference problems
are more tractable. Coupled HMMs proposed by Brand
[7] is one of them. In his paper, Brand substitutes the joint
conditional probability by the product of all marginal con-
ditional probabilities, i. e.

P (S(c)
t |S(1)

t−1, S
(2)
t−1, ..., S

(C)
t−1) =

∏

c′
P (S(c)

t |S(c′)
t−1) (3)

This formulation is erroneous since the right hand side
is not a properly defined probability density (does not



sum up to one). Rezek and Roberts [8] use a decoupled
forward variable for each HMM chain in a CHMM, that
is an approximation of the true forward variables. The
computational complexity is reduced but still exponential
in the number of HMM chains.

Kwon and Murphy [14] use CHMM to model freeway
traffic. They cast CHMM in a more general framework
called dynamic Bayesian network (DBN) in which the ap-
proximate inference can be done using Boyen-Koller (BK)
algorithm [16]. Murphy and Weiss [17] examine a fac-
tored version of the BK algorithm that has a complexity
of O(TCNF+1), where T is the length of sequence and F
the maximum fan-in of any node.

Saul and Jordan [11] reduce the number of parameters
in Eq. (2) by representing it as a linear combination of
conditional marginals. That results in a model they call
mixed memory Markov model, in which the joint transi-
tion probability is

P (S(c)
t |S(1)

t−1, S
(2)
t−1, ..., S

(C)
t−1) =

∑

c′
θc′cP (S(c)

t |S(c′)
t−1) (4)

They then develop EM algorithm, by introducing a miss-
ing variable for c′ in the equation, for training the model.

The DCHMM we propose in next section has the same
representation as Eq. (4) but is motivated by a spe-
cific distance-coupled application. We develop a different
training algorithm for the DCHMM model.

III. DCHMM FORMULATION

A. Motivation

In DCHMM, special parameters are used to directly
characterize the coupling strengths. DCHMM replaces
the joint conditional probability by a linear combination
of marginals as in Eq. (4), and uses the combination
weights θc′c to represent the coupling strengths between
two objects, c′ and c. This formulation was motivated
by a Raytheon project involving signals emitted by in-
teracting, mobile objects, wherein the degree of coupling
depends on the (time varying) distance between two ob-
jects, with longer distances implying weaker coupling in
some monotonic fashion. It retains the power of standard
CHMM (capable of modeling interactions), using a much
reduced parameter space.

The elements of DCHMM are the same as standard
HMMs except we add one parameter—the coupling coeffi-
cients Θ = {θc′c}, with 1 ≤ c′, c ≤ C and

∑C
c′=1 θc′c = 1.

Thus, the proposed DCHMM model can be characterized
by a quadruplet λ = (π,A, B, Θ), where Θ is the new
interaction parameter in the DCHMM formulation.

B. Forward-backward procedure

The forward-backward procedure is an essential part
of the HMM inference problem. In DCHMM formula-
tion, the exact forward-backward procedure needs expo-
nentially large number of forward and backward variables.
We have to resort to approximate inference when the num-
ber of coupled HMM chains is large.

For C HMMs coupled together, the extended forward
and backward variables should be defined jointly across
C HMMs as

αt(j1, ..., jC) = P (o1, ..., ot, St,j1 , ..., St,jC
|λ)

and

βt(j1, ..., jC) = P (ot+1, ..., oT |St,j1 , ..., St,jC
, λ)

It is easy to check that both variables cannot be simply
decoupled. The computational complexity for forward-
backward procedure would be O(TN2C), which is not
practical. Note that the time complexity for a single-
chain standard HMM is just O(TN2). Therefore we use a
slightly modified forward variable that can be calculated
in time O(TCN2) for each HMM chain. This modified
forward variable is calculated inductively as follows:

1. Initialization :
α

(c)
1 (j) = π

(c)
j · b(c)

j (o(c)
1 )

2. Induction :
α

(c)
t (j) = b

(c)
j (ot)

∑
c′ θc′c

∑
i

(
α

(c′)
t−1(i) · a(c′,c)

ij

)
, t > 1

3. Termination :
P (O|λ) =

∏
c

(∑
j α

(c)
T (j)

)

This can be seen as a factored version of the exact for-
ward procedure. Experiments show that P (O|λ) calcu-
lated this way is close to true P (O|λ) and the training
algorithm based on this new forward variable produces
reasonably good models. Later in the paper, we refer to
exact inference as the exact forward procedure and fac-
tored inference as the modified forward procedure.

C. Learning a DCHMM

The EM algorithm can be derived for learning a
DCHMM, as shown by Saul and Jordan [11]. But the
algorithm finally amounts to using statistics that are sim-
ilar to forward variables but need factored approxima-
tion. We take a different approach from EM and train
DCHMM using an iterative algorithm based on a self-
mapping transformation τ described by Baum [12]. The
transformation is motivated by the optimality condition
of standard Lagrange multiplier method and leads to an
iterative reestimation procedure. Convergence of the pro-
cedure is guaranteed by the following theorem.

Theorem 1: [18] Let P be a homogeneous polynomial

P(z1, ..., zn) =
∑

µ1,µ2,...,µn

cµ1,µ2,...,µnzµ1
1 zµ2

2 · · · zµn
n (5)

where cµ1,µ2,...,µn ≥ 0 and µ1 + · · ·+ µn = d. Then

τ : zi → zi∂P/∂zi∑
j zj∂P/∂zj

(6)

maps D : zi ≥ 0,
∑

zi = 1 into itself and satisfies
P(τ(zi)) ≥ P(zi). In fact, strict inequality holds unless zi

is a critical point of P in D.



We now derive the iterative optimization procedure for
learning the parameters of DCHMM. For simplicity, we
use P for P (O|λ) and restrict the discussion to optimiza-
tion of P with respect to A. Actually all parameters in
λ = (π, A,B, Θ) are subject to similar stochastic con-
straints so the discussion with respect to A here can be
easily duplicated for π, B and Θ. Let L be the Lagrangian
of P with respect to the constraints associated with A, we
have

L = P +
∑

i,c′,c

λ
(c′,c)
i




N∑

j=1

a
(c′,c)
ij − 1


 (7)

where λ
(c′,c)
i ’s are undetermined Lagrange multipliers. It

is easy to verify that P is locally maximized when

a
(c′,c)
ij =

a
(c′,c)
ij ∂P/∂a

(c′,c)
ij∑

k a
(c′,c)
ik ∂P/∂a

(c′,c)
ik

(8)

Similar arguments can be made for π, B and Θ param-
eters. The reestimation formula suggested by the above
equation is exactly the transformation τ shown in Eq. (6).

The transformation τ can be applied to more general
likelihood functions that are polynomials with positive co-
efficients (not necessarily homogeneous), according to a
relaxation presented by Baum and Sell [19]. One advan-
tage of this learning algorithm is that it can be applied to
minimize more complex objective functions for which EM
algorithm may be difficult to derive.

The difference from the standard HMM case for us-
ing this optimization algorithm is that we do not have a
simple form of calculating the derivative of the likelihood
function. While in the standard HMM training algorithm,
these derivatives reduce to a form in which only the for-
ward and backward variables are needed. In our case,
we need to calculate the derivatives iteratively by rip-
pling through time, just like the way we calculate forward
variables. Fortunately, this does not add too much com-
putational complexity since we can use similar forward
procedures for the derivatives and only one pass through
time is needed to calculate the forward variables and all
the derivatives.

IV. EXPERIMENTAL RESULTS

A. EEG data

The real EEG data used was downloaded from UCI
KDD archive website [20]. The data arose from a large
study to examine EEG correlates of genetic predisposition
to alcoholism. There are two groups of subjects in the
study: alcoholic and control. Each subject is exposed
to stimuli that are pictures of objects chosen from the
1980 Snodgrass and Vanderwart picture set. It contains
measurements, sampled at 256 Hz for 1 second, from 64
electrodes placed on the scalp.

We extracted from the archive two EEG datasets that
we call EEG-1 dataset and EEG-2 dataset, respectively.
Each dataset contains measurements for two subjects—
one alcoholic and one control subject. The EEG-1 dataset
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Fig. 3. EEG data samples for one alcoholic subject and one control
subject.

contains 10 measurements from 2 electrodes (F4, P8) for
each subject, i. e. there are two feature sequences (from
electrodes F4 and P8) for each data sample. The data
with scaled magnitude is plotted in Fig. 3. It can be seen
that extracting discriminative features from the data is a
highly nontrivial task. The EEG-2 dataset contains 20
measurements from the same 2 electrodes for each sub-
ject, but 10 of them are from out-of-sample runs and thus
chosen as test samples.

Our goal is to recognize the correct subject class (nor-
mal or alcoholic) when presented a test sample that con-
tains two feature sequences. Recognition accuracy is mea-
sured as the percentage of all test samples that have been
recognized correctly.

EEG signals are believed to be highly correlated with
the sleep stages of brain cells. The number of sleep stages
is about 5 or 6 according to Geva and Kerem [21]. We
set the number of hidden states to 5 when using HMMs
to model the EEG data.

B. Experimental setting

We want to mention a few details of the training of
HMMs here. Juang, Levinson, and Sondhi [22] point out
that using mixture of gaussians as the observation model
of HMM sometimes results in singularity problems during
training. They suggest solving the problem by re-training
from a different initialization. This is the method we use
for dealing with the singularity problem. Rabiner et al
[23] find, through empirical study, that accurately esti-
mating the means of gaussians is critical to learning good
models for continuous HMMs. In his experiment, Smyth
[24] uses a clever initialization scheme—using the k-means
algorithm to locate the means. We adopt the same strat-
egy. In our experiments, we scale all EEG values to be
within [−5, 5] to avoid severe mismatches between the
data and the initial (random) models.



For the EEG-2 dataset, we have 10 training samples
and 10 out-of-sample test samples for each subject. For
the EEG-1 dataset, we use 5-fold cross validation since we
don’t have out-of-sample test samples. That is, the full
dataset is partitioned into five equal-sized sets and each
set in turn serves as test data with the rest as training
data. The accuracy of each experiment is averaged over
the five sets. We repeat each experiment ten times for
each model to get the average and standard deviation of
classification accuracy across the ten experiments.

We compare ten models in total, for the EEG classifi-
cation task. For each type of model, we train two models,
one for each subject class. Then for any test sample, we
fit it to the two trained models and classify it as the one
with higher (log-)likelihood value. The ten models are:
HMM-1: univariate HMMs trained on feature 1 (F4) se-
quences only.
HMM-2: univariate HMMs trained on feature 2 (P8) se-
quences only.
Combined HMM: models combining HMM-1 and
HMM-2. For each test sample, we sum up the log-
likelihood value of fitting feature 1 sequence to HMM-1
and that of fitting feature 2 sequence to HMM-2 and rec-
ognize the sample based on the summed log-likelihood.
Multivariate HMM: bivariate HMMs trained on fea-
ture 1 and feature 2 sequence pairs.
FHMM-exact: bivariate FHMMs with exact inference.
FHMM-approximate: bivariate FHMMs with approx-
imate inference (using a structured variational approxi-
mation).
DCHMM-exact: DCHMMs with exact inference.
DCHMM-factored: DCHMMs with approximate infer-
ence.
BK-exact: the exact Boyen-Koller algorithm applied to
a two-chain CHMM structure.
BK-factored: the factored Boyen-Koller algorithm.
For FHMM models, we use the software package that can
be downloaded from http://www.cs.toronto.edu/~zoubin/.
For BK models, we use BNT toolbox that is created
by Murphy and can be downloaded from his website
http://www.cs.berkeley.edu/~murphyk/.

C. Results and discussions

The classification accuracy results on EEG-1 dataset
are shown in Table-I and the results on EEG-2 dataset
in Table-II. The first column lists the ten models. The
middle column presents the average accuracies with 95%
confidence intervals (±1.96σ, σ is the standard deviation).
The last column gives results of t-tests of each method
compared to the best one (multivariate HMM). A p-value
of less than 0.05 means that the difference between two
methods is statistically significant. When a method is
compared to itself, the p-value would be 1.0, as shown in
the tables.

All models except HMM-2 achieve reasonably good
recognition accuracies, indicating that the raw EEG data
can be successfully modeled by HMMs. The accuracies
in Table-II are generally lower than those in Table-I since

TABLE I

Classification results on EEG-1 dataset

Model Accuracy (%) p-value
HMM-1 80.5± 10.8 < 0.0001
HMM-2 70.5± 10.8 < 0.0001
Combined HMM 87.0± 6.9 0.024
Multivariate HMM 90.5± 5.6 1.0
FHMM-exact 87.0± 6.9 0.024
FHMM-approximate 88.0± 9.5 0.18
DCHMM-exact 90.0± 0.0 0.58
DCHMM-factored 80.0± 14.6 0.0006
BK-exact 84.0± 11.1 0.005
BK-factored 84.5± 12.6 0.015

TABLE II

Classification results on EEG-2 dataset

Model Accuracy (%) p-value
HMM-1 73.5± 6.6 0.008
HMM-2 61.5± 6.6 < 0.0001
Combined HMM 77.0± 8.3 0.43
Multivariate HMM 78.5± 8.0 1.0
FHMM-exact 72.5± 9.5 0.008
FHMM-approximate 73.5± 10.4 0.03
DCHMM-exact 72.0± 8.3 0.0026
DCHMM-factored 66.0± 7.7 < 0.0001
BK-exact 70.0± 20.7 0.029
BK-factored 70.0± 20.7 0.029

out-of-sample test samples are used for the experiments
on EEG-2 dataset.

Of all the multi-channel models, the last six (FHMMs,
DCHMMs and BK algorithms) are the more complex
ones, with more complex structure and more parameters
than combined HMM and multivariate HMM. Compar-
ing Table-I and II, we can see that the relative perfor-
mance of these more complex models (compared to sim-
pler ones, combined HMM and multivariate HMM) drops
from dataset EEG-1 to EEG-2. We think this is because
the simpler models generalize better so they work rela-
tively better on the out-of-sample test data.

The multivariate HMM emerges as the best approach
on both datasets, as highlighted in the tables. It out-
performs all the other models and is significantly better
than all but the highlighted methods. The reason may
be that since in EEG experiments the multiple electrodes
are placed on the same head, one state space is enough
and the correlations can be accurately captured by the
covariance matrix.

HMM-1 and HMM-2 are among the worst models be-
cause they only use one channel for classification, i. e.
use less information than other methods do. HMM-1 per-
forms much better than HMM-2 on both datasets, which
suggest that feature 1 might be more informative (or dis-



criminative) than feature 2. The combined HMM per-
forms fairly well, boosting the accuracy of single channel
HMMs dramatically by a simple combining strategy.

DCHMM-exact has superior performance on EEG-1
but it is computationally infeasible to model more chan-
nels. DCHMM-factored does not perform well, probably
due to inaccurate approximation of the forward variables.
One of our future interests is how to improve the approx-
imation. The FHMM models are similar to multivariate
HMM except they use more complex hidden state struc-
ture and more hidden states. Their performance is in the
middle class. The performance of BK algorithms is not so
good, probably because they are not designed specifically
for HMM/CHMM structures.

V. CONCLUSION and FUTURE WORK

We have compared several HMM and CHMM ap-
proaches, including a new CHMM formulation of our
own—DCHMM, on a multi-channel EEG classification
problem. Results show that the simple multivariate HMM
is superior in classification accuracy and low in computa-
tional complexity. Since the multivariate HMM models
the interdependence of two sequences by an observation
covariance matrix, the results suggest that the interac-
tions between two EEG channels can be well modeled
in the observation space. Modeling them in the state
space (CHMM approaches) does not necessarily translate
to better results, due to increasing model complexity and
additional associated assumptions.

Future work can proceed in several directions:
Modeling more channels. In the future we can apply the
HMM and CHMM approaches to simultaneously model
more channels of the EEG data.
More EEG data. We plan to experiment with larger EEG
datasets, for which we can use part of the data as valida-
tion set for model selection and thus to probably increase
classification accuracy.
Better approximate inference for CHMM. CHMMs with
exact inference give good results but are computation-
ally infeasible. More work has to be done to reduce the
computational complexity while retaining the modeling
power.
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