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Abstract – Statistical classification of hyperspectral 
data is challenging because the input space is high in 
dimension and correlated, but labeled information to 
characterize the class distributions is typically sparse. 
The resulting classifiers are often unstable and have 
poor generalization.  A new approach that is based on 
the concept of random forests of classifiers and 
implemented within a multiclassifier system arranged as 
a binary hierarchy is proposed.  The primary goal is to 
achieve improved generalization of the classifier in 
analysis of hyperspectral data, particularly when the 
quantity of training data is limited.  The new classifier 
incorporates bagging of training samples and adaptive 
random subspace feature selection with the Binary 
Hierarchical Classifier (BHC), such that the number of 
features that is selected at each node of the tree is 
dependent on the quantity of associated training data.  
Classification results from experiments on data acquired 
by the Hyperion sensor on the NASA EO-1 satellite over 
the Okavango Delta of Botswana are superior to those 
from our original best basis BHC algorithm, a random 
subspace extension of the BHC, and a random forest 
implementation using the CART classifier. 

 Keywords – binary hierarchical classifier, classification, 
EO-1, Hyperion, hyperspectral, Okavango Delta, 
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1. INTRODUCTION 

The increasing availability of data from hyperspectral 
sensors, particularly with the launch of the Hyperion 
instrument on the NASA EO-1 satellite, has generated 
tremendous interest in the remote sensing community.  
These instruments characterize spectral signatures with 
much greater detail than traditional multispectral sensors 
and thereby can potentially provide improved 
discrimination of targets [1]. However, hyperspectral data 
also present difficult challenges for supervised statistical 
classification, where labeled training data are used to 
estimate the parameters of the label-conditional probability 
density functions [2].  The dimensionality of the data is high 
(~200), there are often tens of classes C, and the quantity of 
training data is often small.  Sample statistics of training 

data may also not be representative of the true probability 
distributions of the individual class signatures, particularly 
for remote, inaccessible areas where training data are 
logistically difficult and expensive to acquire.  
Generalization of the resulting classifiers is often poor, 
thereby resulting in poor quality mapping over extended 
areas.  Various approaches have been investigated to 
mitigate the impact of these three issues.  

Small sample problems.  The substantial methodology in 
this area can be largely categorized as one of three 
approaches [3].  Regularization methods, including 
“shrinkage,” try to stabilize the estimated covariance matrix 
directly by weighting the sample covariance matrix as well 
as “supplemental” matrices [4].  The covariance matrix can 
be “shrunk” toward the identity matrix or a pooled 
covariance matrix.  Hybrid approaches assign weights to the 
sample covariance (normal and diagonal) matrix and a 
pooled covariance matrix [5].  While this may reduce the 
variance of the parameter estimates, the bias of the estimates 
can increase dramatically.   

Alternatively, the input space can be transformed into a 
reduced feature space via feature selection, feature 
extraction, or artificially adding labeled samples. Feature 
subset selection methods [6-9] may provide valuable domain 
knowledge about the importance of inputs, but are often 
implemented as sub-optimal greedy algorithms. They are 
also sensitive to anomalies in the training data, particularly 
for small training samples, and thus may not yield robust 
classifiers with good generalization. They also do not 
exploit the redundancy exhibited in hyperspectral data.  
Specific techniques for identifying and augmenting the 
existing training data with unlabeled data have also been 
developed and shown to enhance supervised classification 
[10-13]. However, convergence of the updating scheme can 
be problematic, and it is affected by selection of the initial 
training samples and by outliers.   

Extraction methods such as the principal component 
transformation or the Fisher discriminant may result in some 
loss of interpretability and can be poorly estimated due to 
limited training data. In analysis of hyperspectral data, Lee 
and Landgrebe proposed methods for feature extraction 
from hyperspectral data based on decision boundaries that 

3370-7803-8350--8/04/$20.00 (C) 2004 IEEE.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 25, 2009 at 15:30 from IEEE Xplore.  Restrictions apply.



maximize separation of data in multiple two-class problems 
[14]. These decision boundary feature extraction (DBFE) 
methods are often effective for two-class problems, but do 
not exploit correlation between sequential bands.  Jia and 
Richards developed the Segmented Principal Components 
Transformation (SPCT) whereby the original bands are 
grouped into subsets of highly correlated adjacent bands to 
which the K-L transform is applied.  The most significant 
principal components are then selected from each subset to 
yield a feature vector with reduced dimension [15].  The 
approach treats inter-band correlation globally and does not 
guarantee good discrimination capability because the PCT 
preserves variance in the data rather than maximizing 
discrimination between classes.  Kumar et al. investigated 
band combining techniques, motivated by best-basis 
functions, as a means of feature extraction in a pairwise 
classifier framework [16].  Adjacent bands are selected for 
merging (alt. splitting) in a bottom-up (alt. top down) 
fashion using the product of a correlation measure and a 
Fisher discriminant.  Morgan et al. [17] suggested a similar 
correlation-based band combining approach, in conjunction 
with a covariance shrinkage method, for both a top-down 
and bottom up hierarchical classifier to ameliorate the small 
training data problem. 

The third approach uses an ensemble of “weaker” 
classifiers.  Bagging involves bootstrapped sampling of the 
original data and generating a classifier specific to each 
sample [18].  When the training data set in the (sub -)sample 
is very small, the potential for improved diversity and 
reduced impact of outliers is offset by degradation in 
individual classifier performance [19].  Boosting also 
combines weak individual classifiers to develop an 
improved classifier, but by re-weighting training data to 
increase sensitivity to incorrectly classified training 
observations.  While boosting can improve performance for 
large training samples, it not useful for small sample 
problems, particularly in the presence of outliers.  When the 
input space is large, random subspace (RS) feature selection 
can potentially provide improved classifier diversity, while 
stabilizing parameter estimates, by randomly reducing the 
number of inputs to each classifier in the ensemble and 
constructing multiple classifiers in the resulting random 
input space [20], [21].  The method is potentially attractive 
for problems with redundant input features (e.g. 
hyperspectral data) and when outliers exist in the training 
data.  Recently, approaches referred to as “random forests of 
classifiers” involve developing forests trees from randomly 
sampled subspaces of input features, then combining the 
resulting independent outputs via voting or a maximum a 
posteriori rule [22].  These methods typically achieve 
superior generalization for small training samples, but are 
computationally intensive and interpretability may be 
limited. 

Large output space problems.  Output decomposition 
using binary classifiers in a multiclassifier framework has 
been shown to be more successful than traditional 1-of-C 
classifiers for many problems [23].  Decomposition methods 

using pairwise classifiers [16][24][25], error correcting 
output codes (ECOC) [26], and binary decision trees 
[27][28] have all been investigated in this context.  Pairwise 
classifiers develop a separate classifier for each pair of 
classes, thereby resulting in ( )2O C classifiers which must 
be combined to determine the final class label.  These 
methods often yield simple classifiers with excellent 
discrimination for specific pairs, but are generally inefficient 
for problems with a large number of output classes. They 
also do not exploit natural groupings of classes, which can 
improve classifier robustness and transferability.   

In the ECOC, a C-class problem is decomposed into 
C binary problems whereby the original class is then 
encoded into a C  binary vector of a coding matrix.  Novel 
observations are labeled as members of the class whose 
codeword is closest to that formed by the outputs of the 
C classifiers.  Similar to the pairwise classifiers, the binary 
structure mitigates the impact of small training samples and 
often yields robust, stable classifiers, but the ECOC may be 
problematic for large numbers of output classes as the length 
of a code associated with the binary classifiers C can be 
quite large.  Further, the code matrix design is not based on 
the characteristics of the classes it represents, thereby 
limiting interpretability of the classifier.   

Binary trees, which often provide an attractive approach 
for decomposing large output space problems, can be 
constructed using a variety of splitting functions involving 
single or multiple features and output classes.  To address 
the high dimensional output problem while exploiting the 
affinity for spectrally similar classes, Kumar et al. proposed 
a Binary Hierarchical Classifier (BHC) [29] to decompose a 

( )2C > -class problem into a binary hierarchy of ( )1C −  

simpler 2-class problems that can be solved using a 
corresponding hierarchy of classifiers, each based on a 
simple linear discriminant.  The method was extended by 
Morgan et al. [17] for small training samples using an 
adaptive best basis BHC, which exploits the class specific 
correlation structure between sequential bands of 
hyperspectral data and utilizes an adaptive regularization 
approach to stabilize covariance estimates.  An adaptive 
random subspace feature selection approach was also 
investigated within the BHC framework (RS BHC) as a 
means of improving classifier performance when the 
number of training samples is extremely small [30].   

In this paper, we investigate a random forest of binary 
classifiers as a means of further increasing diversity of the 
hierarchical classifiers produced by the BHC.  Our goal is to 
use the BHC structure to exploit the advantages of natural 
class affinity while improving generalization in 
classification of hyperspectral data when the number of 
training samples is small.  A secondary goal is to mitigate 
the impact of sensor noise and residual atmospheric artifacts 
on the classification results.  The paper is organized as 
follows:  the BHC method, including the best basis (BB 
BHC), random subspace (RS BHC), and random forest 
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implementations (RF BHC), is described in Section II; 
classification results for test and independent test sets of 
data acquired by the NASA EO-1 Hyperion sensor for 
mapping land cover in the Okavango Delta of Botswana are 
presented in Section III and compared to those obtained 
from the BB BHC, RS BHC, and a random forest 
implementation using CART [22] [27];  results from all the 
methods are evaluated, and new directions for future work 
are discussed in Section IV. 

II. RANDOM FOREST BINARY HIERARCHICAL 
CLASSIFICATION METHOD 

The top-down Binary Hierarchical Classifier (BHC) 
framework recursively decomposes a C-class problem into 
C-1 two-(meta)class problems via a deterministic simulated 
annealing method [29]. The root classifier tries to optimally 
partition the original set of classes into two disjoint meta-
classes while simultaneously determining the Fisher 
discriminant that separates these two subsets. This 
procedure is recursed, i.e., the meta-class nΩ  at node n is 
partitioned into two meta-classes ( )2 2 1,n n+Ω Ω , until the 
original C classes are obtained at the leaves. The tree 
structure, as shown in Figure 1, allows the more natural, 
easier discriminations to be accomplished earlier.   

While the BHC exploits natural class affinities, it is 
affected at lower levels of the hierarchy if the input space is 
large and the number of training samples is small. The BB-
BHC ameliorates this effect by utilizing an ancestor 
covariance matrix while exploiting the inter-band serial 
correlation through an adaptive, class dependent, band 
aggregation process [17].  A band combining step is 
performed on highly correlated, spectrally adjacent bands 
prior to the partitioning of meta-classes, thereby reducing 
the number of inputs relative to the number of training data 
points.  Bands are aggregated until a user defined ratio, R, 
between the number of training data for the respective 
(meta)classes and input dimension is achieved.  Typically, R 
is selected to be at least 5. 

The RS BHC method extends the BHC by utilizing the 
random subspace method as a second phase to reduce the 
actual number of inputs while sharpening classifier 
boundaries [31].  The BB BHC method is used to first 
construct the hierarchy, then random subspace sampling is 
performed at each node of the tree where the ratio R is not 
satisfied.  For each (meta) class m with mn  vector-valued 

observations, ( )mm n= 1X X , ...., X , a subset of elements 

of ( )1 ,...i i ikx x=X  with dimension m mp n R k= <  is  then 

randomly selected from the k-dimensional set of features.  

The resulting modified training set ( )1 m

r r r
m n=X X ,...., X  

consists of observation vectors, ( )1 ,...r r r
i i ipx x=X , where the 

same subset of features is selected for each element 

( ), 1,...r r
i mi n∈ =X X .  Classifiers are constructed for each 

random subspace, and results are typically combined at each 

node of the hierarchy via majority voting.  The number of 
random subspaces selected at each such node 
is ( )/ ,s mN k p F= × where value of F  is a user supplied 

input.  Our empirical evidence indicates good results are 
achieved for 2 4F< < , but improvement in classification 
accuracy is not significant for 4F > .  A best basis version 
(BB RS BHC) of the method also incorporates band 
aggregation in the random subspace phase, but terminates 
the band combining when correlation between successive 
band groups falls below a specified threshold.   

The random forest implementation of the BHC (RF 
BHC) incorporates random subspace feature selection in the 
actual development of the tree, whereas the RS BHC 
method uses it only as a means to reduce the input space and 
refine the decision boundaries obtained by the BB BHC.  
For the BHC, this is particularly advantageous as random 
subspace sampling is performed only at nodes where the 
ratio, R, is not exceeded.  Thus, sub-sampling of the input 
features typically occurs only at lower levels of the tree.  For 
moderate sized training samples, bagging can thus increase 
diversity of the multiclassifier system.  For each tree in the 
RF BHC, a bootstrap sample of observations is selected.  At 
each metaclass node m, a random subspace of features of 
dimension m mp n R= , is selected if mp k< .  Otherwise, 

the full feature set is used to determine the decision 
boundary for the classifier at that node.  This guarantees that 
the number of input features selected at each node 
automatically satisfies the ratio criterion, R.  The tree is then 
developed using the resulting set of features selected at each 
node.  The process is repeated to grow a forest of 
identically, independently distributed random vectors 
associated with the individual trees.  Because the sample 
sizes at the higher levels of the tree are large, random sub-
sampling of features is still deferred to lower levels of the 
tree.  A second version of the method achieves greater 
diversity by forcing sub-sampling of features at each node 

of the hierarchy using ( )min ,m m fp p N= , where fN  is a 

user selected input.  The two implementations are referred to 
hereafter as the RF BHC1 and RF BHC2 methods, 
respectively. 

III.  RESULTS 

The NASA EO-1 satellite acquired a sequence of data 
over the Okavango Delta, Botswana in 2001-2003.  The 
Hyperion sensor on EO-1 acquires data at 30 m2 pixel 
resolution over a 7.7 km strip in 242 bands covering the 
400-2500 nm portion of the spectrum. Preprocessing of the 
data was performed by the UT Center for Space Research to 
mitigate the effects of bad detectors, inter-detector 
miscalibration, and intermittent anomalies.  Uncalibrated 
and noisy bands that cover water absorption features were 
removed, and the remaining 145 bands were included as 
candidate features:  [10-55, 82-97, 102-119, 134-164, 187-
220].   

The data analyzed in this study, acquired May 31, 2001, 
consist of observations from 14 identified classes 
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representing the land cover types in seasonal swamps, 
occasional swamps, and drier woodlands located in the distal 
portion of the Delta [31].  The class names and 
corresponding numbers of ground truth observations used in 
the experiments are listed in Table 1, and the image in 
Figure 2a shows the complex spatial distribution of classes 
over the study area.  Ten randomly sampled partitions of the 
training data were sub-sampled such that 75% of the 
original data were used for training and 25% for testing.  In 
order to investigate the impact of the quantity of training 
data on classifier performance, these training data were then 
sub-sampled to obtain ten samples comprised of 50%, 30%, 
and 15%, of the original training data.  All classifiers were 
evaluated using the ten test samples composed of 25% of the 
original training data.  Because the training and test data are 
spatially collocated, an independent test set from a nearby 
region was also acquired and used to evaluate the classifiers.  
Hereafter, these data are referred to as the test and 
independent test data, respectively. 

 
Table 1:   Class codes, names, and number of training 
samples for Hyperion data, May 31, 2001 
 

 Class 
No. 

samples 
1 water 270 
2 hippo grass 101 
3 floodplain grasses1 251 

    4 floodplain grasses2 215 
5 reeds1 269 
6 riparian 269 
7 firescar2 259 
8 island interior 203 
9 acacia woodlands 314 

10 acacia shrublands 248 
11 acacia grasslands 305 
12 short mopane 181 
13 mixed mopane 268 
14 exposed soils 95 

 
Experiments were performed using the BB BHC, the 

random subspace method using both the original inputs and 
best basis features (RS BHC and BB RS BHC, and the two 
variations of the random forest BHC method (e.g. RF BHC1 
and RF BHC2). Results from a random forest 
implementation using bagging in conjunction with the 
CART classifier were included for comparison.  The RF 
CART approach selects a random subspace of features at 
each node of the tree.  The most discriminating feature of 
the subset is then selected to perform the split.   

For the random subspace method, the ratio R was set at 5, 
and the value of F was set to 4.  (Sensitivity analysis 
indicated that larger values of F do not improve results for 
this data set.)  Although authors recommend various values 
for the dimension of the random subspace and the number of 
trees in a random forest, there do not appear to have been 
any systematic studies of the issue at this time.  In our 
experiments, the dimension of the random subspace was 
determined adaptively in the BHC, but was always selected 

such that the ratio of training data to input features, R, was 
at least 5.  For the RF BHC2, the value of fN  was selected 

to be 20.  In order to have somewhat comparable inputs, 20 
input features were randomly selected in the RF CART 
method.  100 trees were grown for each experiment as 
sensitivity studies showed that larger forests do not provide 
improved results for this data set. 

Figure 2b contains a representative classification result.  
Average classification accuracies and associated standard 
deviations for the 10 experiments conducted with each 
classifier are shown in Figure 3.  The overall trends in 
accuracies relative to the quantity of training data are similar 
for all methods when applied to the test data set.  At the 
75% sampling rate, the accuracies for the BHC methods are 
all quite similar, although the RF BHC1 is somewhat higher 
and the RF BHC2 somewhat lower than the BB BHC and 
the RS methods.  The results obtained using the BB BHC 
method consistently have the lowest overall average 
accuracies.  The RS methods yielded similar accuracies to 
the BB BHC approach at 75% and 50% sampling rates, but 
improved relative to the BB BHC as sampling rates were 
reduced.  This appears to demonstrate the value of reduced 
redundancy in the input space and improvements achieved 
by better tuning of the decision boundaries, even though the 
tree structure is the same as for the BB BHC and random 
sampling of the feature space is not required until lower 
levels of the tree (particularly for the higher training data 
fractions).  Results obtained from using the original and best 
basis aggregated data with the RS BHC are not statistically 
different, although the accuracies from using the original 
data are always somewhat higher.  Because improvement 
was marginal in the RS BHC and the increase in associated 
computation is substantial, best basis band aggregation was 
not investigated in conjunction with the random forest 
methods. The overall accuracies of the random forest 
methods improve relative to the other BHC methods as the 
fraction of training data is reduced.  The RF BHC1 method 
is consistently the highest of all methods for the test set, 
although the difference in average accuracies of the two 
BHC implementations of the random forest method 
decreases with smaller training samples.  Thus, the test data 
appear to indicate that there is no increased value in forcing 
random sampling of the feature space, and thereby inducing 
greater instability within the forest, at every node of the tree.  
The standard deviations of the accuracies from all the BHC 
methods are essentially the same at the 75% sampling rate, 
but as the sampling rate of training data is reduced, the 
standard deviations from the BB BHC and RS BHC 
methods increase approximately linearly, while those from 
the RF BHC methods remain small and are nearly constant.  
The overall accuracy of the RF CART method for the test 
set is lower than that of all the BHC methods by more than 
two standard deviations at the 75% and 50% sampling rates, 
and by more than 1 standard deviation at the 30% and 15% 
sampling rates.  This is indicative of the value of the 
inherent exploitation of class affinities by the BHC 
approaches.  Similar to the RF BHC methods, the standard 
deviations of the accuracies are approximately constant for 
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the RF CART approach, although they are higher than for 
the RF BHC experiments. 

Overall accuracies obtained from analysis of the 
independent test set also support the use random sampling 
of the input space, but follow different trends.  As with the 
test data, the BB BHC yielded the lowest overall average 
accuracy at all sampling rates. The incremental 
improvement in average accuracy achieved by the random 
subspace method increases with reduced sampling rates, but 
is not statistically significant as the standard deviations of 
the accuracies also increase substantially with lower 
sampling rates. Both of the random forest BHC 
implementations and the RF CART method yielded higher 
accuracies for the independent test data at all sampling rates 
than the BB BHC and RS BHC methods, demonstrating the 
greater generalization of these approaches.  Unlike results 
from the test data, the RF BHC2 method consistently 
produced the highest overall average accuracies for the 
independent test set, indicating the value of the increased 
diversity of trees achieved by forcing random sampling of 
the input space at all nodes.  Results from the RF CART 
method degraded with sampling rates below 30%.  The 
overall accuracies of the RF BHC1 actually increase for the 
independent test set with decreased training sample size, 
indicating that the reduced quantity of training data is offset 
by the greater diversity provided by smaller random subsets.  
This is likely related to both the redundancy of the highly 
correlated feature space in hyperspectral data and the fact 
that smaller input spaces should also contain fewer 
irrelevant features.  The difference in overall classification 
accuracies for the RF BHC1 and RF BHC2 methods is 
reduced with smaller sampling rates as the two methods 
converge to a single sampling scheme as forced sampling is 
eventually not required, even at the top node of the tree. 

The class specific accuracies are shown in Figure 4 for 
the random forest methods.  While the performance of the 
RF BHC2 is generally better than the RF BHC1 and RF 
CART methods at both 75% and 15% sampling rates, the 
overall higher classification accuracy at 75% is strongly 
influenced by its performance for Class 2 and Class 11.  
Class 2, hippo grass, has a small training sample and its 
spectral signature in 30m2 pixels is quite similar to water as 
many pixels are mixed with water.  Class 11, acacia 
grasslands, is a mixed class that is most often confused with 
other grasses or acacia shrubs.  At the 15% sampling rate, 
both BHC methods produce similar results for all classes, 
while the RF CART method has lower average accuracies 
with substantially higher standard deviations than the RF 
BHC methods for most classes.  In fact, the higher apparent 
accuracy of the RF CART method for Class 2 is not 
statistically significant as the standard deviation of the 
average sample accuracy is more than 12.  While the 
number of training samples for exposed soils is small, its 
signature is easily discriminated from that of vegetation, so 
classification accuracies are consistently high, even at low 
sampling rates. 

IV.  CONCLUSIONS AND FUTURE WORK 

The primary purpose of the study was to investigate the 
performance of random feature subset selection methods in 
terms of generalization.  The secondary goal was to 
investigate the performance of the methods when applied to 
noisy data sets.  An implementation that focused on tuning 
decision boundaries of the BHC and three random forest 
approaches were investigated.  For the data analyzed in 
these experiments, the value of the RS BHC extension is 
marginal in terms of improved classification accuracy of the 
independent test set.  The computational requirements 
increase substantially, particularly with smaller training 
sample fractions which require more subset feature 
selection.  Also, the improved SNR from band aggregation 
is offset by the improved diversity achieved by random 
sampling of the original features. 

The random forest methods all yield superior results for 
both test and independent test data, with the improvement 
being greater for the independent test set, thereby indicating 
improved generalization.  The value of the BHC for classes 
with natural affinities is also demonstrated in the RF BHC 
implementations relative to the RF CART method.  For high 
sampling rates, the value of increased diversity associated 
with the RF BHC2 method produced higher classification 
accuracies.  However, as the size of the training sample was 
reduced, the improved diversity of the RF BHC1 resulting 
from the smaller feature subsets dominated the forced 
diversity of the RF BHC2.  Additional study is required to 
better characterize this issue.  In this context, elimination of 
irrelevant and possibly redundant input features should also 
be considered in the RF BHC.  Previous results by Oza and 
Tumer [32] indicate that this may be a promising direction.  
Other classifiers should also be investigated within the RF 
BHC framework.  Overall, the RF BHC methods appear to 
be quite promising in terms of generalization, but should be 
applied to many more data sets with different characteristics 
in order to better assess their overall performance.  
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     Figure 1.  BINARY HIERACHICAL(multi)-CLASSIFIER framework for solving a C-class problem.   

 

             
 

Figure 2 a) Subset of Hyperion data (Bands 51, 149, 31),   b)  Classified image of Hyperion data 
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Figure 3.  Average classification accuracies and standard deviations of accuracies for experiments on the test data 
and the independent test set using different fractions of training data. 
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Figure 4. Average classification accuracies and standard deviations of accuracies by class for experiments performed 
using the 75% and 15% training fraction rates (as extremes). 
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