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Abstract

This paper presents a detailed empirical study of twelve generative approaches to text cluster-
ing obtained by applying four types of document-to-model assignment strategies (hard, stochas-
tic, soft and deterministic annealing (DA) based assignments) to each of three base models,
namely mixtures of multivariate Bernoulli, multinomials, and von Mises-Fisher (vMF) distribu-
tions. A large variety of text collections, both with and without feature selection, are used for
the study, which yields several insights, including (a) showing situations wherein the vMF centric
approaches, which are based on directional statistics, fare better than multinomial model-based
methods, and (b) quantifying the trade-off between increased performance of the soft and DA
assignments and their increased computational demands. We also compare all the model-based
algorithms with two state-of-the-art discriminative approaches to document clustering based
respectively on graph partitioning (CLUTO) and a spectral co-clustering method. Overall, DA
and CLUTO perform the best but are also the most computationally expensive. The vMF
models provide good performance at low cost while the spectral co-clustering algorithm fares
worse than vMF-based methods for a majority of the datasets.

Keywords: Document Clustering, Model-based Clustering, Comparative Study

1 Introduction

Document clustering has become an increasingly important technique for unsupervised document
organization, automatic topic extraction, and fast information retrieval or filtering. For exam-
ple, a web search engine often returns thousands of pages in response to a broad query, making
it difficult for users to browse or to identify relevant information. Clustering methods can be
used to automatically group the retrieved documents into a list of meaningful categories, as is
achieved by search engines such as Northern Light (http://www.northernlight.com) and Vivisimo
(http://www.vivisimo.com), or an automated news aggregator/organizer such as Google News
(http://news.google.com). Similarly, a large database of documents can be pre-clustered to fa-
cilitate query processing by searching only the cluster that is closest to the query.

If the popular vector space representation is used, a text document, after suitable pre-processing,
gets mapped to a high dimensional vector with one dimension per ”term” (Salton and McGill, 1983).
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Such vectors tend to be very sparse, and they have only non-negative entries. Moreover, it has
been widely observed that the vectors have directional properties, i.e., the length of the vector is
much less important than their direction. This has led to the widespread practice of normalizing
the vectors to unit length before further analysis, as well as to the use of the cosine between two
vectors as a popular measure of similarity between them.

Till the mid-nineties, hierarchical agglomerative clustering using a suitable similarity measure
such as cosine, Dice or Jaccard, formed the dominant paradigm for clustering documents (Ras-
mussen, 1992; Cutting et al., 1992). The increasing interest in processing larger collections of
documents has led to a new emphasis on designing more efficient and effective techniques, leading
to an explosion of diverse approaches to the document clustering problem, including the (multi-
level) self-organizing map (Kohonen et al., 2000), mixture of Gaussians (Tantrum et al., 2002),
spherical k-means (Dhillon and Modha, 2001), bi-secting k-means (Steinbach et al., 2000), mixture
of multinomials (Vaithyanathan and Dom, 2000; Meila and Heckerman, 2001), divisive information-
theoretic KL clustering (Dhillon and Guan, 2003), multi-level graph partitioning (Karypis, 2002),
mixture of vMFs (Banerjee et al., 2003), information bottleneck (IB) clustering (Slonim and Tishby,
2000) and co-clustering using bipartite spectral graph partitioning (Dhillon, 2001). This richness
of approaches prompts a need for detailed comparative studies to establish the relative strengths
or weaknesses of these methods.

Most clustering methods proposed for data mining (Berkhin, 2002; Ghosh, 2003) can be divided
into two categories: discriminative (or similarity-based) approaches (Indyk, 1999; Vapnik, 1998)
and generative (or model-based) approaches (Blimes, 1998; Cadez et al., 2000). In similarity-based
approaches, one optimizes an objective function involving the pairwise document similarities, aiming
to maximize the average similarities within clusters and minimize the average similarities between
clusters. Model-based approaches, on the other hand, attempt to learn generative models from the
documents, with each model representing one particular document group. The empirical study in
this paper focuses on model-based approaches since they provide several advantages. First, model-
based partitional clustering algorithms have a complexity of O(KNM), where K is the number
of clusters, N the number of data objects, and M the number of iterations. In similarity-based
approaches, just calculating the pairwise similarities requires O(N2) time. Second, each cluster is
described by a representative model, which provides a richer interpretation of the cluster. Third,
online algorithms can be easily constructed for model-based clustering using competitive learning
techniques, e.g., see Banerjee and Ghosh (2004). Online algorithms are useful for clustering a
stream of documents such as news feeds, as well as for incremental learning situations.

We recently introduced a unified framework for probabilistic model-based clustering (Zhong
and Ghosh, 2003b), which allows one to understand and compare a vast range of model-based
partitional clustering methods using a common viewpoint that centers around two steps—a model
re-estimation step and a data re-assignment step. This two-step view enables one to easily combine
different models with different assignment strategies. We now apply this unified framework to
design a set of comparative experiments, involving three probabilistic Models suitable for clustering
documents: multivariate Bernoulli, multinomial, and von Mises-Fisher, in conjunction with four
types of data assignments, thus leading to a total of twelve algorithms. Note that all the three
models directly handle high dimensional vectors without dimensionality reduction, and have been
recommended for dealing with the peculiar characteristics of document clustering. In contrast,
Gaussian-based algorithms such as k-means perform very poorly for such datasets (Strehl et al.,
2000). All twelve instantiated algorithms are compared on a number of document datasets derived
from the TREC collections and internet newsgroups, both with and without feature selection. Our
goal is to empirically investigate the suitability of each model for document clustering and identify
which model works better in what situations. We also compare all the model-based algorithms
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with two state-of-the-art graph-based approaches, the vcluster algorithm in the CLUTO toolkit
(Karypis, 2002) algorithm and a bipartite spectral co-clustering method (Dhillon, 2001). The
comparison to recent KL clustering or IB clustering is not needed, given the equivalence between
Information Bottleneck text clustering and multinomial model-based clustering demonstrated in
Section 3.

McCallum and Nigam (1998) performed a comparative study of Bernoulli and multinomial
models for text classification but not for clustering. Comparisons of different document clustering
methods have been done by Steinbach et al. (2000), and by Zhao and Karypis (2001). They both
focused on comparing partitional with hierarchical approaches either for one model, or for similarity-
based clustering algorithms (in the CLUTO toolkit). Meila and Heckerman (2001) compared hard
vs. soft assignment strategies for text clustering using multinomial models. To the best of our
knowledge, however, a comprehensive comparison of different probabilistic models for clustering
documents has not been done before except in our previous work (Zhong and Ghosh, 2003a), which
is now substantially expanded in this paper.

Section 2 reviews the four data assignment strategies and Section 3 describes the three prob-
abilistic models for clustering text documents. Section 4 compares the clustering performance of
different models and data assignment strategies on a number of text datasets. Finally, section 5
concludes this paper.

2 Model-based partitional clustering

In this section, we briefly review the four data assignment strategies that are at the core of four
related clustering algorithms—model-based k-means (mk-means), “EM clustering”,1 stochastic mk-
means, and deterministic annealing, respectively. A more detailed exposition of the ideas in this
section can be found in Zhong and Ghosh (2003b), where virtually all existing model based clus-
tering approaches, both partitional and hierarchical, are captured within a unified framework.

Model-based k-means

The model-based k-means (mk-means) algorithm is a generalization of the standard k-means al-
gorithm, with the cluster centroid vectors being replaced by probabilistic models. Let X =
{x1, ..., xN} be the set of data objects and Λ = {λ1, ..., λK} the set of cluster models. The mk-means
algorithm locally maximizes the log-likelihood objective function

log P (X|Λ) =
∑

x∈X

log p(x|λy(x)) , (1)

where y(x) = arg maxy log p(x|λy) is the cluster identity of object x.
When equi-variance spherical Gaussian models are used in a vector space, mk-means reduces

to the standard k-means algorithm (MacQueen, 1967). As another example, the spherical k-means
algorithm developed specifically for text (Dhillon and Modha, 2001; Banerjee and Ghosh, 2002)
uses the von Mises-Fisher distribution as its underlying probabilistic model.

Clustering via Mixture Modeling

The generic EM clustering algorithm (Banfield and Raftery, 1993; Cadez et al., 2000) is a gener-
alization of the mixture-of-Gaussians clustering (Blimes, 1998) that uses a mixture of probabilistic

1This term signifies a specific application of the more general EM algorithm (Dempster et al., 1977), where one
treats the cluster identities of data objects as the hidden indicator variables and then tries to maximize the objective
function in Equation 2 using the EM algorithm.
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models for which a maximum likelihood estimation is possible (e.g., probabilistic models in the
exponential family), to model the data. Given a set of K probabilistic models Λ, EM is applied to
find a local maximum of the data log-likelihood

log p(X|Λ) =
∑
x

log




K∑

y=1

αyp(x|λy)


 , (2)

where the parameters α’s are cluster priors. The algorithm amounts to iterating between the
following E-step and M-step until convergence:
E-step:

P (y|x,Λ) =
αyp(x|λy)∑
y′ αy′p(x|λy′)

; (3)

M-step:
λ(new)

y = arg max
λ

∑
x

P (y|x,Λ) log p(x|λ), (4)

α(new)
y =

1
N

∑
x

P (y|x,Λ) . (5)

A partition of the data objects is actually a byproduct of the maximum likelihood estimation
process.

Stochastic model-based k-means

The stochastic mk-means is a stochastic variant of the mk-means. It stochastically assigns each
data object entirely to one cluster (and not fractionally, as in soft clustering), with the probability
of object x going to cluster y set to be the posterior probability P (y|x, Λ). Kearns et al. (1997)
described this algorithm as posterior assignment. The stochastic mk-means can be viewed as
a sampled version of EM clustering, where one uses a sampled E-step based on the posterior
probability.

Model-based deterministic annealing

Model-based deterministic annealing (Zhong and Ghosh, 2003b) extends EM clustering by param-
eterizing the E-step in (3) with a temperature parameter T , which gradually decreases during the
clustering process. Let Y be the set of cluster indices, and the joint probability between X and Y
be P (x, y). Model-based DA clustering aims to maximize the expected log-likelihood with entropy
constraints

L = EP (x,y)[log p(x|λy)] + T ·H(Y |X)− T ·H(Y )

=
∑
x

P (x)
∑
y

P (y|x) log p(x|λy)− T · I(X;Y ) . (6)

For each T , the E-step can be shown to become

P (y|x,Λ) =
αyp(x|λy)

1
T

∑
y′ αy′p(x|λy′)

1
T

. (7)

The M-step is the same as (4) in the EM clustering algorithm.

4



Discussion

Model-based k-means and EM clustering can be viewed as two special stages of a model-based
deterministic annealing process, with T = 0 and T = 1, respectively, and they optimize two
different objective functions.

In practice, we often have the condition P (x|λy(x)) À P (x|λy), ∀y 6= y(x) (this is often true for
the models discussed in the next section), which means that P (y|x,Λ) will be dominated by the
likelihood values and be very close to 1 for y = y(x), and 0 otherwise, independent of most choices
of T ’s and α’s. This suggests that the difference between hard and soft versions is small, i.e. their
clustering results will be fairly similar. This is also confirmed by the experimental results presented
in this paper.

The complexities of the above model-based clustering algorithms are linear in K, number of
clusters, N , number of data objects, and M , number of iterations. In our experiments, we typically
used Mmax = 20, which is large enough for most of our experimental runs to converge.

3 Probabilistic models for text documents

The traditional vector space representation is used for text documents, i.e., each document is
represented as a high dimensional vector of “word” counts in the document. The “word” here is
used in a broad sense since it may represent individual words, stemmed words, tokenized words, or
short phrases. The dimensionality of document vectors equals the vocabulary size. Depending on
whether the vectors are binarized or not, the popular generative models for such a representation
are multivariate Bernoulli and multinomial mixtures. Recently, a third model, inspired by the
directional nature of text data, was proposed that uses a mixture of vMF distributions. Thus these
three models, which are briefly discussed below, are the focus of our study.

3.1 Multivariate Bernoulli model

In a multivariate Bernoulli model (McCallum and Nigam, 1998), a document is represented as a
binary vector over the space of words. The l-th dimension of a document vector x is denoted by
x(l), and is either 1 or 0, indicating whether word wl occurs or not in the document. Thus the
number of occurrences is not considered, i.e., the word frequency information is lost.

With näıve Bayes assumption, the probability of a document x in cluster y is

P (x|λy) =
∏

l

Py(wl)x(l)(1− Py(wl))1−x(l) , (8)

where λy = {Py(wl)}, Py(wl) is the probability of word wl being present in cluster y, and (1−Py(wl))
the probability of word wl not being present in cluster y. To avoid zero probabilities when estimating
Py(wl), one can employ a Laplacian prior (i.e., P (λy) = C ·Py(wl)(1−Py(wl)), C is a normalization
constant) and derives the solution as (McCallum and Nigam, 1998)

Py(wl) =
1 +

∑
x P (y|x,Λ)x(l)

2 +
∑

x P (y|x,Λ)
, (9)

where P (y|x,Λ) is the posterior probability of cluster y.

3.2 Multinomial model

Standard description of multinomial models is available in many statistics or probability books (e.g.,
Stark and Woods, 1994); here we briefly discuss it in the context of clustering text documents.
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Based on the näıve Bayes assumption, a multinomial model for cluster y represents a document
x by a multinomial distribution of the words in the vocabulary

P (x|λy) =
∏

l

Py(l)x(l) ,

where x(l) is the l-th dimension of document vector x, indicating the number of occurrences of the
l-th word in document x. To accommodate documents of different lengths, we use a normalized
(log-)likelihood measure

log P̃ (x|λy) =
1
|x| log P (x|λy) , (10)

where |x| = ∑
l x(l) is the length of document x. The Py(l)’s are the multinomial model parameters

and represent the word distribution in cluster y. They are subject to the constraint
∑

l Py(l) = 1
and can be estimated by counting the number of documents in each cluster and the number of word
occurrences in all documents in the cluster y (Nigam, 2001). With Laplacian smoothing, i.e., with
model prior P (λy) = C ·∏l Py(l), the parameter estimation of multinomial models amounts to

Py(l) =
1 +

∑
x P (y|x,Λ)x(l)∑

i (1 +
∑

x P (y|x,Λ)x(i))
=

1 +
∑

x P (y|x,Λ)x(l)
|V |+ ∑

i

∑
x P (y|x,Λ)x(i)

, (11)

where |V | is the size of the word vocabulary, i.e., the dimensionality of document vectors. The
posterior P (y|x,Λ) can be estimated from (7).

Connection to KL Clustering

A connection between multinomial model-based clustering and the divisive Kullback-Leibler clus-
tering (Dhillon et al., 2002b; Dhillon and Guan, 2003) is worth mentioning here. It is briefly
mentioned in Dhillon and Guan (2003) but they did not explicitly reveal the equivalence between
divisive KL clustering and multinomial model-based k-means. Let Px(l) = x(l)

|x| and y(x) be the
cluster identity of document x. The objective function (to be minimized) for divisive KL clustering
is the sum of KL divergence between a document (represented by word distribution Px) and its
cluster distribution Py(x)

∑
x

DKL(Px|Py(x)) =
∑
x

∑

l

Px(l) log
Px(l)

Py(x)(l)

= −
∑
x

(
H(Px) +

∑

l

x(l)
|x| log Py(x)(l)

)

= −
∑
x

(
H(Px) +

1
|x| log P (x|λy(x))

)
. (12)

Since
∑

x H(Px) = −∑
x,l Px(l) log Px(l) is a constant w.r.t. λ and y, minimizing the above objective

is equivalent to maximizing the objective for multinomial model-based k-means

1
N

∑
x

1
|x| log P (x|λy(x)) =

1
N

∑
x

log P̃ (x|λy(x)) . (13)

This also indicates that multinomial model-based DA clustering algorithms described below can be
viewed as a deterministic annealing extension of soft divisive KL clustering.
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Multinomial Model-based DA Clustering and the Information Bottleneck Method

Substituting the generic M-step (4) in the model-based DA clustering with (11) gives a multinomial
model-based DA clustering algorithm, abbreviated as damnl. The normalized log-likelihood mea-
sure (10) is used since it accommodates different document lengths and leads to a stable annealing
process in our experiments.

Based on (6) and the above analysis on relationship between multinomial model-based clustering
and KL clustering, it is easy to see that the objective function of damnl can be written as

L = −
∑
x,y

P (x, y)DKL(Px|Py)− T · I(X; Y ) +
∑
x

H(Px) , (14)

where the last term is a constant. With this representation, one can show that, when applied to
clustering, the Information Bottleneck method is just a special case of model-based DA clustering
with the underlying probabilistic models being multinomial models. This has also been mentioned
by Slonim and Weiss (2003) when they explored the relationship between maximum likelihood
formulation and information bottleneck. A more formal treatment, which shows both IB and
damnl as special cases of an even broader framework, and precisely states the assumptions behind
the IB technique, can be found in Banerjee et al. (2004).

The IB method aims to minimize the objective function

F = I(X; Y )− βI(Z; Y )
= I(X; Y ) + β(I(Z;X)− I(Z; Y ))− βI(Z;X)
= I(X; Y ) + βEp(x,y)[DKL(p(z|x)|p(z|y))]− βI(Z; X) (15)

and represents the tradeoff between minimizing the mutual information between data X and com-
pressed clusters Y and preserving the mutual information between Y and a third variable Z. Both
X and Z are fixed data but Y represents the cluster structure that one tries to find out. The last
term in (15) can be treated as a constant w.r.t. to the Y and thus to the clustering algorithm. One
can easily see that minimizing (15) is equivalent to maximizing (14), with β being the inverse of
temperature T and Z being a random variable representing the word dimension.

3.3 von Mises-Fisher model

The von Mises-Fisher distribution is the analogue of the Gaussian distribution for directional data
in the sense that it is the unique distribution of L2-normalized data that maximizes the entropy
given the first and second moments of the distribution (Mardia, 1975). The vMF distribution for
cluster y can be written as

P (x|λy) =
1

Z(κy)
exp

(
κy

xT µy

‖µy‖

)
, (16)

where x is a normalized (unit-length in L2 norm) document vector and the Bessel function Z(κy) is
a normalization term. The parameter κ measures the directional variance (or dispersion) and the
higher its value, the more peaked the distribution is. For the vMF-based k-means algorithm, we
assume κ is the same for all clusters, i.e., κy = κ,∀y. This results in the spherical k-means (Dhillon
and Modha, 2001; Dhillon et al., 2001), which uses cosine similarity to measure the closeness of
a data point to its cluster’s centroid and has shown good results for text clustering. The model
estimation in this case simply amounts to µy = 1

Ny

∑
x∈Cy

x, where Ny is the number of documents
in cluster Cy. The estimation for κ in the mixture-of-vMFs clustering algorithm, however, is rather
difficult due to the Bessel function involved.
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In Banerjee et al. (2003), the EM based maximum likelihood solution has been derived, including
updates for κ. While it provides markedly better results than those obtained with a fixed κ, it is
computationally much more expensive even if an approximation for estimating κ’s is used. In this
paper, for convenience, we use a simpler soft assignment scheme that is similar to deterministic
annealing. We use a κ that is constant across all models at each iteration, start with a low value
of κ, and gradually increase the κ (i.e. make the distributions more peaked) in unison with each
iteration. Note that κ has the effect of an “inverse temperature” parameter.

4 Experimental results

4.1 Evaluation criteria

Objective clustering evaluation criteria can be based on internal measures or external measures. An
internal measure is often the same as the objective function that a clustering algorithm explicitly
optimizes, as is the sum-squared error criteria used for the standard k-means. For document
clustering, external measures are more commonly used, since typically the benchmark documents’
category labels are actually known (but of course not used in the clustering process). Examples of
external measures include the confusion matrix, classification accuracy, F1 measure, average purity,
average entropy, and mutual information (Ghosh, 2003).

In the simplest scenario where the number of clusters equals the number of categories and their
one-to-one correspondence can be established, any of these external measures can be fruitfully
applied. However, when the number of clusters differs from the number of original classes, the
confusion matrix is hard to read and the accuracy difficult or impossible to calculate. It has been
argued that the mutual information I(Y ; Ŷ ) between a r.v. Y , governing the cluster labels, and a
r.v. Ŷ , governing the class labels, is a superior measure than purity or entropy (Strehl and Ghosh,
2002; Dom, 2001). Moreover, by normalizing this measure to lie in the range [0,1], it becomes
relatively impartial to K. There are several choices for normalization based on the entropies
H(Y ) and H(Ŷ ). We shall follow the definition of normalized mutual information (NMI) using
geometrical mean, NMI = I(Y ;Ŷ )√

H(Y )·H(Ŷ )
, as given in (Strehl and Ghosh, 2002). In practice, we use

a sample estimate

NMI =

∑
h,l nh,l log

(
n·nh,l

nhnl

)
√(∑

h nh log nh
n

) (∑
l nl log nl

n

) , (17)

where nh is the number of documents in class h, nl the number of documents in cluster l and nh,l

the number of documents in class h as well as in cluster l. The NMI value is 1 when clustering
results perfectly match the external category labels and close to 0 for a random partitioning. This
is a better measure than purity or entropy which are both biased towards high K solutions (Strehl
et al., 2000; Strehl and Ghosh, 2002).

In our experiments, we use NMI as the evaluation criterion. Since the three probabilistic models
use slightly different representations of documents, we cannot directly compare their objective
functions (data likelihoods) under different probabilistic models.
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Table 1: Summary of text datasets (for each dataset, nd is the total number of documents, nw

the total number of words, K the number of classes, and n̄c the average number of documents per
class)

Data Source nd nw K n̄c Balance
NG20 20 Newsgroups 19949 43586 20 997 0.991
NG17-19 3 overlapping subgroups from NG20 2998 15810 3 999 0.998
classic CACM/CISI/CRANFIELD/MEDLINE 7094 41681 4 1774 0.323
ohscal OHSUMED-233445 11162 11465 10 1116 0.437
k1b WebACE 2340 21839 6 390 0.043
hitech San Jose Mercury (TREC) 2301 10080 6 384 0.192
reviews San Jose Mercury (TREC) 4069 18483 5 814 0.098
sports San Jose Mercury (TREC) 8580 14870 7 1226 0.036
la1 LA Times (TREC) 3204 31472 6 534 0.290
la12 LA Times (TREC) 6279 31472 6 1047 0.282
la2 LA Times (TREC) 3075 31472 6 513 0.274
tr11 TREC 414 6429 9 46 0.046
tr23 TREC 204 5832 6 34 0.066
tr41 TREC 878 7454 10 88 0.037
tr45 TREC 690 8261 10 69 0.088

4.2 Text datasets

We used the 20-newsgroups data2 and a number of datasets from the CLUTO toolkit3 (Karypis,
2002). These datasets provide a good representation of different characteristics: number of docu-
ments ranges from 204 to 19949, number of words from 5832 to 43586, number of classes from 3 to
20, and balance from 0.036 to 0.998. The balance of a dataset is defined as the ratio of the number
of documents in the smallest class to the number of documents in the largest class. So a value close
to 1(0) indicates a very (un)balanced dataset. A summary of all the datasets used in this paper is
shown in Table 1.

The NG20 dataset is a collection of 20,000 messages, collected from 20 different usenet news-
groups, 1,000 messages from each. We preprocessed the raw dataset using the Bow toolkit (McCal-
lum, 1996), including chopping off headers and removing stop words as well as words that occur
in less than three documents. In the resulting dataset, each document is represented by a 43,586-
dimensional sparse vector and there are a total of 19,949 documents (after empty documents being
removed). The NG17-19 dataset is a subset of NG20, containing ∼ 1000 messages from each of the
three categories on different aspects of politics. These three categories are expected to be difficult
to separate. After the same preprocessing step, the resulting dataset consists of 2,998 documents
in a 15,810 dimensional vector space.

All the datasets associated with the CLUTO toolkit have already been preprocessed (Zhao and
Karypis, 2001) and we further removed those words that appear in two or fewer documents. The
classic dataset was obtained by combining the CACM, CISI, CRANFIELD, and MEDLINE ab-
stracts that were used in the past to evaluate various information retrieval systems4. The ohscal
dataset was from the OHSUMED collection (Hersh et al., 1994). It contains 11,162 documents
from the following ten categories: antibodies, carcinoma, DNA, in-vitro, molecular sequence data,
pregnancy, prognosis, receptors, risk factors, and tomography. The k1b dataset is from the We-
bACE project (Han et al., 1998). Each document corresponds to a web page listed in the subject

2http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html .
3http://www.cs.umn.edu/∼karypis/CLUTO/files/datasets.tar.gz .
4Available from ftp://ftp.cs.cornell.edu/pub/smart.
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hierarchy of Yahoo! (http://www.yahoo.com). The other datasets are from TREC collections
(http://trec.nist.gov). In particular, the hitech, reviews, and sports were derived from the San Jose
Mercury newspaper articles. The hitech dataset contains documents about computers, electronics,
health, medical, research, and technology; the reviews dataset contains documents about food,
movies, music, radio, and restaurants; the sports dataset contains articles about baseball, basket-
ball, bicycling, boxing, football, golfing, and hockey. The la1, la12, and la2 datasets were obtained
from articles of the Los Angeles Times in the following six categories: entertainment, financial,
foreign, metro, national, and sports. Datasets tr11, tr23, tr41, and tr45 are derived from TREC-5,
TREC-6, and TREC-7 collections.

4.3 Experimental setting

The four algorithms based on the Bernoulli model are k-Bernoullis, stochastic k-Bernoullis, mixture-
of-Bernoullis, and Bernoulli-based DA, abbreviated as kberns, skberns, mixberns, and daberns re-
spectively. Similarly, the abbreviated names are kmnls, skmnls, mixmnls, and damnls for multinomial-
based algorithms, and are kvmfs, skvmfs, softvmfs, and davmfs for vMF-based algorithms. We use
softvmfs instead of mixvmfs for the soft vMF-based algorithm for the following reason. As men-
tioned in Section 3, the estimation of parameter κ in a vMF model is difficult but is needed for the
mixture-of-vMFs algorithm. As a simple heuristic, we use κ(m) = 20m, where m is the iteration
number. So κ is a constant for all clusters at each iteration, and gradually increasing over iterations.

For the davmfs algorithm, the temperature parameter T can be assimilated into κ, which has an
interpretation of inverse temperature. We set κ to follow an exponential schedule κ(m+1) = 1.1κ(m),
starting from 1 and up to 500. We call this algorithm davmfs. For vMF-based algorithms, we also
use log(IDF)-weighted and normalized document vectors.

For the daberns and damnls algorithms, an inverse temperature parameter β = 1/T is used
to parameterize the E-step in the mixberns and mixmnls algorithms. The annealing schedule for
daberns is set to β(m + 1) = 1.2β(m), and β increases from 0.002 up to 1; for damnls it is set to
β(m + 1) = 1.3β(m), and β grows from 0.5 up to 200.

For all the model-based algorithms (except for the DA algorithms), we use a maximum number
of iterations of 20 (to make a fair comparison). Our results show that most runs converge within
20 iterations if a relative convergence criterion of 0.001 is used. Each experiment is run ten times,
each time starting from a different random initialization. The averages and standard deviations of
the NMI and running time results are reported.

After surveying a range of spectral or graph-based partitioning techniques, (Meila and Shi,
2001a,b; Kannan et al., 2000), we picked two state-of-the-art graph-based clustering algorithms
as leading representatives of this class of similarity-based approaches. in our experiments. The
first one is CLUTO (Karypis, 2002), a clustering toolkit based on the Metis graph partitioning
algorithms (Karypis and Kumar, 1998). We use vcluster in the toolkit with the default setting,
which is a bisecting graph partitioning-based algorithm. The other one is a modification of the
bipartite spectral co-clustering algorithm (Dhillon, 2001). The modification is according to Ng
et al. (2002)5 and generates slightly better results than the original bipartite clustering algorithm.
The vcluster algorithm is greedy and thus dependent on the order of nodes from the input graph.
The spectral co-clustering algorithm uses the standard k-means algorithm in its last step, which
introduces randomness into the co-clustering process. We run each algorithm ten times, each run
using a different order of documents.

5Use K instead of log K eigen-directions and normalize each projected data vector.
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4.4 Clustering results without feature selection

Table 2 shows the NMI results on the NG20, NG17-19, classic, ohscal, and hitech datasets. All
numbers in the table are shown in the format average ± 1 standard deviation. Boldface entries
highlight the best algorithms in each column. To save space, we show the NMI results on for one
specific K only for each dataset (results for other datasets are shown in Table 3 and Table 4).

Table 2: NMI Results on NG20, NG17-19, classic, ohscal, and hitech datasets
NG20 NG17-19 classic ohscal hitech

K 20 3 4 10 6
kberns .20± .04 .03± .01 .23± .10 .37± .02 .11± .05
skberns .21± .03 .03± .01 .23± .11 .38± .02 .11± .03
mixberns .19± .03 .03± .01 .20± .15 .37± .02 .11± .04
daberns .03± .00 .03± .01 .05± .08 .00± .00 .01± .00
kmnls .53± .03 .23± .08 .56± .06 .37± .02 .23± .03
skmnls .53± .03 .22± .08 .57± .06 .37± .02 .23± .04
mixmnls .54± .03 .23± .08 .66± .04 .37± .02 .23± .03
damnls .57± .02 .36± .12 .71± .06 .39± .02 .27± .01
kvmfs .55± .02 .37± .10 .54± .03 .43± .03 .28± .02
skvmfs .56± .01 .37± .08 .54± .02 .44± .02 .29± .02
softvmfs .57± .02 .39± .10 .55± .03 .44± .02 .29± .01
davmfs .59± .02 .46± .01 .51± .01 .47± .02 .30± .01
CLUTO .58± .01 .46± .01 .54± .02 .44± .02 .33± .01
co-cluster .46± .01 .02± .01 .01± .01 .39± .01 .22± .03

Table 3: NMI Results on reviews, sports, la1, la12, and la2 datasets
reviews sports la1 la12 la2

K 5 7 6 6 6
kberns .30± .05 .39± .06 .04± .04 .06± .06 .17± .03
skberns .30± .04 .37± .05 .06± .05 .07± .06 .19± .03
mixberns .29± .05 .37± .05 .05± .05 .06± .05 .20± .04
daberns .04± .01 .02± .00 .01± .00 .01± .00 .01± .00
kmnls .55± .08 .59± .06 .39± .05 .42± .04 .47± .04
skmnls .55± .08 .58± .06 .41± .05 .43± .04 .47± .05
mixmnls .56± .08 .59± .06 .41± .05 .43± .05 .48± .04
damnls .51± .06 .57± .04 .49± .02 .54± .03 .45± .03
kvmfs .53± .06 .57± .08 .49± .05 .50± .03 .54± .04
skvmfs .53± .07 .61± .04 .51± .04 .51± .04 .52± .03
softvmfs .56± .06 .60± .05 .52± .04 .53± .05 .49± .04
davmfs .56± .09 .62± .05 .53± .03 .52± .02 .52± .04
CLUTO .52± .01 .67± .01 .58± .02 .56± .01 .56± .01
co-cluster .40± .07 .56± .02 .41± .05 .42± .07 .41± .02

Table 5 show the results for a series of paired t-tests. In particular, we test the following seven
hypotheses: bb>wb – the best of kberns, skberns, and mixberns is better than the worst of them (in
terms of NMI performance); bm>wm – the best of kmnls, skmnls, and mixmnls is better than the
worst of them; bv>wv – the best of kvmfs, skvmfs, and mixvmfs is better than the worst of them;
dam>bm – damnls is better than the best of kmnls, skmnls, and mixmnls; dav>bv – davmfs is better
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Table 4: NMI Results on k1b, tr11, tr23, tr41, and tr45 datasets
k1b tr11 tr23 tr41 tr45

K 6 9 6 10 10
kberns .32± .25 .07± .02 .11± .01 .27± .05 .13± .06
skberns .36± .24 .08± .02 .11± .01 .27± .06 .13± .05
mixberns .31± .24 .07± .02 .11± .01 .27± .04 .13± .06
daberns .04± .00 .09± .00 .08± .01 .02± .00 .07± .00
kmnls .55± .04 .39± .07 .15± .03 .49± .03 .43± .05
skmnls .55± .05 .39± .08 .15± .02 .50± .04 .43± .05
mixmnls .56± .04 .39± .07 .15± .03 .50± .03 .43± .05
damnls .61± .04 .61± .02 .31± .03 .61± .05 .56± .03
kvmfs .60± .03 .52± .03 .33± .05 .59± .03 .65± .03
skvmfs .60± .02 .57± .04 .34± .05 .62± .03 .65± .05
softvmfs .60± .04 .60± .05 .36± .04 .62± .05 .66± .03
davmfs .67± .04 .66± .04 .41± .03 .69± .02 .68± .05
CLUTO .62± .03 .68± .02 .43± .02 .67± .01 .62± .01
co-cluster .60± .01 .53± .03 .22± .01 .51± .02 .50± .03

than the best of kvmfs, skvmfs, and mixvmfs; dav>dam – davmfs is better than damnls; dav>cluto
– davmfs is better than CLUTO. The p-values shown in the table ranges from 0 to 1. A value
of 0.05 or lower indicates significant evidence for the hypothesis to be true, while a value of 0.95
or higher indicate significant evidence for the reverse of the hypothesis to be true. All significant
p-values are highlighted in boldface in the table.

Table 5: Summary of paired t-test results.

Hypothesis tested
Dataset bb>wb bm>wm bv>wv dam>bm dav>bv dav>dam dav>cluto
NG20 0.229 0.076 0.021 0.013 0.007 0.006 0.019
NG17-19 0.277 0.453 0.364 0.005 0.017 0.012 0.54
classic 0.277 <0.001 0.147 0.027 0.999 >0.999 >0.999
ohscal 0.324 0.223 0.246 0.04 <0.001 <0.001 <0.001
hitech 0.228 0.421 0.255 0.001 0.089 <0.001 >0.999
reviews 0.337 0.449 0.128 0.907 0.493 0.135 0.124
sports 0.188 0.395 0.132 0.784 0.243 0.011 0.995
la1 0.253 0.178 0.033 0.001 0.267 <0.001 0.999
la12 0.098 0.28 0.005 <0.001 0.72 0.911 0.999
la2 0.289 0.259 0.043 0.133 0.764 <0.001 0.998
k1b 0.336 0.278 0.436 0.007 <0.001 0.003 0.001
tr11 0.225 0.49 <0.001 <0.001 0.002 <0.001 0.915
tr23 0.439 0.44 0.084 <0.001 0.002 <0.001 0.963
tr41 0.454 0.328 0.075 <0.001 <0.001 <0.001 0.023
tr45 0.403 0.417 0.163 <0.001 0.203 <0.001 <0.001

Of the three types of models, vMF leads to the best performance and multivariate Bernoulli
the worst. The Bernoulli-based algorithms significantly underperform the other methods for all
the datasets except for ohscal. This indicates that noting only whether or not a word occurs
in a document, but not the number of occurrences, is a limited representation. The vMF-based
algorithms perform better than the multinomial-based ones, especially for most of the smaller
datasets, i.e., NG17-19, k1b, hitech, tr11, tr23, tr41, and tr45. The paired t-tests show that davmfs
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significantly outperforms damnls on 12 out of 15 datasets while significantly underperforms on only
one dataset (classic).

The three different data assignment strategies, k-means, EM, and stochastic k-means, produce
very comparable clustering results across all datasets. The soft EM assignment is only slightly
better than the other two. The t-test results also show that, for most datasets, there is no significant
difference in NMI performance between soft and hard assignment strategies. Specifically, for none
of the 15 datasets, the test bb>wb is significant; and for one and five out of the 15 datasets, the tests
bm>wm and bv>wv are significant, respectively. For the vMF models, however, one should note
that the exact EM clustering can achieve significant improvement over hard assignment (Banerjee
et al., 2003).

For multinomial and vMF models, the deterministic annealing algorithm improves the perfor-
mance of corresponding soft clustering algorithms, sometimes significantly. For example, the t-test
results show that: damnls significantly outperforms the best of kmnls, skmnls, and mixmnls on 12
out of 15 datasets; davmfs does so on 7 out 15 datasets. Table 6 shows the performance gains of
damnls over mixmnls and davmfs over softvmfs, on a sorted list of the datasets according to data
sizes. A trend seen is that the DA clustering algorithms gain more on medium to small (nd ≤ 3, 000)
datasets.

The deterministic annealing algorithm seems to degrade the performance of mixberns, however,
as shown by the NMI results. By further looking into the log-likelihood objective values and actual
resulting clusters, we observed that deterministic annealing improves the objective value but puts
most documents in one cluster, indicating that maximizing data likelihood with Bernoulli models
does not align with generating well-separated clusters.

Table 6: Summary of results. (For each dataset, nd is the total number of documents, Gainmnls =
NMIdamnls−NMImixmnls

NMImixmnls
the performance improvement of damnls over mixmnls, and Gainvmfs =

NMIdavmfs−NMIsoftvmfs

NMIsoftvmfs
the performance improvement of davmfs over softvmfs.)

Data nd Best three algorithms Gainmnls Gainvmfs

NG20 19949 davmfs, CLUTO, damnls 5.6% 3.5%
ohscal 11162 davmfs, CLUTO, softvmfs 5.4% 6.8%
sports 8580 CLUTO, davmfs, softvmfs -3.4% 3.3%
classic 7094 damnls, mixmnls, skmnls 7.8% -7.3%
la12 6279 CLUTO, damnls, softvmfs 25.6% 1.2%
reviews 4069 davmfs, softvmfs, mixmnls -8.9% 0%
la1 3204 CLUTO, davmfs, softvmfs 19.5% 1.9%
la2 3075 CLUTO, kvmfs, skvmfs -6.3% 6.1%
NG17-19 2998 davmfs, CLUTO, softvmfs 56.5% 17.9%
k1b 2340 davmfs, CLUTO, damnls 8.9% 11.7%
hitech 2301 CLUTO, davmfs, softvmfs 60.9% 3.3%
tr41 878 davmfs, CLUTO, skvmfs 22.0% 11.3%
tr45 690 davmfs, softvmfs, kvmfs 30.2% 3.0%
tr11 414 CLUTO, davmfs, damnls 56.4% 10.0%
tr23 204 CLUTO, davmfs, softvmfs 106.7% 13.9%

Surprisingly, the bipartite spectral co-clustering algorithm mostly underperforms the vMF-based
methods and sometimes gives very poor results (with most documents grouped into one cluster and
NMI values close to 0). The other graph-based algorithm, CLUTO (actually the vcluster algorithm
with default setting), performs much better and is overall one of the best among all the algorithms
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we have compared. The t-test results show that CLUTO significantly outperforms davmfs on 7 out
of the 15 datasets, but also significantly underperforms on five of them.

Note that the standard deviations of the model-based clustering results are much larger than
that of the CLUTO results, indicating that the initialization effect of model-based methods is larger.
Deterministic annealing improves the local solutions but still sees moderate variation over 10 runs.
How to substantially improve the initialization or robustness of model-based clustering remains a
challenging problem.

Table 7 shows the running time results on NG20, the largest dataset used in our experiments.
All the numbers are recorded on a 2.4GHz PC running Windows 2000 with 768MB memory, and
reflect only the clustering time, not including the data I/O cost. Clearly, algorithms using soft
assignment take longer time than those using hard assignments. Overall, the kvmfs algorithm is
the fastest one. Since that the CLUTO software package is written in C but all the other algorithms
are in Matlab, we expect that most of the model-based algorithms, if re-written in C, will be faster
than CLUTO.

Table 7: Running time Results on NG20 dataset (in seconds)
NG20

K 10 20 30 40
kberns 26.8± 10.6 43.0± 19.0 81.6± 37.6 125.4± 43.6
skberns 30.2± 9.8 65.9± 22.1 92.3± 35.2 144.7± 51.8
mixberns 28.5± 11.4 77.8± 25.4 102.0± 38.9 164.9± 38.9
daberns 125.0± 0.1 234.6± 3.7 352.2± 4.6 491.1± 5.1
kmnls 17.5± 2.9 36.7± 4.9 54.8± 7.0 78.5± 8.4
skmnls 19.7± 3.0 39.1± 5.6 68.4± 7.0 94.9± 9.9
mixmnls 23.8± 3.6 47.7± 6.8 74.2± 10.0 99.5± 12.7
damnls 78.6± 4.3 172.1± 7.4 252.5± 8.3 362.5± 17.9
kvmfs 11.4± 1.3 17.5± 0.3 21.7± 0.1 25.5± 0.1
skvmfs 16.1± 0.1 24.4± 0.2 29.0± 9.2 39.1± 0.1
softvmfs 34.5± 2.2 76.8± 1.8 121.7± 0.1 178.8± 0.2
davmfs 288.4± 10.0 671.4± 21.4 1050.7± 26.2 1584.0± 39.7
CLUTOa 18.6± 1.8 22.6± 1.7 25.1± 1.7 27.0± 1.7
co-cluster 20.9± 0.5 39.9± 1.0 62.8± 0.7 102.9± 0.8

aCLUTO is written in C whereas all the other algorithms are in Matlab.

4.5 Clustering results with feature selection

In text information retrieval applications, feature selection techniques are often used to select a
subset of words, to achieve more compact representation of text documents and reduced computa-
tional complexity for manipulating text data. Feature selection has been researched extensively for
classification problems (Guyon and Elisseeff, 2003) where each feature dimension can be evaluated
based on its ability to differentiate different target labels. In contrast, for clustering problems,
there are relatively small number of feature selection techniques. The traditional principal compo-
nent analysis has difficulty on document clustering due to very high dimensionality. Some recent
proposals are quite complicated (Dash et al., 2002; Law et al., 2003).

Feature selection is not the focus of this paper; rather, we intend to see how dimensionality
reduction for text documents will affect the model-based clustering results. Therefore, we employ
two simple feature selection methods—word frequency-based selection (Dhillon, 2001) and word
variance-based selection (Salton and McGill, 1983).
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Table 8: Summary of text datasets after feature selection. For each dataset, nd is the total number
of documents, nw the total number of words.

Feature Selection frequency-based variance-based
Data nd nw nd nw

NG20 19949 11941 19949 19949
NG17-19 2998 15791 2998 2998
classic 7085 3244 7086 7094
ohscal 11162 5126 11162 11162
k1b 2340 10337 2340 2340
hitech 2301 9978 2301 2301
reviews 4069 13840 4069 4069
sports 8580 8588 8580 8580
la1 3204 10930 3204 3204
la12 6279 11153 6279 6279
la2 3075 10546 3075 3075
tr11 414 6030 414 414
tr23 204 5277 204 204
tr41 878 7244 878 878
tr45 690 7882 690 690

For frequency-based selection, we simply keep only the words that occur in more than 0.1%
and less than 15% of all documents. For the second selection method, we sort all the words based
on their variances and keep only the N words with the highest variances. That is, we reduce the
number of dimensions to be the same as the number of documents. The variance of the l-th word
is defined as

σ2
l =

1
N

∑
x

x2(l)− (
1
N

∑
x

x(l))2 ,

where x(l) is the number of occurrences of word wl in document x. Table 8 shows the dimensionality
of each dataset and the number of documents (with empty ones removed) after feature selection
step. The clustering results as well as paired t-test results with feature-selected text datasets are
presented in Table 9–17 in the Appendix. The hypothesis fs>nfs tests whether feature selection
improves the clustering results.

The main notable changes in clustering results on feature-selected datasets are:

1. The Bernoulli model-based algorithms—kberns, skberns, and mixberns—perform exception-
ally well on feature-selected classic datasets, which are relatively simple to cluster. By further
examining the classic dataset, we see that, of the four classes (MEDLINE, CRANFIELD,
CACM, and CISI), CACM class contains documents that are of much shorter length (with
an average length of 4.7 vs. 60–80 for the other three classes), and that overlap with the CISI
class is in terms of content. Without the CACM class, the rest three classes can be easily
identified by many clustering algorithms (Dhillon, 2001; Dhillon et al., 2002a). With CACM,
the main difficulty is to separate CACM from CISI. So one reason for the exceptionally good
performance of kberns, skberns, and mixberns on classic could be that, after feature selec-
tion, i.e., with over 30,000 “irrelevant” features removed, the Bernoulli models can separate
CACM from CISI by effectively capturing the length difference. In general, however, the
Bernoulli model-based methods are still much inferior to multinomial and vMF model-based
algorithms.

2. Just by looking at the NMI numbers, one can see that multinomial model-based methods
generally produce better results for feature-selected datasets. For example, as shown in
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Table 13 and 18, the average NMI values of damnls algorithm significantly improves on 12
out of the 15 frequency-selected datasets and on 14 out of the 15 variance-selected datasets.
On the other hand, vMF model-based methods generate lower NMI values for most of the
feature-selected datasets. These surprises encourage us to go back and examine the properties
of different models to find an explanation. Reconsidering the objective functions for kmnls
and kvmfs, we note that the former maximizes

∑
x

∑

l

x(l) log Py(x)(l) ,

where y(x) is the cluster index for document x, l is the word index, and Py(x) is the word
distribution for cluster y(x). The latter minimizes

∑
x

∑

l

x̃(l)µy(x)(l) ,

where x̃ = x
‖x‖ is a normalized document vector and µy(x) is the normalized mean of cluster

y(x). All quantities are of course empirically estimated based on the training data. Note
that kmnls involves a log (·) function, which magnifies the magnitude of Py(x)(l) when the
probabilities are small. That is, when the dimensionality of document vectors is high, the
discrete word distribution will be diluted, most Py(x)(l)’s will be small, and log Py(x)(l)’s will
be large negative numbers that may dominate the objective function. If this is the case, the
cluster assignment of x based on

∑
l x(l) log Py(l) will not be accurate. But if dimensionality

decreases (e.g., after feature selection), the discriminative power of x will likely increase in
the objective function (relative to log Py(x)), thus improve the partitioning of documents
into clusters. Though feature selection may remove words that contain useful discriminating
information, our results (especially the damnls results in Table 13 and 18) suggest that the
benefits from dimensionality reduction outweigh the possible information loss from reduced
features for the multinomial model. On the other hand, there is no corresponding benefit for
the vMF model and thus feature selection starts hurting the clustering performance earlier
on.

3. The relative performance between damnls and davmfs changes to the opposite—the former is
now significantly better than the latter on many datasets. For frequency-selected datasets,
damnls significantly outperforms davmfs on six datasets and underperforms on only three
datasets (see Table 12). For variance-selected datasets, damnls is significantly better than
davmfs on 13 datasets and worse on only two (see Table 17).

4. After feature selection, CLUTO seems to deliver lower NMI performance whereas co-cluster
seems to fare better on most datasets. For example, as shown in Table 18, the performance
of CLUTO significantly improves on three but degrades on six out of 15 variance-selected
datasets. In contrast, the co-cluster generates significantly better results on nine and worse
on only two out of 15 variance-selected datasets. Overall, damnls, davmfs, and CLUTO are
still the three best algorithms for the feature-selected datasets, and no one is dominating the
other two.

5 Concluding remarks

The comparative study of generative models for document clustering provided several insights
and some surprises. First, though both EM-based and stochastic assignments seem more sophis-
ticated than hard assignment, in practice they provide little performance improvement over the
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corresponding simple and fast ”winner-take-all” method. However, deterministic annealing does
often significantly improve the performance of both multinomial and vMF model-based clustering
algorithms, and are worthwhile if the added computational demands can be tolerated. Second,
the Bernoulli model is clearly not appropriate for text clustering unless the clusters are very well
separated. More of a surprise, however, was the relatively poor performance of a theoretically
well-motivated spectral clustering approach.

By incorporating directional constraints, the von Mises-Fisher model typically provides better
results than the popular multinomial model when the number of training samples is small compared
to the input dimensionality. By carefully selecting only a subset of the words, this advantage can be
neutralized however, and the feature reduction studies show the multinomial performing quite well.
Note however that the softvmfs used in this paper is not a full-fledged EM algorithm. Concurrent
work at UT-Austin on an EM algorithm that allows different dispersion (κ) values for different
clusters and lets EM re-estimate these values after each iteration, indicates that substantial gains
can be achieved with this added capability (Banerjee et al., 2003). It has been observed that, if
small initial κ’s are used, the EM procedure gradually increases the κ values, and the final values
obtained are typically very high. Since different clusters can have different levels of dispersion
during the iterative process the effect is similar to localized deterministic annealing.

All the model-based algorithms (except DA) have a computational advantage over graph-
partitioning based approaches but need better initialization strategies to generate more stable
clustering results. Meila and Heckerman (2001) compared several initialization techniques and
found none to be clearly better, so the quest for more effective techniques continues. Bradley and
Fayyad (1998) employed sampling and meta-clustering (clustering of multiple solutions on sampled
datasets) to refine initial cluster centroids. This technique deserves more investigation in the fu-
ture. A second direction on improving the local solution of model-based algorithms is to tweak
the clustering process. For example, local search has been employed by Dhillon et al. (2002a) to
improve the performance of the spherical k-means algorithm. Also online updates have been re-
ported to work better than batch updates for both spherical k-means (Dhillon et al., 2001) and soft
vMF-based clustering (Banerjee and Ghosh, 2002), so online extensions of the other model-based
approaches need to be investigated.
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Appendix

Table 9: NMI Results on NG20, NG17-19, classic, ohscal, and hitech datasets with frequency-
selected words

NG20 NG17-19 classic ohscal hitech
K 20 3 4 10 6
kberns .38± .02 .03± .01 .92± .00 .39± .02 .11± .02
skberns .39± .02 .03± .01 .92± .00 .39± .02 .11± .02
mixberns .38± .02 .03± .02 .92± .00 .38± .03 .11± .02
daberns .04± .00 .03± .00 .13± .11 .00± .00 .01± .00
kmnls .55± .02 .31± .09 .56± .05 .38± .02 .18± .02
skmnls .56± .01 .31± .10 .57± .07 .38± .02 .19± .02
mixmnls .56± .01 .32± .08 .63± .06 .38± .02 .18± .03
damnls .62± .01 .46± .05 .66± .03 .43± .01 .23± .02
kvmfs .54± .02 .36± .11 .57± .04 .45± .02 .22± .03
skvmfs .46± .05 .37± .10 .55± .03 .43± .03 .22± .02
softvmfs .48± .01 .45± .04 .54± .04 .39± .02 .26± .02
davmfs .58± .01 .47± .01 .49± .00 .47± .01 .26± .02
CLUTO .56± .00 .46± .01 .53± .00 .47± .00 .24± .01
co-cluster .58± .01 .13± .02 .47± .02 .33± .00 .23± .01

Table 10: NMI Results on hitech, reviews, sports, la1, la12, and la2 datasets with frequency-
selected words

reviews sports la1 la12 la2
K 5 7 6 6 6
kberns .33± .04 .37± .05 .17± .03 .23± .01 .20± .03
skberns .34± .05 .38± .05 .18± .02 .23± .02 .21± .03
mixberns .35± .04 .37± .05 .18± .03 .23± .01 .20± .03
daberns .05± .01 .03± .00 .01± .00 .01± .00 .01± .00
kmnls .49± .10 .58± .06 .43± .02 .48± .04 .41± .04
skmnls .50± .10 .59± .05 .42± .04 .47± .04 .43± .04
mixmnls .49± .10 .58± .06 .43± .03 .48± .04 .42± .03
damnls .50± .01 .59± .04 .53± .02 .58± .02 .54± .04
kvmfs .46± .09 .57± .06 .48± .05 .49± .04 .45± .03
skvmfs .45± .08 .57± .04 .49± .04 .49± .06 .50± .04
softvmfs .43± .03 .59± .04 .47± .04 .47± .03 .48± .03
davmfs .45± .06 .59± .03 .52± .03 .53± .02 .54± .02
CLUTO .50± .00 .61± .00 .53± .02 .53± .01 .53± .01
co-cluster .34± .01 .53± .01 .36± .01 .45± .01 .43± .01
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Table 11: NMI Results on k1b, tr11, tr23, tr41, and tr45 datasets with frequency-selected words
k1b tr11 tr23 tr41 tr45

K 6 9 6 10 10
kberns .42± .10 .07± .01 .11± .01 .13± .04 .08± .02
skberns .47± .02 .07± .01 .11± .01 .13± .05 .09± .02
mixberns .42± .09 .07± .01 .10± .01 .13± .04 .08± .02
daberns .05± .00 .08± .01 .10± .01 .03± .00 .07± .01
kmnls .50± .03 .23± .04 .16± .03 .44± .06 .41± .04
skmnls .50± .04 .23± .04 .16± .03 .44± .07 .42± .03
mixmnls .51± .04 .24± .04 .16± .04 .45± .06 .42± .04
damnls .64± .03 .53± .05 .32± .04 .69± .03 .67± .04
kvmfs .56± .04 .27± .04 .18± .02 .54± .04 .55± .07
skvmfs .59± .03 .39± .04 .22± .03 .59± .03 .62± .05
softvmfs .59± .03 .51± .02 .37± .03 .61± .02 .71± .05
davmfs .65± .04 .48± .02 .34± .03 .65± .02 .70± .02
CLUTO .67± .03 .51± .02 .39± .02 .66± .02 .70± .01
co-cluster .64± .01 .43± .01 .24± .01 .58± .02 .56± .03

Table 12: Summary of t-test results (word features selected by word frequencies).

Hypothesis tested
Dataset bb>wb bm>wm bv>wv dam>bm dav>bv dav>dam dam>cluto
NG20 0.1655 0.2237 <0.001 <0.001 <0.001 >0.999 <0.001
NG17-19 0.46 0.338 0.009 <0.001 0.083 0.336 0.44
classic 0.007 0.009 0.089 0.062 >0.999 >0.999 <0.001
ohscal 0.216 0.413 <0.001 <0.001 0.011 >0.999 >0.999
hitech 0.359 0.391 <0.001 <0.001 0.648 <0.001 0.914
reviews 0.263 0.382 0.103 0.499 0.662 0.078 0.502
sports 0.339 0.292 0.132 0.654 0.496 0.427 0.911
la1 0.206 0.298 0.155 <0.001 0.049 0.884 0.507
la12 0.339 0.369 0.043 <0.001 0.017 >0.999 <0.001
la2 0.228 0.207 0.004 <0.001 0.002 0.576 0.24
k1b 0.074 0.174 0.054 <0.001 <0.001 0.138 0.997
tr11 0.397 0.181 <0.001 <0.001 0.983 0.998 0.108
tr23 0.283 0.439 <0.001 <0.001 0.976 0.076 0.999
tr41 0.485 0.323 <0.001 <0.001 0.002 0.999 0.018
tr45 0.3 0.225 <0.001 <0.001 0.553 0.013 0.99
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Table 13: Paired t-test results on feature selection (word features selected by word frequencies).

Hypothesis tested: fs > nfs
Dataset kmnls damnls kvmfs davmfs CLUTO co-cluster
NG20 0.006 <0.001 0.789 0.57 >0.999 <0.001
NG17-19 0.029 <0.001 0.568 <0.001 0.295 <0.001
classic 0.486 <0.001 0.046 >0.999 0.9139 <0.001
ohscal 0.044 <0.001 0.065 0.006 <0.001 >0.999
hitech >0.999 0.456 >0.999 0.998 >0.999 0.38
reviews 0.932 0.803 0.977 >0.999 >0.999 >0.999
sports 0.585 0.183 0.613 0.548 >0.999 0.985
la1 0.031 <0.001 0.666 0.118 >0.999 0.967
la12 0.452 <0.001 0.991 0.382 >0.999 >0.999
la2 0.584 <0.001 0.998 <0.001 >0.999 0.024
k1b 0.997 <0.001 0.975 <0.001 <0.001 0.043
tr11 >0.999 <0.001 >0.999 0.995 >0.999 >0.999
tr23 0.498 <0.001 >0.999 0.756 0.997 0.006
tr41 0.99 <0.001 0.998 <0.001 0.817 <0.001
tr45 0.785 <0.001 >0.999 <0.001 <0.001 <0.001

Table 14: NMI Results on NG20, NG17-19, classic, ohscal, and hitech datasets with variance-
selected words

NG20 NG17-19 classic ohscal hitech
K 20 3 4 10 6
kberns .34± .02 .05± .04 .90± .00 .37± .01 .20± .02
skberns .34± .02 .05± .05 .89± .03 .38± .02 .20± .03
mixberns .33± .03 .04± .04 .90± .00 .38± .01 .20± .03
daberns .02± .00 .03± .00 .01± .01 .00± .00 .17± .01
kmnls .55± .02 .34± .10 .57± .04 .37± .02 .27± .02
skmnls .55± .02 .34± .10 .58± .03 .37± .02 .27± .02
mixmnls .56± .02 .34± .11 .61± .04 .37± .02 .27± .02
damnls .62± .01 .49± .04 .67± .04 .42± .02 .28± .02
kvmfs .40± .02 .32± .10 .55± .02 .44± .02 .29± .01
skvmfs .39± .03 .36± .05 .52± .03 .43± .04 .29± .02
softvmfs .42± .01 .42± .06 .53± .03 .42± .02 .31± .01
davmfs .43± .02 .42± .03 .49± .00 .47± .02 .31± .02
CLUTO .57± .00 .44± .00 .54± .01 .44± .00 .34± .01
co-cluster .51± .00 .38± .00 .17± .00 .35± .01 .27± .01
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Table 15: NMI Results on reviews, sports, la1, la12, and la2 datasets with variance-selected words
reviews sports la1 la12 la2

K 5 7 6 6 6
kberns .39± .05 .35± .04 .24± .04 .24± .02 .24± .01
skberns .39± .05 .36± .07 .23± .02 .23± .02 .25± .01
mixberns .39± .05 .35± .06 .23± .02 .24± .02 .24± .01
daberns .35± .04 .03± .00 .19± .02 .07± .07 .22± .02
kmnls .53± .05 .54± .06 .45± .07 .50± .05 .43± .04
skmnls .56± .06 .54± .06 .46± .06 .50± .04 .45± .03
mixmnls .53± .05 .55± .06 .46± .06 .50± .04 .44± .03
damnls .60± .05 .57± .04 .55± .03 .59± .02 .53± .03
kvmfs .51± .07 .61± .04 .48± .06 .53± .03 .51± .03
skvmfs .54± .07 .63± .03 .52± .05 .50± .05 .52± .04
softvmfs .55± .07 .60± .05 .50± .02 .48± .04 .50± .03
davmfs .60± .07 .61± .06 .52± .02 .55± .02 .53± .03
CLUTO .51± .00 .67± .01 .59± .00 .55± .01 .55± .01
co-cluster .40± .02 .57± .01 .50± .01 .50± .01 .50± .01

Table 16: NMI Results on k1b, tr11, tr23, tr41, and tr45 datasets with variance-selected words
k1b tr11 tr23 tr41 tr45

K 6 9 6 10 10
kberns .54± .03 .34± .04 .18± .02 .43± .05 .41± .03
skberns .56± .03 .36± .03 .17± .02 .42± .04 .42± .04
mixberns .56± .03 .36± .03 .18± .02 .43± .05 .43± .04
daberns .55± .03 .27± .05 .16± .01 .35± .01 .33± .07
kmnls .57± .06 .53± .04 .22± .06 .58± .06 .50± .05
skmnls .57± .06 .53± .03 .22± .05 .59± .05 .50± .05
mixmnls .57± .05 .54± .04 .22± .05 .59± .05 .50± .05
damnls .64± .03 .62± .03 .29± .02 .68± .02 .71± .02
kvmfs .58± .04 .58± .02 .31± .04 .63± .02 .66± .06
skvmfs .61± .03 .61± .03 .31± .02 .65± .02 .68± .06
softvmfs .61± .02 .63± .03 .32± .03 .66± .04 .66± .03
davmfs .63± .03 .63± .03 .32± .03 .69± .02 .65± .04
CLUTO .60± .01 .59± .00 .28± .00 .64± .00 .67± .01
co-cluster .69± .03 .53± .02 .17± .03 .58± .02 .49± .01
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Table 17: Summary of t-test results (word features selected by word variances).

Hypothesis tested
Dataset bb>wb bm>wm bv>wv dam>bm dav>bv dav>dam dam>cluto
NG20 0.133 0.115 <0.001 <0.001 <0.001 0.999 <0.001
NG17-19 0.364 0.446 <0.001 <0.001 0.612 >0.999 <0.001
classic 0.289 0.048 0.002 0.003 >0.999 >0.999 <0.001
ohscal 0.094 0.254 0.015 <0.001 0.385 >0.999 0.996
hitech 0.301 0.336 0.005 0.098 0.509 0.005 >0.999
reviews 0.4 0.141 0.007 0.057 0.014 0.026 <0.001
sports 0.396 0.444 <0.001 0.155 0.352 0.997 >0.999
la1 0.215 0.371 0.309 <0.001 0.983 >0.999 0.999
la12 0.265 0.415 0.003 <0.001 0.996 >0.999 <0.001
la2 0.227 0.208 0.11 <0.001 0.252 >0.999 0.987
k1b 0.086 0.45 0.081 0.003 0.02 >0.999 0.002
tr11 0.131 0.449 0.059 <0.001 0.065 0.981 0.015
tr23 0.313 0.398 0.45 <0.001 0.583 >0.999 0.083
tr41 0.377 0.314 <0.001 <0.001 0.996 >0.999 <0.001
tr45 0.127 0.414 0.249 <0.001 0.516 >0.999 <0.001

Table 18: Paired t-test results on feature selection (word features selected by word variances).

Hypothesis tested: fs > nfs
Dataset kmnls damnls kvmfs davmfs CLUTO co-cluster
NG20 0.029 <0.001 0.494 0.003 >0.999 <0.001
NG17-19 0.01 <0.001 0.981 0.009 >0.999 <0.001
classic 0.283 <0.001 0.133 >0.999 0.616 <0.001
ohscal 0.415 <0.001 >0.999 >0.999 0.33 >0.999
hitech 0.007 <0.001 0.109 0.002 0.002 <0.001
reviews 0.754 0.003 0.228 <0.001 0.963 0.424
sports 0.948 0.456 0.998 >0.999 0.016 0.108
la1 0.022 <0.001 >0.999 >0.999 0.063 <0.001
la12 0.092 <0.001 >0.999 >0.999 0.841 <0.001
la2 0.164 <0.001 >0.999 >0.999 0.926 <0.001
k1b 0.137 <0.001 0.996 0.069 0.933 <0.001
tr11 <0.001 <0.001 <0.001 <0.001 >0.999 0.523
tr23 0.002 0.005 >0.999 >0.999 >0.999 >0.999
tr41 <0.001 <0.001 0.999 0.995 >0.999 <0.001
tr45 0.001 <0.001 >0.999 >0.999 <0.001 0.687
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