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The Bayes error rate gives a statistical lower bound on the error
achievable for a given classification problem and the associated
choice of features. By reliably estimating this rate, one can assess the
usefulness of the feature set that is being used for classification.
Moreover, by comparing the accuracy achieved by a given classifier
with the Bayes rate, one can quantify how effective that classifier is.
Classical approaches for estimating or finding bounds for the Bayes
error, in general, yield rather weak results for small sample sizes;
unless the problem has some simple characteristics, such as Gaussian
class-conditional likelihoods. This article shows how the outputs of a
classifier ensemble can be used to provide reliable and easily
obtainable estimates of the Bayes error with negligible extra
computation. Three methods of varying sophistication are described.
First, we present a framework that estimates the Bayes error when
multiple classifiers, each providing an estimate of the a posteriori class
probabilities, are combined through averaging. Second, we bolster
this approach by adding an information theoretic measure of output
correlation to the estimate. Finally, we discuss a more general method
that just looks at the class labels indicated by ensemble members and
provides error estimates based on the disagreements among
classifiers. The methods are illustrated for artificial data, a difficult
four-class problem involving underwater acoustic data, and two
problems from the Proben1 benchmarks. For data sets with known
Bayes error, the combiner-based methods introduced in this article
outperform existing methods. The estimates obtained by the
proposed methods also seem quite reliable for the real-life data sets
for which the true Bayes rates are unknown.
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For a given feature space, the Bayes error rate provides
a lower bound on the error rate that can be achieved
by any pattern classifier acting on that space, or on
derived features selected or extracted from that space
(Devijver and Kittler 1982; Duda et al. 2001;
Fukunaga 1990; Young and Calvert 1974). This rate is
greater than zero whenever the class distributions
overlap. When all class priors and class-conditional
likelihoods are completely known, one can, in theory,
obtain the Bayes error directly (Fukunaga 1990).
However, when the pattern distributions are unknown,
the Bayes error is not so readily obtainable. Thus, one
does not know how much of the error that is being
obtained is due to overlapping class densities, and
how much additional error has crept in because of

deficiencies in the classifier and limitations of the
training data.

Classifier deficiencies, such as mismatch of the
model’s inductive bias with the given problem,
incorrect selection of parameters, poor learning
regimes, etc., may be overcome by changing or
improving the classifier. Other errors that arise from
finite training data sets, mislabeled patterns, and
outliers, for example, can be directly traced to the data.
It is therefore important to not only design a good
classifier, but also to estimate limits or bounds to an
achievable classification rate given the available data.
Such estimates help designers decide whether it is
worthwhile to try to improve upon their current
classifier scheme, use a different classifier on the same
data set, or acquire additional data as in ‘‘active
learning’’ (Cohn et al. 1994).1 Moreover, the Bayes rate
directly quantifies the usefulness of the feature space,
and may indicate that a different set of features is
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1. We have ourselves faced this dilemma inmedical and oil services (electrical
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needed. For example, suppose we estimate that one
cannot do better than 80% correct classification on
sonar signals based on their Fourier spectra, and we
desire at least 90% accuracy. This indicates that one
needs to look at other feature descriptors, say Gabor
wavelets or auto-regressive coefficients (Ghosh et al.
1992), rather than try to improve the current classifier
without changing the feature set.

Over the years, several methods have been devel-
oped to estimate or obtain bounds for the Bayes rate.
Some key methods are summarized in the next section,
where we also highlight the difficulties in estimating
this value.

In the past decade, the use of ensembles=
combiners=meta-learners has become widely prevalent
for solving difficult regression or classification prob-
lems (Sharkey 1999; Ghosh 2002). In a classifier
ensemble, each component classifier tries to solve the
same task. The classifiers may receive somewhat
different subsets of the data for ‘‘training’’ or parameter
estimation (as in bagging [Breiman 1996] and
boosting [Drucker et al. 1994; Freund and Schapire
1996]), and may use different feature extractors on the
same raw data. The system output is determined solely
by combining the outputs of the individual classifiers
via (weighted) averaging, voting, order statistics,
product rule, entropy, stacking, etc. A host of
experimental results from both neural network and
machine-learning communities show that such
ensembles provide statistically significant improve-
ments in performance, along with tighter confidence
intervals (Sharkey 1996; Dietterich 2000). Moreover,
theoretical analysis has been developed for both
regression (Perrone 1993; Hashem 1993) and classi-
fication (Tumer and Ghosh 1996a; 1996b; 1999) to
estimate the gains achievable. Combining is an
effective way of reducingmodel variance and, in certain
situations, it also reduces bias (Perrone 1993; Tumer
and Ghosh 1996). It works best when each classifier is
well trained, but different classifiers generalize in
different ways, i.e., there is diversity in the ensemble
(Lowe and webb 1991).

Given the increased acceptance and use of
ensembles, a natural question arises as to whether this
framework, which is based on multiple ‘‘opinions,’’ can
exploit this multiplicity to provide an indication of the
limits to performance, i.e., the Bayes error. In this paper,
we answer the question above in the strong affirmative,
and show that good estimates are obtainable with very
little extra computation. In fact, we show that such
estimates are readily available and a useful ‘‘side effect’’
of the ensemble framework. In ‘‘Bayes Error Estimation
with Ensembles’’ we introduce three combiner based
error estimators. First, we derive an estimate to the
Bayes error based on the linear combining theory
introduced by the authors (Tumer and Ghosh 1996a;
1996b). This estimate relies on the result that com-
bining multiple classifiers reduces the model-based
errors stemming from individual classifiers (Tumer and
Ghosh 1996a). It is therefore possible to isolate the
Bayes error from other error components and compute

it explicitly. Because this method relies on classifiers
that can reasonably approximate the a posteriori class
probabilities, it is particularly well-coupled with
feed-forward neural networks that are universal
approximators (Richard and Lippmann 1991; Ruck
et al. 1990; Snoemaker et al. 1991). Then we provide
an information theoretic correlation estimate that both
simplifies and improves the accuracy of the process.
More precisely, we use mutual information to deter-
mine a ‘‘similarity’’ measure between trained classifiers.
After that, we present an empirical method for assessing
classification error rates given any base classifier. The
plurality error method introduced herein focuses on the
agreement between different classifiers and uses
the combining scheme to differentiate between various
error types. By isolating certain repeatable errors (or
exploiting the diversity among classifiers [Sharkey et al.
1995]), we derive a sample-based estimate of the
achievable error rate.

In ‘‘Experimental Bayes Error Estimates,’’ we apply
these methods to both artificial and real-world
problems, using radial basis function networks and
multi-layered perceptrons as the base classifiers. The
results obtained both from the linear combining theory
and the empirical plurality error are reported and show
that the combining-based methods achieve better
estimates than classical methods on the problems
studied in this article.

BACKGROUND

Bayes Error
Consider the situation where a given pattern vector x

needs to be classified into one of L classes. Let PðciÞ
denote the a priori class probability of class i, 1 � i � L,
and pðxjciÞ denote the class likelihood, i.e., the con-
ditional probability density of x given that it belongs to
class i. The probability of the pattern x belonging to a
specific class i, i.e., the a posteriori probability Pðcijx), is
given by the Bayes rule:

Pðci jxÞ ¼
pðxjciÞPðciÞ

pðxÞ ; ð1Þ

where pðxÞ is the probability density function of x and
is given by:

pðxÞ ¼
XL
i¼1

pðxjciÞPðciÞ: ð2Þ

The classifier that assigns a vector x to the class with
the highest posterior is called the Bayes classifier. The
error associated with this classifier is called the Bayes
error, which can be expressed as (Fukunaga 1990;
Garber and Djonadi 1988):

Ebayes ¼ 1�
XL
i¼1

Z
Ci

PðciÞpðxjciÞdx; ð3Þ
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where Ci is the region where class i has the highest
posterior.

Obtaining the Bayes error from Equation 3 entails
evaluating the multi-dimensional integral of possibly
unknown multivariate density functions over
unspecified regions (Ci). Due to the difficulty of this
operation, the Bayes error can be computed directly
only for very simple problems, e.g., problems involving
Gaussian class densities with identical covariances.
Alternatively, one can estimate the densities using
general techniques (e.g., through Parzen windows) as
well as priors, and then use numerical integration
methods to obtain the Bayes error. However, since
errors are introduced both during the estimation of the
class densities and regions, and compounded by a
numerical integration scheme, the results are only
approximate given finite data. Therefore, attention has
focused on approximations and bounds for the Bayes
error, which are either calculated through distribution
parameters or estimated through training data
characteristics.

Parametric Estimates of the Bayes Error
One of the simplest bounds for the Bayes error is

provided by the Mahalanobis distance measure
(Devijver and Kittler 1982). For a 2-class problem, let
S be the non-singular, average covariance matrix
(S ¼ Pðc1Þ � S1 þ Pðc2Þ � S2), and mi be the mean
vector for classes i ¼ 1;2. Then the Mahalanobis
distance D, given by:

D ¼ ðm1 � m2Þ
T S�1 ðm1 � m2Þ; ð4Þ

provides the following bound on the Bayes error
(Devijver and Kittler 1982):

Ebayes �
2 Pðc1ÞPðc2Þ

1þ Pðc1ÞPðc2ÞD
: ð5Þ

The main advantage of this bound is the lack of
restriction on the class distributions. Furthermore, it is
easy to calculate using only sample mean and sample
covariance matrices. It therefore provides a quick way
of obtaining an approximation for the Bayes error.
However, it is not a particularly tight bound, and more
importantly as formulated above, it is restricted to a
2-class problem.

Another bound for a 2-class problem can be
obtained from the Bhattacharyya distance. For a
2-class problem, the Bhattacharyya distance is given by
(Devijver and Kittler 1982):

r ¼ �ln
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðxjc1Þpðxjc2Þ
p

dx: ð6Þ

In particular, if the class densities are Gaussian with
mean vectors and covariance matrices mi and Si for

classes i ¼ 1,2, respectively, the Bhattacharyya dis-
tance is given by (Fukunaga 1990):

r¼ 1
8
ðm2 � m1Þ

T S1 þS2

2

� ��1

ðm2 � m1Þþ
1
2
ln

S1þS2
2

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1j jjS2j

p :

ð7Þ

Using the Bhattacharyya distance, the following
bounds on the Bayes error can be obtained (Devijver
and Kittler 1982):

1
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Pðc1ÞPðc2Þexpð�2rÞ

p� �
� Ebayes � expð�rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðc1ÞPðc2Þ:

p
ð8Þ

In general, the Bhattacharyya distance provides a
tighter error bound than the Mahalanobis distance, but
has two drawbacks: It requires knowledge of the class
densities, and is more difficult to compute. Even if the
class distributions are known, computing Equation 6 is
not generally practical. Therefore, Equation 7 has to be
used even for non-Gaussian distributions to alleviate
both concerns. While an estimate for the Bhattacharyya
distance can be obtained by computing the first and
second moments of the sample and using Equation 7,
this compromises the quality of the bound. A more
detailed discussion of the effects of using training
sample estimates for computing the Bhattacharyya
distance is presented in Djouadi et al. (1990).

A tighter upper bound than either the Mahalanobis
distance or the Bhattacharyya distance-based bounds
is provided by the Chernoff bound (Duda et al. 2001;
Fukunaga 1990):

Ebayes � Pðc1Þ
sPðc2Þ

1�s
Z

pðxjc1Þ
spðxjc2Þ

1�sdx; ð9Þ

where 0 � s � 1. For classes with Gaussian densities,
the integration in Equation 9 yields expð�rcðsÞÞ, where
the Chernoff distance, rcðsÞ, is given by (Fukunaga
1990):

rcðsÞ ¼
sð1� sÞ

2
ðm2 � m1Þ

TðsS1 þ ð1� sÞS2Þ
�1ðm2 � m1Þ

þ 1
2
ln

sS1 þ ð1� sÞS2j j
S1j jsjS2j

1�s : ð10Þ

The optimum s for a given mi and Si combination can be
obtained by plotting rcðsÞ for various s values
(Fukunaga 1990). Note that the Bhattacharyya dis-
tance is a special case of the Chernoff distance, since it
is obtained when s ¼ 0:5. Although the Chernoff
bound provides a slightly tighter bound on the error,
the Bhattacharyya bound is often preferred because it is
easier to compute (Fukunaga 1990).
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The common limitation of the bounds discussed so
far stems from their restriction to 2-class problems.
Garber and Djouadi extend these bounds to L-class
problems (Garber and Djouadi 1988). In this scheme,
upper and lower bounds for the Bayes error of an
L-class problem are obtained from the bounds on the
Bayes error of L subproblems, each involving L� 1
classes. The bounds for each ðL� 1Þ-class problem are
in turn obtained from L� 1 subproblems, each
involving L� 2 classes. Continuing this progression
eventually reduces the problem to obtaining the Bayes
error for 2-class problems. Based on this technique, the
upper and lower bounds for the Bayes error of an
L-class problem are, respectively, given by (Garber and
Djouadi 1998):

EL
bayes � min

a2f0;1g

1
L�2a

XL
i¼1

ð1�PðciÞÞ EL�1
bayes;i þ

1� a
L�2a

 !
;

ð11Þ

and

EL
bayes �

L� 1
LðL� 2Þ

XL
i¼1

ð1� PðciÞÞ EL�1
bayes;i ; ð12Þ

where EL
bayes is the Bayes error for an L-class problem,

EL�1
bayes;i is the Bayes error of the ðL� 1Þ-class

subproblem, where the ith class has been removed, and
a is an optimization parameter. Therefore, the Bayes
error for an L-class problem can be computed starting

from the
� c
2

�
pairwise errors.

Non-Parametric Estimate of the Bayes
Error

The computation of the bounds for 2-class problems
presented in the previous section and their extensions
to the general L-class problem depend on knowing (or
approximating) certain class distribution parameters,
such as priors, class means, and covariances between
classes. Although it is, in general, possible to estimate
these values from the data sample, the resulting bounds
are not always satisfactory.

A method that provides an estimate for the Bayes
error without requiring knowledge of the class
distributions is based on the nearest neighbor (NN)
classifier. The NN classifier assigns a test pattern to the
same class as the pattern in the training set towhich it is
closest (defined in terms of a predetermined distance
metric).

The Bayes error can be given in terms of the error of
an NN classifier. Given a 2-class problem with suf-
ficiently large training data, the following result holds
(Cover and Hart 1967):

1
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ENN

p� �
� Ebayes � ENN : ð13Þ

This result is independent of the distance metric
chosen. For the L-class problem, Equation 13 has been
generalized to (Cover and Hart 1967):

L� 1
L

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� L

L� 1
ENN

r !
� Ebayes � ENN : ð14Þ

Equations 13 and 14 place bounds on the Bayes
error provided that the sample sizes are sufficiently
large. These results are particularly significant in that
they are attained without any assumptions or
restrictions on the underlying class distributions.
However, when dealing with limited data, one must be
aware that Equations 13 and 14 are based on
asymptotic analysis. Corrections to these equations
based on sample size limitations, and their extensions
to k-NN classifiers, have also been discussed
(Buturovic¤ 1993; Fukunaga 1985; Fukunaga and
Hummels 1987a; 1987b).

BAYES ERROR ESTIMATION WITH
ENSEMBLES

In this section, we present two methods that use the
results obtained from multiple classifiers to obtain an
estimate for the Bayes error. They assume that the base
classifiers provide reasonable estimates of the class
posterior probabilities.Multilayered Perceptions (MLP)
and Radial Basis Function Networks (RBF) trained
using a ‘‘1-of-C’’ desired output encoding, and either
the mean squared error or cross-entropy as the cost
function, can serve this purpose (Richard and
Lippmann 1991).

Bayes Error Estimation Based on
Decision Boundaries

There are many ways of combining the outputs of
multiple classifiers. For example, if each classifier only
provides the class label, then majority vote can be used.
If the outputs of the individual classifiers approximate
the corresponding class posteriors, simple averaging of
the posteriors and then picking the maximum of these
averages typically proves to be an effective combining
strategy. The effect of such an averaging combining
scheme on classification decision boundaries and their
relation to error rates was theoretically analyzed by the
authors (Tumer and Ghosh 1996a; 1996b). More
specifically, we showed that combining the outputs of
different classifiers ‘‘tightens’’ the distribution of the
obtained decision boundaries about the optimum
(Bayes) boundary. The classifier outputs are modeled
as:

fmi ðxÞ ¼ piðxÞ þ Emi ðxÞ; ð15Þ

where piðxÞ is the posterior for ith class on input x (i.e.,
PðCi jxÞ), and Emi ðxÞ is the error of the mth classifier in
estimating that posterior (Richard and Lippmann 1991;
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Tumer and Ghosh 1996b). Note that it is assumed that
the individual classifier is chosen from an adequately
powerful family (e.g., MLPs or RBFs with sufficient
number of hidden units), and are well trained. In that
case, modeling the Emi ðxÞs as having zero mean is
reasonable.

If the errors in obtaining the true posteriors (Emi ðxÞs)
are i.i.d., combining can drastically reduce the overall
classification error rates. However, these errors are
rarely independent, and generally depend on the
correlation among the individual classifiers (Ali and
Pazzani 1995; Breiman 1996; Jacobs 1995; Tumer and
Ghosh 1996b). Using the averaging combiner whose
output to the ith class is defined by:

favei ðxÞ ¼ 1
N

XN
m¼1

fmi ðxÞ; ð16Þ

leads to the following relationship between Eave
model and

Emodel (See [Tumer and Ghosh 1996a; 1996b] for
details; papers downloadable from www.lans.ece.
utexas.edu=publications.html):

Eave
model ¼

1þ dðN � 1Þ
N

Emodel ; ð17Þ

where Eave
model and Emodel are the expectations of the

model-based error for the average combiner and
individual classifiers, respectively, N is the number of
classifiers combined, and d is the average correlation of
the errors Emi ðxÞ (see Eq. 15) among the individual
classifiers.2

This result indicates a new way of estimating the
Bayes error. The total error of a classifier (Etotal) can be
divided into the Bayes error and model-based error,
which is the extra error due to the specific classifier
(model=parameters) being used. Thus, the error of a
single classifier and the ave combiner are, respectively,
given by:

Etotal ¼ Ebayes þ Emodel ; ð18Þ
Eave
total ¼ Ebayes þ Eave

model : ð19Þ

Note that Emodel can be further decomposed into bias
and variance (Breiman 1996; Geman et al. 1992). The
effect of bias=variance on the decision boundaries has
been analyzed in detail (Tumer and Ghosh 1996a).

The Bayes error, of course, is not affected by the
choice of the classifier. Solving the set of Equations 17,
18, and 19 for Ebayes provides:

Ebayes ¼
NEave

total � ððN � 1Þd þ 1ÞEtotal

ðN � 1Þð1� dÞ : ð20Þ

Equation 20 provides an estimate of the Bayes error as a
function of the individual classifier error, the combined

classifier error, the number of classifiers combined, and
the correlation among them. These three values need to
be determined in order to obtain an estimate of the
Bayes error using the expression derived above. Etotal is
estimated by averaging the total errors of the individual
classifiers.3 Eave

total is the error of the average combiner.
The third value is the correlation among the errors of the
classifiers and, in the next two sections, we introduce
two methods that estimate this quantity.

Posterior-Based Correlation
In this section, we use the class posteriors to

determine the average error correlation, d. This estimate
is denoted dPOS. Inspecting Eq. 15, one sees an
immediate problem, since fmi ðxÞs are known, but the
true posteriors, piðxÞs, are not. Therefore, we first need
to estimate piðxÞs and then derive dPOS.

For a pattern x belonging to class i, if
favei ðxÞ � favej ðxÞ 8j, i.e., the classification is correct, the
posterior estimate for each class is given by:
p̂pkðxÞ ¼ favek ðxÞ. In essence, this estimate is simply the
average posterior. Note that asymptotically each fmk ðxÞ,
and hence the composite favek ðxÞ, converges to the true
posterior, so the estimate is consistent.

If, on the other hand, pattern x is incorrectly
classified, the posteriors for each class k are estimated
by:

p̂pkðxÞ ¼
1
joi j

X
y2oi

f avek ðyÞ; ð21Þ

where joi j is the cardinality of oi , the set of patterns
that belong to class i. Intuitively, we assign the average
class posterior of the corresponding class to patterns
that were incorrectly classified. Asymptotically, this
case will not arise as each classifier yields the true
posteriors, so the overall estimate is still consistent.

Finally, we determine the error of each classifier as
the deviation from this estimated posterior (from Eq.
15) and compute the statistical correlation between the
errors of any two individual classifiers. The correlation
estimate, reported as dPOS in this article, is the average
pairwise correlation between classifiers.

By using the error and correlation estimates rather
than the true error and correlation terms, we obtain an
estimate to Equation 20:

EPOS ¼ N ÊEave
total � ððN � 1ÞdPOS þ 1ÞÊEtotal

ðN � 1Þð1� dPOSÞ
; ð22Þ

where EPOS is the Bayes error estimate based on the
correlation estimated in this section, and ½̂��� represents
the estimate of ½��. This Bayes error estimate is par-
ticularly sensitive to the estimation of the correlation,
and we will discuss the impact of using dPOS later.

2. For i.i.d. errors,Equation17 reduces toEave
model ¼ 1

N Emodel, a result very similar

to that which was derived by Peronne and Cooper (1993) for regression

problems, and by us (Tumerand Ghosh1996a) for classification problems.

3. Averaging classifier errors to obtain Etotal is a different operation than aver-

aging classifieroutputs to obtain Eave
total (Tumerand Ghosh1996a; 1996b).
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Mutual Information-Based Correlation
Although theoretically sound, estimating the cor-

relation as described in the previous section presents
two difficulties. First, the correlations among the errors
is computed pairwise, yielding an average correlation
estimate that does not take the number of classifiers
into account. As the number of classifiers to be
combined increases, the true error correlation between
an individual classifier and the aggregate of the other
classifiers in the ensemble should tend to increase. In
order to reflect this trend, the correlation estimate
should depend on the number of classifiers combined.
Second, calculating the correlation among errors
involves estimating the posteriors (through training
data and class labels as described earlier, since the error
is defined as the deviation from the correct posteriors).
This is, of course, a very challenging problem in itself,
and as such needs to be dealt with accordingly if the
accuracy of the correlation estimates need to be
improved. In this section, we introduce an information
theoretic estimate to the correlation that addresses both
of these issues, and yields a more accurate and easier to
use Bayes error estimate (Tumer et al. 1998).

Mutual information is an information theoretic
measure of how much two random variables ‘‘know‘‘
about each other. Intuitively, it is the reduction in the
uncertainty of one variable caused by observing the
outcome of the other (Cover and Thomas 1991). For
two discrete random variables X1 and X2, with prob-
ability densities pðx1Þ and pðx2Þ, respectively, and joint
probability density pðx1; x2Þ, mutual information is
given by (Cover and Thomas 1991):

IðX1;X2Þ ¼
X
x1;x2

pðx1; x2Þ log
pðx1; x2Þ
pðx1Þpðx2Þ

: ð23Þ

To estimate mutual information between continuous
random variables, one must estimate the non-discrete
distribution of those random variables. A common
method for doing this is simply to divide the samples
into discrete bins and estimate the mutual information
as if discrete random variables were being used (e.g.,
counting the frequency of events) [Battiti 1994;
Bollacker and Ghosh 1996; Fraser and Swinney
1986]. We have chosen to create a set of ten bins over
the range of sample values for each random variable.
The bounds of the range were set to be plus or minus
two times the standard deviation around the mean of
the sample distribution. Samples that were beyond
these bounds were placed in the nearest bin.

The error correlation estimate is obtained by
averaging the mutual information between individual
classifiers and an averaging combiner as a fraction of
the total entropy in the individual classifiers. As such,
this measure meets the desideratum that the correlation
estimate depend on the number of classifiers available
to the combiner. Based on this mutual information
based-similarity measure, we obtain an estimate to the
Bayes error:

EMI ¼
N ÊEave

total � ððN � 1ÞdMI
N þ 1ÞÊEtotal

ðN � 1Þð1� dMI
N Þ

; ð24Þ

where dMI
N represents the mutual information-based

correlation estimate among N classifiers.

PLURALITY ERROR
The previous section focused on estimating the

Bayes error using ensembles that linearly combine
posterior probability estimates. In this section, we
present a ‘‘plurality error’’ based on the agreements=
disagreements among the most likely class indicated by
the individual classifiers. Thus, it is applicable to any
type of base classifier. Moreover, unlike the Bayes rate,
this error measure is based on the available data and
provides a value that reflects the discriminatory in-
formation present in the labeled data set. Note that the
number of coincident errors in the test set is a measure
of diversity in the ensemble. In (Sharkey and Sharkey
1997), four levels of diversity were identified, which are
related to our characterization of disagreements among
ensemble members in this section. However, this work
then focused on ways of creating diverse ensembles,
rather than how this diversity could be used to indicate
performance limits.

Given an ensemble of N classifiers, let niðxÞ be the
number of classifiers that have chosen class i for pattern
x. That is,

niðxÞ ¼
XN
m¼1

Ifmi ðxÞ;

where Ifmi is the ‘‘correct classification’’ indicator
function for class i and classifier m, and is equal to one
if fmi ðxÞ � fmj ðxÞ, 8j, and zero otherwise.

Now, for a given pattern x and real valued l
(0 � l � :5), a class i is called:

� A l-likely class4 if: niðxÞ
N

� 1� l.
� A l-unlikely class if: niðxÞ

N � l.
� A l-possible class, if it is neither l-likely nor

l-unlikely.

Table 1 shows, for l ¼ :3, how classes are categorized
as a function of the number of classifiers that picked
them. For example, if we have six classifiers (N ¼ 6),
and two classifiers pick class i, three classifiers pick
class j, and one classifier picks class k, classes i and j
are called :3-possible, whereas class k is called
.3-unlikely.

With this characterization of classes, let us analyze
potential error types. Errors occurring in patterns where
the correct class is l-likely are most easily corrected.
These errors are generally caused by slight differences
in training schemes between classifiers. Since the

4. A l-likely class does not necessarily imply a correct class.
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evidence for the correct class outweighs the evidence
for all incorrect classes, even simple combiners can, in
general, correct this type of error. Errors where both the
correct class and an incorrect class are l-possible are
more problematic, as are errors where all classes
including the correct one are l-unlikely. In these errors,
the evidence for the correct class is comparable to the
evidence for at least one of the incorrect classes.
Although some of these errors may not be corrected by
specific combiners, all are, in principle, rectifiable with
the proper combining scheme.

However, there are situations where it is extremely
unlikely that combining � sophisticated or otherwise
� can extract the correct class information. These are
errors where the correct class is l-unlikely, while an
incorrect class is l-likely. In these errors, most evidence
points to a particular erroneous class.5 Therefore, the
probability of encountering an error of this sort provides
a ‘‘plurality error’’ or a bound on combiners based on
plurality (e.g., majority vote, plurality vote) since those
combiners cannot correct these errors6. More formally:

EPLU ¼
X
x

X
i

pðxÞ � pðx 2 oiÞ � p niðxÞ
N

� l
� �

�

p 9j s:t:
njðxÞ
N

� 1� l
� �

: ð25Þ

Intuitively, given a pattern x that belongs to class i, we
determine the probability that i is l-unlikely while there
exists a class that is l-likely. We then perform a
weighted average of these values over all patterns to
obtain the plurality error (the weight for each pattern x
is given by the likelihood of that pattern, or pðxÞ given
in Equation 2). In the experiments performed in the
following section, we present results based on l ¼ :3.
These results are typical of mid-range l values (e.g.,
values that are not too near zero where the l-possible
class becomes too large, or near .5where the l-possible
class disappears).

EXPERIMENTAL BAYES ERROR
ESTIMATES

In this section, we apply the Bayes error estimation
strategy discussed earlier. First, two artificial data sets
with known Bayes errors are used. Then a more
complex 6-class radar data set, also with known error
rate, is examined. Subsequently, the combiner-based
estimates are applied to a real-life underwater sonar
problem. Finally, we present results from two data sets
extracted from the Proben1 benchmarks (Prechelt
1994). In all the following tables, the plus=minus
figures are provided to derive various confidence
intervals (e.g., we provide sffiffiffi

N
p , where s is the standard

deviation, and N is the number of elements in the
average). For example, for a confidence interval of 95%,
one needs to multiply the plus=minus figures by t:025N�1.

Artificial Data
In this section, we apply the method to two artificial

problems with known Bayes error rates. Both these
problems are taken from Fukunaga (1990), and are
8-dimensional, 2-class problems, where each class has
a Gaussian distribution with equal priors. For each
problem, the class means and the diagonal elements of
the covariance matrices (off-diagonal elements are
zero) are given in Table 2. From these specifications,
we first generated 1,000 training examples and 1,000
test examples. Then we generated a second set of
training=test sets with 100 patterns in each. The goal of
the second step in this experiment is to insure that the
method works with small sample sizes. The Bayes error
rate for both these problems (10% for DATA1 and 1.9%
for DATA2) is given in Fukunaga (1990).

It is a well-known result that the outputs of certain
properly trained feed-forward artificial neural networks
approximate the class posteriors (Bishop 1995; Richard
and Lippmann 1991; Ruck et al. 1990). Therefore,
these networks provide a suitable choice for the
multiple classifier combining scheme discussed earlier.
Two different types of networks were selected for this
application. The first is a multi-layered perceptron
(MLP), and the second is a radial basis function (RBF)
network. A detailed account on how to select, design,
and train these networks is available in Haykin (1994).

The single hidden layered MLP used for DATA1 had
five units, and the RBF network had five kernels, or
centroids.7 For DATA2 the number of hidden units and
the number of kernels were increased to twelve. For the
case with 100 training=test samples, five different
training=test sets were generated and twenty runs were
performed on each set. The reported results are the
averages over both the different samples and different
runs. Note that more elaborate cross-validation is really
not needed for this simple problem. For the case with
1,000 training=test samples, the variability between
selecting different training sets was minimal. For that
reason, we report the results of twenty runs on one
typical set of 1,000 training=test samples.

TABLE 1 Class Categories for k ¼ :3

N .3-Unlikely .3-Possible .3-Likely

2 0 1 2
3 0 1 2 3
4 0 1 2 3 4

5 0 1 2 3 4 5
6 0 1 2 3 4 5 6
7 0 1 2 3 4 5 6 7

8 0 1 2 3 4 5 6 7 8
9 0 1 2 4 5 6 7 8 9

5.This situation typically indicates anoutlieroramislabeled pattern.

6. On rare occasions, combiners based on posteriors (e.g., averaging) can

correct these errors by havinga single correct decisionoverride the erroneous

decisions ofa larger numberof classifiers. 7.The network sizes were established experimentally.
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Tables 3 and 4 provide the correlation factors and
combining results for DATA1 and DATA2, respectively.
Notice that for the 1,000 sample cases, the MLP
combining results for DATA1 fail to show any
improvements over individual classifiers (row with
N ¼ 1). This is caused by the simplicity of the problem
and the lack of variability among different MLPs. The
similarity between MLPs can be confirmed by the high
correlation among them as shown in Tables 3 and 4.
The RBF networks suffer less from the high
correlations, since variations between kernel locations
introduce differences that cannot be introduced in an
MLP. Consequently, combining RBFs does provide
moderate improvements over single RBF results. In
general, using a smaller sample size reduces the cor-
relation among the individual classifiers at the expense
of classification performance. The lone exception is the
mutual information-based estimate for MLPs where a
reduction in sample size actually increases the
correlation.

Table 5 shows the different estimates for the Bayes
error. For each data set, the Bayes error is estimated
through the combining results, using Tables 3 and 4,
and Equations 22 and 24. Each row of Tables 3 and 4
provide an estimate for the Bayes error. These values
are averaged to yield the results that are reported. When
the correlation among classifiers is close to one, the

Bayes estimate becomes unreliable because the
denominator in Equation 22 is near zero. In such cases,
it is not advisable to use the classifiers with high
correlation in the Bayes estimate equation. The EPOS
error estimates reported in this article are based on
classifiers whose correlations (dPOS) were less than an
experimentally selected threshold.8 For example, based
on the correlations in Table 3, for DATA1 with 1,000
samples, only RBF networks and RBF=MLP hybrids
were used in determining the Bayes estimate, whereas
for DATA1 with 100 samples, all available classifiers
(MLPs, RBFs and MLP=RBF hybrids) were used.

Studying Tables 3, 4, and 5, leads us to conclude
that the performance of the base classifiers has little
impact on the final estimate of the Bayes error. For
example, for DATA1, when the individual classifiers
were trained and tested on 1,000 patterns, they
performed well, coming close in performance to the
true Bayes error rate. In those cases, combining pro-
vided limited improvements, if at all. For individual
classifiers trained and tested on only 100 samples, on
the other hand, neither MLPs nor RBF networks
provided satisfactory results. Combining provided
moderate improvements in some, but not all cases

TABLE 2 Artificial Data Sets

Data Set
Characteristics

i (dimension)

1 2 3 4 5 6 7 8

m1 0 0 0 0 0 0 0 0
DATA1 s1 1 1 1 1 1 1 1 1

m2 2.56 0 0 0 0 0 0 0
s2 1 1 1 1 1 1 1 1

m1 0 0 0 0 0 0 0 0
DATA2 s1 1 1 1 1 1 1 1 1

m2 3.86 3.10 0.84 0.84 1.64 1.08 0.26 0.01
s2 8.41 12.06 0.12 0.22 1.49 1.77 0.35 2.73

TABLE 3 Combining Results and Correlations for Artificial Data 1

1000 samples 100 samples

Type of Classifier Number of Classifiers Error Rate (in %) dMI dPOS Erros Rate (in %) dMI dPOS

1 10.52�0.04 13.02�0.17
MLP 3 10.55�0.02 .86 13.03�0.17 .89

5 10.54�0.02 .87 .99 12.90�0.17 .89 .96
7 10.53�0.02 .87 12.88�0.15 .90

1 10.39�0.18 12.54�0.57
RBF 3 10.06�0.09 .60 12.19�0.43 .50

5 10.13�0.06 .61 .82 11.98�0.33 .52 .67
7 10.16�0.06 .62 11.90�0.29 .53

3 10.32�0.06 .61 11.48�0.33 .51
MLP=RBF 5 10.34�0.04 .63 .62 11.51�0.28 .52 7 .01

7 10.33�0.03 .64 11.33�0.27 .52

8. For this study, only classifiers with correlations less than or equal to .97 were

used.
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(note that combining multiple MLPs still yielded poor
results). Yet, the Bayes error estimates were still
accurate and close to both the true rate and the rate
obtained with 1,000 samples. This confirms that the
method is not sensitive to the actual performance of its
classifiers, but to the interaction between the individual
classifier performance, combiner performance, and the
correlation among the classifiers. The Bayes error
estimate only becomes unreliable when the classifier
errors start to become exceedingly large, a case where
the assumption that the classifiers approximate the
class posterior breaks down. We observe this
phenomenon for DATA2 with the small sample size
where 100 samples is not enough to learn the complex
8-dimensional Gaussian structure.

For the Mahalanobis and Bhattacharyya distances,
the bounds were based on the true mean and
covariance matrices. (Using sample means and
covariances would have further weakened the results.)
Notice that although the Bhattacharyya bound is
expected to be tighter than the Mahalanobis bound,

this is not so for DATA1. The reason for this dis-
crepancy is two-fold: First, the Mahalanobis distance
provides tighter bounds as the error becomes larger
(Devijver and Kittler 1982); second, two terms con-
tribute to the distance of Equation 7, one for the
difference of the means and one for the difference of
the covariances. In the case where the covariances are
identical, the second term is zero, leading to a small
Bhattacharyya distance, which in turn leads to a loose
bound on the error. DATA1, by virtue of having a large
Bayes error due exclusively to the separation of the
class means, represents a case where the Bhattacharyya
bound fails to improve on the Mahalanobis bound. For
DATA2, the Bhattacharyya distance provides bounds
that are more useful, and the upper bound in particular
is very similar to the upper bound provide by the NN
method. For both DATA1 and DATA2, the Bayes error
rate estimates obtained through the classifier com-
bining method introduced in this article provide
estimates closer to the true error than any of the tra-
ditional methods. This is particularly remarkable since

TABLE 4 Combining Results and Correlations for Artificial Data 2

1000 samples 100 samples

Type of Classifier Number of Classifiers Error Rate (in %) dMI dPOS Error Rate (in %) dMI dPOS

1 3.22�0.09 5.63�0.13
MLP 3 3.10�0.06 .82 5.62�0.11 .94

5 3.11�0.05 .83 .91 5.59�0.09 .94 .99
7 3.12�0.05 .83 5.58�0.11 .95

1 3.49�0.06 6.00�0.66
RBF 3 3.33�0.04 .58 4.42�0.47 .43

5 3.36�0.03 .60 .71 3.78�0.35 .45 .53
7 3.31�0.02 .61 3.51�0.31 .46

3 2.77�0.05 .62 4.24�0.13 .45
MLP=RBF 5 2.67�0.05 .63 .35 4.31�0.12 .47 7 .27

7 2.65�0.04 .63 4.35�0.11 .48

TABLE 5 Bayes Error Estimates for Artificial Data (given in %)

DATA1 DATA 2

Actual Bayes Error 10.00 1.90
Mahalanobis Bound Ebayes � 18:95 Ebayes � 14:13
(True mean and covariance) (D ¼ 6:55) (D ¼ 10:16)
Bhattacharyya bounds 5:12 � Ebayes � 22:04 0:23 � Ebayes � 4:74
(True mean and covariance) (r ¼ 0:82) (r ¼ 2:36)

EPOS (1000 samples) 9.24� .33 2.15� .17
EMI (1000 samples) 9.96� .12 2.05� .24
EPLU (1000 samples) 9.29� .11 2.59� .12
Nearest Neighbor Bounds 8:73 � Ebayes � 15:94 2:15 � Ebayes � 4:20
(1000 samples)

EPOS (100 samples) 10.70� .21 2.36� .25
EMI (100 samples) 10.56� .36 2.53� .52
EPLU (100 samples) 9.47� .22 2.70� .17
Nearest Neighbor Bounds 8:62 � Ebayes � 15:76 2:43 � Ebayes � 4:75
(100 samples)
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both experiments are biased towards the classical
techniques because they have Gaussian distributions.
Furthermore, both for DATA1 and DATA2, and for both
sample sizes, the MI-based method provides the most
accurate Bayes error estimates among the com-
biner-based methods.

Radar Data
The radar data set, provided by Shoemaker et al.

(1991), represents estimated probability densities for a
six-class problem based on two particular character-
istics of radar emissions. The data set is visualized in
Figure 1 and summarized in Table 6, where we provide
the means and diagonal covariances of the two-
dimensional Gaussians that constitute each of the six

classes. The within class priors determine the
preponderance of each particular Gaussian within that
class, whereas the class priors determine the relative
frequency of that particular class.

Five of the six classes consist of mixtures of
Gaussians with diagonal variances, while the sixth is a
single Gaussian. The data set is normalized to lie within
the square �1 � x1; x2 � 1. Thus, this is a fairly com-
plex data set, but its optimal (Bayes) error rate is known
to be 3.7% (Shoemaker et al. 1991). In previous work
on this data set, based on training=test sizes of
600=1200, rates between 84.4% and 95.5% were
achieved by six different network types (MLP, RBF,
etc.), each with four different settings of network sizes
(Beck and Ghosh 1992).

In the experiments reported here, we used 600
training samples and 1,200 test samples. TheMLPs had
a single hidden layer that consists of ten units, andwere
trained for eighty epochs, determined by a validation
set. The RBF networks had twelve kernels, and each
class had at least one kernel initially assigned to it. The
RBF networks, where both the kernel sizes and location
were modified during training, were trained for sixty
epochs.

Table 7 provides the classification and combining
results, along with the correlation estimates. The
posterior-based correlation for combining multiple
MLPs is once again very high, indicating both that the
combining should provide minimal gains and that the
Bayes error estimates based on this value (EPOS) are not
to be trusted.9 Table 8 provides the Bayes errors for the

FIG. 1 Class densities for the radar data set.

TABLE 6 Radar (Mixture of Gaussians) Data Sets

Class
Class
Priors

Within
Class
Priors

Mean
Stan. Dev.
(�1073)

x1 x2 s1 s2

1 .083 .333 .600 .242 7.45 13.1
.667 7 .225 .528 8.44 12.0

2 .25 .667 7 .581 7 .572 1.41 11.1
.333 7 .581 7 .682 2.81 14.5

3 .667 7 .750 7 .462 7.03 6.78
.25 .167 .788 7 .594 9.14 14.5

.167 7 .338 7 .528 7.03 13.1
4 .083 .50 7 .450 7 .132 8.44 11.6

.50 7 .675 7 .198 9.14 9.68
5 .167 .836 7 .113 7 .748 3.51 2.13

.167 7 .124 7 .741 5.48 5.81
6 .167 1.0 7 .338 7 .770 4.22 1.74

9.We follow the same criterion as in the previous section and disregard classi-

fiers for which dPOS � :97. In fact this ‘‘worsens’’ EPOS, as including the MLP

results (whichareartificially lowdue to thehigh correlation) lowers the estimate

to EPOS ¼ 3:6%.
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different methods. Once again, the MI-based ensemble
methodprovides themost accurateBayeserror estimate.

Underwater Sonar Data
The previous section dealt with obtaining the Bayes

error for artificial problems with known Bayes error. In
this section, we apply the method to a difficult
underwater sonar problem. From the original sonar
signals of four different underwater sources, two
qualitatively different feature sets are extracted (Ghosh
et al. 1996). The first one (FS1), a 25-dimensional set,
consists of Gabor wavelet coefficients, temporal
descriptors, and spectral measurements. The second
feature set (FS2), a 24-dimensional set, consists of
reflection coefficients based on both short and long
time windows, and temporal descriptors.

Table 9 shows the class descriptions and the number
of patterns used for training and testing in each of the
two feature sets. The training sets are not comprised of
the same patterns, due to difficulties encountered in the
collection and pre-processing of the data. The test sets,
however, have the exact same patterns, allowing both
the combining and the comparison of the results.10 The
availability of two feature sets is an excellent oppor-
tunity to underscore the dependence of the Bayes error
on the feature selection. Since both feature sets were
extracted from the same underlying distributions, the
differences between the Bayes errors obtained will
provide an implicit rating method for the effectiveness
of the extracted features in conserving the discrimi-
nating information present in the original data.

Two types of feed-forward artificial neural networks,
namely an MLP with a single hidden layer with forty

units, and an RBF network with forty kernels, are used
to classify the patterns. The error rates for each network
on each feature set, averaged over twenty runs, as well
as the results of the ave combiner are presented in
Tables 10 and 11. The rows where N ¼ 1 give single
classifier results. Note that the improvements due to
combining are much more noticeable for this difficult
problem.

Table 12 shows the estimates for the Bayes error
using Equations 22 and 24, error rates for classifiers and
combiners, and correlation values from Tables 10 and
11, as well as the plurality error-based estimate. For
comparison purposes, we also provide the lower and
upper bounds obtained by the nearest neighbor

TABLE 7 Combining Results for the Radar Data

Type of
Classifier

Number of
Classifiers

Error Rate
(in %) dMI dPOS

1 5.95 � 0.05
3 5.86 � 0.04 .91

MLP 5 5.79 � 0.03 .92 .97
7 5.80 � 0.03 .92

11 5.76 � 0.02 .92
15 5.77 � 0.02 .92

1 5.42 � 0.08
3 5.17 � 0.02 .68

RBF 5 5.14 � 0.02 .69 .78
7 5.14 � 0.02 .70

11 5.11 � 0.01 .70
15 5.12 � 0.01 .70

3 5.31 � 0.03 .81
5 5.34 � 0.02 .82

MLP=RBF 7 5.38 � 0.02 .82 .64
11 5.44 � 0.02 .82
15 5.42 � 0.02 .82

TABLE 8 Bayes Error Estimates for Radar Data
(given in %)

Actual Bayes Error 3.70

EPOS 4.23 � .14
EMI 3.86 � .13
EPLU 4.72 � .06
Nearest Neighbor Bounds 3.08 � Ebayes � 6.08

TABLE 9 Description of Data for Underwater Sonar
Data

Feature Set1 Feature Set 2

Class Description Training Testing Training Testing

Porpoise Sound 116 284 142 284
Ice 116 175 175 175
Whale Sound 1 116 129 129 129
Whale Sound 2 148 235 118 235

Total 496 823 564 823

TABLE 10 Combining Results for the Sonar Data
(FS1)

Type of
Classifer

Number of
Classifiers

Error Rate
(in %) dMI dPOS

1 7.47 � 0.10
3 7.19 � 0.06 .78

MLP 5 7.13 � 0.06 .79 .88
7 7.11 � 0.05 .80

11 7.11 � 0.04 .80

1 6.79 � 0.09
3 6.15 � 0.07 57

RBF 5 6.05 � 0.04 60 .70
7 5.97 � 0.05 60

11 5.86 � 0.04 61

3 6.11 � 0.08 60
MLP=RBF 5 6.11 � 0.07 62 .35

7 6.08 � 0.07 63
11 6.07 � 0.08 63

10. In this study, we do not combine classifiers trained on different feature sets,

as our purpose is to obtain the Bayes error rate of a particular data set. In

general, though, combining multiple feature sets does improve the classifica-

tion performance significantly (Tumerand Ghosh1996b).
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classifier (Equation 14), and the Mahalanobis and
Bhattacharyya bounds.

The bounds provided by the Mahalanobis distance
are not tight enough to be of particular use, since all the
classifiers (MLP, RBF, NN, and various combiners)
provide better results than this bound. The bounds
provided by the Bhattacharyya distance, on the other
hand, are not dependable due to the assumptions made
on the distributions. Equation 7 is derived for Gaussian
classes, and can lead to significant errors when the
class distributions are not Gaussian. Furthermore, since
Equations 5 and 8 provide bounds for the 2-class case,
and need to be extended to the 4-class case through
the repeated application of Equation 11, the errors are
compounded. Therefore, in this case, only bounds
provided by the nearest neighbor method can be
reliably compared to the combiner-based estimates.

Proben1=UCI Benchmarks
In this section, we apply the combiner-based Bayes

error estimation method to selected data sets from the
Proben1 benchmark set11 (Prechelt 1994). The data
sets that were included in this study are the GLASS1,
and GENE1 sets, and the name and number
combinations correspond to a specific training=
validation=test set split consistent with the Proben1
benchmarks. Note that these two data sets are also
available from the UCI machine learning repository12

(Blake et al. 1998). However, the training=test sets
used in this study are from the Proben1 splits and
therefore the results presented here cannot be
meaningfully compared to results from different tra-
ining=test set splits obtained from the UCI repository.

GENE1 is based on intron/exon boundary detection,
or the detection of splice junctions in DNA sequences

(Noordewier et al. 1991; Towell and Shavlik 1992).
One hundred twenty inputs are used to determine
whether a DNA section is a donor, an acceptor, or
neither. There are 3,175 examples, of which 1,588 are
used for training. The GLASS1 data set is based on the
chemical analysis of glass splinters. The nine inputs are
used to classify six different types of glass. There are
214 examples in this set, and 107 of them are used for
training.

Table 13 contains the combining results and the two
correlation estimates for the GLASS1 data, and
Table 14 presents the combining results for the GENE1
data, along with the correlation estimates. Because for
GENE1 the correlations among multiple RBF networks
is .98, care must be taken in estimating the Bayes error.
More precisely, even moderate improvements in
classification rates with high correlation imply zero or
near zero Bayes error rates. Therefore, we estimate the
Bayes error rate through combining MLPs and
MLP=RBF hybrids only, as discussed earlier.

Table 15 presents the Bayes error estimates for both
GLASS1 and GENE1 problems. We have also included
the nearest neighbor bounds for these two data sets
based on Equation 14, denoted by Enn

bayes in the last
column. Note that, for the GENE1 problem, the nearest
neighbor method fails to provide accurate bounds (e.g.,
all the classifiers exceed the so-called ‘‘bound’’ pro-
vided by the nearest neighbor). The failure of the
nearest neighbor in this case is mainly due to the
high-dimensionality of the problem, where proximity in
Euclidean sense is not necessarily a good measure for
class belongings. For the GLASS1 data set, the three
combining based estimates provide particularly close
estimates, while for GENE1, the estimates are within
10% of each other.

CONCLUSION
Ensembles have become a popular way of tackling

difficult classification problems. The significance of this
paper lies in showing that certain ensembles have a
very beneficial side result: They provide a mechanism
for estimating the Bayes error with little extra com-
putational effort. The first two techniques presented for
obtaining this estimate are based on linear combining
theory, and exploit the ability of certain well-
trained neural networks or other universal approxi-
mation structures to directly estimate the posterior
probabilities. Experimental results show that this error
estimate compares very favorably with classical esti-
mation methods. Both these techniques are consistent,
and convergence rates can be derived (at least for
broad classes of functions) from the behavior of the
constituent classifiers, using well-known results on
convergence of MLPs (Barron 1993) and RBFs (Park
and Sandberg 1993).

The third technique is a heuristic ‘‘plurality error’’ for
classifiers trained on specific data samples. This
method’s power lies in its generality, as it applies to any

TABLE 11 Combining Results for the Sonar Data
(FS2)

Type of
Classifier

Number of
Classifiers

Error Rate
(in %) dMI dPOS

1 9.95 � 0.17
3 9.32 � 0.08 .68

MLP 5 9.20 � 0.07 .70 .76
7 9.07 � 0.08 .71

11 9.03 � 0.06 .72
1 10.94 � 0.21
3 10.55 � 0.10 .52

RBF 5 10.43 � 0.07 .54 .72
7 10.44 � 0.07 .55

11 10.38 � 0.04 .56
3 8.46 � 0.13 .52

MLP=RBF 5 8.17 � 0.09 .55 .20
7 8.14 � 0.06 .55

11 8.04 � 0.04 .56

11. Available at URL ftp:==ftp.ira.uka.de=pub=papers=techreports=1994=
1994-21.ps.Z.

12.URL: http:==www.ics.uci.edu=	mlearn=MLRepository.html
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type of base classifier. It is tailored to determining the
best accuracy achievable given a specific data set, and
not for estimating Bayes rate.

For the first two Bayes estimation methods intro-
duced in this article, the estimation of the correlation
(in the deviations of the estimated posterior
probabilities from the true values) plays a crucial role in
the accuracy of the Bayes error. It is clear from Equation

20 that when this correlation is close to 1, the Bayes
rate estimation is very sensitive to errors in estimating
this correlation. However, this typically happens only
for simple problems, where there is little need for using
an ensemble in the first place. For the difficult real-data
based problems, correlation values are much lower, as
evidenced by the experimental results. Moreover,
several researchers have shown the desirability of
reducing correlations among classifiers in an ensemble
and have proposedmethods to achieve this task (Krogh
and Vedelsby 1995; Optiz and Shavlik 1996; Rosen
1996; Tumer and Ghosh 1996b; Sharkey and Sharkey
1997). Thus, we expect our technique to provide even
better results when applied to ensembles that employ
any of these decorrelation methods first.

Further investigation of the power of the proposed
methods can be carried out by experimenting over a
larger number of data sets with known Bayes error
rates. As is widely recognized in both pattern recog-
nition and the theory of function approximation, no
method is expected to work best for all distributions or
functions (Wolpert 1996a; 1996b), and one can
typically come up with pathological examples to foil
any method (Devroye 1996). Our empirical studies
indicate that the proposed methods are indeed quite
versatile, but one can further explore the scope=
limitations of these methods through continued
experimentation.

TABLE 13 Combining Results for the GLASS1 Data

Type of Classifers Number of Classifiers Error Rate (in %) dMI dPOS

1 32.26 � 0.13
3 32.08 � 0.00 .84

MLP 5 32.08 � 0.00 .85 0.92
7 32.08 � 0.00 .85

11 32.08 � 0.00 .86

1 31.79 � 0.78
3 29.81 � 0.51 .50

RBF 5 29.25 � 0.41 .52 0.68
7 29.06 � 0.34 .53

11 28.67 � 0.29 .53

3 30.66 � 0.12 .50
MLP=RBF 5 32.36 � 0.18 .50 0.08

7 32.45 � 0.21 .50
11 32.45 � 0.17 .50

TABLE 12 Bayes Error Estimates for Sonar Data (given in %)

DATA1 DATA 2

EPOS 4.20 � .18 7.21 � .31
EMI 4.55 � .19 6.83 � .56
EPLU 5.37 � .22 7.49 � .35

Nearest Neighbor Bounds 3.27 � Ebayes � 6.40 6.88 � Ebayes � 13.12
Mahalanobis Bound � 14.61 � 19.53
Bhattacharyya bound � 0.20 � 1.10

TABLE 14 Combining Results for the GENE1 Data

Type of
Classifier

Number of
Classifier

Error Rate
(in %) dMI dPOS

1 13.47 � 0.10
3 12.30 � 0.09 .57

MLP 5 12.23 � 0.09 .60 0.73
7 12.08 � 0.05 .61

11 12.13 � 0.06 .62

1 14.62 � 0.09
3 14.48 � 0.08 .79

RBF 5 14.35 � 0.08 .80 0.98
7 14.33 �0.07 .80

11 14.28 � 0.07 .81

3 12.43 � 0.11 .56
MLP=RBF 5 12.28 � 0.09 .56 .30

7 12.17 � 0.08 .59
11 12.21 � 0.06 .60
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