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Abstract

While data mining algorithms are often designed to operate on centralized data, in practice data is often acquired

and stored in a distributed manner. Centralization of such data before analysis may not be desirable, and often not

possible due to a variety of real-life constraints such as security, privacy and communication costs. This paper presents

a general framework for distributed clustering that takes into account privacy requirements. It is based on building

probabilistic models of the data at each local site, whose parameters are then transmitted to a central location. We

mathematically show that the best representative of all the local models is a certain ‘‘mean’’ model, and empirically

show that this model can be approximated quite well by generating artificial samples from the local models using sam-

pling techniques, and then fitting a global model of a chosen parametric form to these samples. We also propose a new

measure that quantifies privacy based on information theoretic concepts, and show that decreasing privacy improves

the quality of the global model and vice versa. Empirical results are provided on different kinds of data to highlight

the generality of our framework. The results show that high quality global clusters can be achieved with little loss of

privacy.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Extracting useful knowledge from large, distrib-

uted data repositories can be a very difficult task

when such data cannot be directly centralized or

unified as a single file or database due to a variety

of constraints. As in much of parallel processing,
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early work on distributed data mining mostly fo-

cused on technical constraints such as limited com-

munication bandwidth or central storage. More

recently, there has been an emphasis on obtaining

high quality information from distributed sources

while simultaneously adhering to restrictions on

the nature of the data to be shared, due to data

ownership or privacy issues. Much of this work
is appearing under the moniker of ‘‘privacy-pre-

serving data mining’’. In the clustering context, a

prototypical privacy-sensitive application scenario
ed.
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is one in which there are multiple parties with con-

fidential databases and the goal is to cluster the en-

tire distributed data, without actually first pooling

this data. For example, the parties can be a group

of banks, with their own sets of customers, who
would like to have a better insight into the behav-

ior of the entire customer population without com-

promising the privacy of their individual

customers.

Data mining techniques that focus on privacy

have largely taken one of three approaches: (i)

query restriction to solve the inference problem

in databases (Farkas and Jajodia, 2002), (ii) sub-
jecting individual records or attributes to a ‘‘pri-

vacy preserving’’ randomization operation and

subsequently recovering the original data (Agra-

wal and Aggarwal, 2001), (iii) using cryptographic

techniques for two-party or multi-party communi-

cations (Pinkas, 2002). The first method is diffi-

cult and manually intensive, while the latter two

approaches are largely restricted to vector data
and involve high communication costs. Moreover,

recent research (Kargupta et al., 2003) shows

that randomization operations do not necessarily

preserve privacy as the original data can be sub-

stantially recovered using spectral filtering

techniques.

There has been some work on distributed clus-

tering for vertically partitioned data, wherein differ-
ent sites contain different attributes/features of a

common set of records/objects (Johnson and Kar-

gupta, 1999), and on parallelizing clustering algo-

rithms for horizontally partitioned data, i.e, the

objects are distributed among the sites, which re-

cord the same set of features for each object (Dhil-

lon and Modha, 1999, Tasolis and Vrahatis, 2004).

Of these, the distributed clustering techniques pro-
posed earlier do not specifically address privacy

issues whereas the recently proposed privacy-sensi-

tive clustering techniques are based on privacy

requirements with limited practical applicability.

In particular, the privacy-preserving clustering

technique proposed in (Vaidya and Clifton, 2003)

is based on the secure multi-party computation no-

tion of privacy and requires high communication
costs besides being vulnerable to collusion. Simi-

larly, in the cluster ensembles framework (Strehl

and Ghosh, 2002), the fundamental privacy con-
straint is that the local sites participating in the dis-

tributed clustering can share only the local cluster

labels and the identifiers of the individual objects,

which is useful for concealing proprietary algo-

rithms, but not necessarily the individual objects
themselves. Another recently proposed technique

based on sampling local density estimates (Klusch

et al., 2003) focuses on a privacy requirement that

involves minimizing the number of data samples

shared by the local sites.

In this paper, we present a general framework

for clustering horizontally distributed data under

an information theoretic privacy constraint, where
neither the cluster labels nor a subset of the indi-

vidual records can be shared. The basic motivation

is that there is an (unknown) underlying distribu-

tion that represents the commonalities among the

different data sources and identifying this distribu-

tion can provide useful information that is vali-

dated by all the data sources. Note that this

underlying distribution is not necessarily a good
descriptor of a specific contributing source, since

each data source may have a different bias. The

fundamental idea proposed in this work is that it

is possible to learn the global underlying distribu-

tion by combining high-level information from the

different sources instead of sharing individual re-

cords. A global model built in this manner can

then be transmitted to each of the local sites and
used for partitioning the local data.

We make three main contributions. First, we

introduce a privacy preserving framework for dis-

tributed clustering that is applicable to a wide vari-

ety of data types and learning algorithms, so long

as they can provide a generative model (Ghosh,

2003). In this framework, the parties owning the

individual data sources independently train gener-
ative models on the local data and send the model

parameters to a central combiner that integrates

the models. This limits the amount of interactions

between the data sources and the combiner and

enables us to formulate the distributed clustering

problem in a general as well as tractable form. Sec-

ond, we present the idea that it is possible to ob-

tain efficient solutions to optimization problems
based on generative models by formulating

approximate versions of the problems using sam-

pling techniques, which can in turn be solved using
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existing learning algorithms. We apply this idea to

the specific problem of distributed clustering to de-

velop EM based algorithms that are guaranteed to

asymptotically converge to a locally optimal glo-

bal model. Finally, we propose a measure for
quantifying privacy based on ideas from informa-

tion theory, which allows us to formalize the prob-

lem of obtaining a local model given the privacy

constraints.

A word about the notation: Sets such as

{x1, . . .,xn} are enumerated as fxigni¼1. Probability

density function of a parametric model k is de-

noted by pk. Expectation of functions of a random
variable x following a distribution p are denoted

by Ex�p[ Æ ] or Ep[ Æ ].
2. Distributed model-based clustering

Consider a scenario where the over-riding pri-

vacy constraint is that information about individ-
ual objects or ‘‘records’’ such as the feature

values or the cluster labels, cannot be shared with

another site. It is, therefore, necessary to describe

the data by modeling the feature distributions

across multiple records in such a way that the spe-

cifics of a particular record are obscured. To make

this problem tractable, we consider the case where

the records have the same sets of features at each
site. This suggests an approach of building models

locally and then combining them at a central loca-

tion to obtain a more accurate model (Chan et al.,

1996, Yamanishi, 1998). The advantage of this ap-

proach is that it enables easy analysis of privacy

and communication costs in terms of the local

model that is shared with the central location.

The key is to characterize the data at each site
using a suitable probabilistic (generative) model,

and transmit only the model parameters to a cen-

tral site, where ‘‘virtual samples’’ can be now gen-

erated using Monte Carlo Markov Chain

(MCMC) sampling techniques and used to form

a combined model. Since generative models are

available for a wide range of data types, from

vectors to variable length sequences and graphs
(Cadez et al., 2000, Zhong and Ghosh, 2003), this

approach is quite general and applicable to com-

plex data. This also distinguishes our work from
techniques that are applicable only to vector data,

for example, those that combine multiple k-means

solutions (Fayyad et al., 1998, Fred and Jain,

2002).

Since an important goal of data mining is to ob-
tain highly interpretable results, we restrict our

search for the optimal global model to the set of

all mixture models based on a given parametric

family (e.g., mixture of Gaussians). We call the

resulting search problem of finding the highest

quality global model within this family of models

the Distributed Model-based Clustering (DMC)

problem (Ghosh and Merugu, 2003, Merugu and
Ghosh, 2003) and state it more formally below.

Let fXigni¼1 be n horizontally partitioned data

sources generated by a common underlying model

k0. Let fkigni¼1 be the local models obtained by

applying clustering algorithms to these data

sources and fmigni¼1 be non-negative weights associ-

ated with the local models based on their impor-

tance or on the size of the corresponding data
sources. The objective of the DMC problem is

to obtain the optimal global model k�c belonging

to a given family of models F, i.e., k�c ¼
arg minkc2FQðkcÞ, where Qð�Þ is the model quality

cost defined in terms of the local models and their

weights.

2.1. Model representation and quality

We represent the clustering models, i.e., genera-

tive models produced by the clustering algorithms

in terms of their probability density functions, i.e.,

the model k is specified by pkðxÞ ¼
Pk

h¼1p
h
kpkðxjhÞ;

where pk(x) is the probability density function,

fph
kg

k
h¼1 are the cluster priors, fpkðxjhÞg

k
h¼1 are the

cluster densities and k is the number of components

or clusters (which could vary for each clustering

model). This leads to a systematic approach for

combining the models that is independent of the

local clustering algorithms.

A natural definition for the quality cost, QIð�Þ,
for a global model, is simply the ‘‘distance’’ from

the underlying true model k0, i.e., QIðkcÞ ¼
Dðk0; kcÞ; where D(Æ, Æ) is a suitable distance meas-
ure for models. Since k0 is not known, we instead

consider the different local models fkigni¼1 as esti-

mators of k0 with weights fmigni¼1 and define the



Algorithm 1. DMC Algorithm

Input: Set of models fkigni¼1 with weights

fmigni¼1 summing to 1, Mixture model family

F
Output: kac ’ arg min

kc2F

Pn
i¼1miDKLðki; kcÞ

Method:

1. Obtain mean model �k such that

p�kðxÞ ¼
Xn
i¼1

mipkiðxÞ:

2. Generate �X ¼ fxjgmj¼1 from mean model,
�k using MCMC sampling.

3. Apply EM algorithm to obtain the opti-

mal model, kac , such that

kac ¼ arg max
kc2F

Lð �X; kcÞ

¼ arg max
kc2F

1

m

Xm
j¼1

logðpkcðxjÞÞ:
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quality cost function in terms of the average

distance from the local models, i.e., QðkcÞ ¼Pn
i¼1miDðki; kcÞ; where

Pn
i¼1mi ¼ 1.

Metrics based on the norms of density functions

such as the L1 distance and the squared L2 distance
and KL-divergence are commonly used for com-

paring a pair of generative models. In particular,

the KL-divergence between models k1 and k2 is

given by

DKLðk1; k2Þ ¼ KLðpk1kpk2Þ

¼ Epk1
log

pk1ðxÞ
pk2ðxÞ

 !

¼ Hðk1Þ � Epk1
log pk2ðxÞ ð1Þ

where H(k1) is the entropy of the distribution pk1
and the second term corresponds to the aver-

age log-likelihood of data generated from the

distribution pk1 with respect to pk2. Due to this

linear relationship with the average log-likeli-

hood,KL-divergence can be considered as the most

natural comparison measure for generative mod-
els. It is also a well-behaved, differentiable function

of the model parameters and has better conver-

gence properties compared to the other measures.

Hence, we optimize the quality cost based on

KL-divergence and use the other measures only

for secondary evaluation of the experimental

results.
1 This result is true for a class of functions called Bregman

divergences (Azoury and Warmuth, 2001; Banerjee et al., 2004)

of which KL-divergence and squared L2 distance are particular

cases.
2 This ensures that the KL-divergence measure is well

defined.
2.2. DMC algorithm

We first pose the DMC problem as an optimiza-

tion problem, present an approximation using

sampling techniques and then, propose a practical

algorithm to efficiently address this approximate

problem. The objective of the DMC problem is

to obtain a global model kc belonging to a partic-
ular parametric familyF such that the quality cost

function Qð�Þ based on KL-divergence is mini-

mized, i.e.,

k�c ¼ arg min
kc2F

QðkcÞ

¼ arg min
kc2F

Xn
i¼1

miDKLðki; kcÞ; ð2Þ
where fkigni¼1 are the local clustering models. This

problem can be simplified using the following

result.

Theorem 1. 1 Given a set of models fkigni¼1 with
weights fmigni¼1 summing to 1, then for any model kc,
whose support set includes the support sets of

fkigni¼1
2

Xn
i¼1

miKLðpkikpkcÞ ¼
Xn
i¼1

miKLðpkikp�kÞ

þKLðp�kkpkcÞ;

where �k is such that p�kðxÞ ¼
Pn

i¼1mipkiðxÞ.

Applying the above theorem, we see that the

cost function in (2) is equal to
Pn

i¼1miDKLðki; �kÞþ
DKLð�k; kcÞ. The first term is independent of kc
and hence, optimizing the cost function in (2) is



S. Merugu, J. Ghosh / Pattern Recognition Letters 26 (2005) 399–410 403
equivalent to minimizing KL-divergence with re-

spect to the mean model �k. In the absence of con-

straints on kc, the optimal solution is just the mean

model �k, as KL-divergence is always non-negative

and zero only when both the arguments are equal.
The mean model also has the following nice

property, which follows from Jensen�s inequality.

Theorem 2. Given a set of models fkigni¼1 with

weights fmigni¼1 summing to 1 and the true 3 model
k0,

Dðk0; �kÞ 6
Xn
i¼1

miDðk0; kiÞ;

where �k is such that p�kðxÞ ¼
Pn

i¼1mipkiðxÞ and D(Æ, Æ)
is any distance function 4 that is convex in the den-

sity function of the second model.

Since the true model k0 is unknown, it is not

possible to find out which of the models fkigni¼1

is more accurate in terms of the ideal quality cost

function QIð�Þ. However, from the above theorem,
one can guarantee that the mean model will always

provide an improvement over the average quality

of the available models. The mean model is thus

a good choice in terms of both Qð�Þ and QIð�Þ,
but it might not be a very interpretable model as

it could have a large number of overlapping com-

ponents. For example, if there are five local mod-

els, each being a mixture of three Gaussians,
then the mean model will consist of 15 possibly

overlapping components, which might not be

desirable when we need a smaller number of dis-

joint clusters, as is usually the case. In general, it

is more appropriate to require the combined model

to belong to a specified parametric family F, e.g.,

the family of all mixtures of three Gaussians.

Therefore, we find the model in F that is closest
to the mean model in terms of KL-divergence.

From Theorem 2, this is also the exact solution

to the DMC problem (2), i.e.,
3 This result is true for any model k0 and is proved in the

general form in the Appendices A and B.
4 Examples of distance functions that are convex in the

density function of the second argument include KL-diver-

gence, L1 distance and squared L2 distance.
k�c ¼ arg min
kc2F

DKLð�k; kcÞ ð3Þ

The new optimization problem (3) is difficult to

solve directly using gradient descent techniques

since closed form expressions of the objective func-

tion do not exist for most generative models.

Therefore, we pose an approximate version of
the above problem and solve it via Expectation–

Maximization (Dempster et al., 1977). Let

X ¼ fxjgmj¼1 be a dataset obtained by sampling

from the mean model. Consider the problem of

finding the model kac 2 F that maximizes the aver-

age log-likelihood of the dataset X, i.e.,

max
kc2F

LðX; kcÞ ¼ max
kc2F

1

m

Xm
j¼1

logðpkcðxjÞÞ; ð4Þ

where Lð �X; kcÞ is the average log-likelihood of X
with respect to kc. As the size of the dataset X goes

to 1, the average log-likelihood converges to the

cross entropy between the densities p�k and pkc,

i.e., Limm!1LðX; kcÞ ¼ Limm!1Ex2X½logðpkcðxÞÞ� ¼
Ex�p�k ½logðpkcðxÞÞ�. Now, the cross entropy between

any two densities is linearly related to the KL-
divergence between them, i.e., Ex�p�k ½logðpkcðxÞÞ� ¼
Hð�kÞ � DKLð�k; kcÞ, where Hð�kÞ is the entropy of

the mean model and is independent of kc. Hence,

maximizing the cross entropy with respect to the

mean model is equivalent to minimizing the KL-

divergence with respect to the mean model. The

approximate problem (4), therefore, converges to

the DMC problem (3) as the size of X goes to 1.
Viewing (4) as a maximum-likelihood parameter

estimation problem leads to Algorithm 1. The main

idea is to first generate a dataset X following the

mean model �k, using MCMC sampling techniques

(Neal, 1993) such as the Gibbs sampling method

and then, apply the expectation maximization

(EM) algorithm (Ghosh, 2003) for mixture estima-

tion to this dataset to obtain the clustering model
kac 2 F that maximizes its likelihood of being ob-

served. The resulting model kac is a local minimizer

of the approximate problem and not necessarily the

same as the solution k�c of the original unsupervised
DMC problem (2). However, it is guaranteed to

asymptotically converge to a locally optimal solu-

tion as the size of �X goes to 1. In practice, one

can use multiple runs of the EM algorithm and pick
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the best solution so that the obtained model is close

to the globally optimal model.
3. Privacy costs

In this section, we quantify the privacy cost

using ideas from information theory and also show

that there is an inverse relation between the pri-

vacy of the local models and the quality of the

mean model. We propose that the privacy,

Pðx; kÞ of an object x given a model k be defined

in terms of the probability of generating the data
object from the model. The higher the probability,

the lower the privacy. More specifically, noting

that the reciprocal of the probability is related to

uncertainty (Cover and Thomas, 1991), we have

Pðx; kÞ ¼ ðpkðxÞÞ
�1
, where pk is the probability

density function of the generative model k so that

privacy corresponds to the uncertainty in predict-

ing the original data from the model.
For vector data, Pðx; kÞ ¼ 1 implies that x can

be predicted with the same accuracy as a random

variable with a uniform distribution on a ball of

unit volume. Further, Pðx; kÞ ¼ 0, (i.e.,

pk(x)! 1) and Pðx; kÞ ! 1 (i.e., pk(x) = 0) cor-

respond to the situations where we have perfect

prediction accuracy and perfect privacy respec-

tively. We can now define the privacy, PðX; kÞ of
a dataset X with respect to the model as some

function of the privacy of the individual data ob-

jects. The geometric mean has a nice interpretation

as the reciprocal of the average likelihood of the

dataset being generated by the model, assuming

that the individual samples are i.i.d., i.e.,

PðX; kÞ ¼
Y
x2X

pkðxÞ
 !�1

jXj

¼ 2
� 1

jXj

P
x2X

log2pkðxÞ

� �
:

A higher likelihood of generating the dataset from

the model implies a lower level of privacy. For

example, consider vector space data being modeled

by a mixture of Gaussians. A highly detailed mod-

el with Gaussians of vanishing variance, centered

at each of the data objects gives away the entire

dataset and has no privacy. This is to be expected
as the probability density pk(x) goes to 1, for all

data objects x 2 X making the privacy measure
go to 0+. On the other hand, a very coarse model,

say with a single Gaussian of high variance has a

low likelihood of generating the data and hence,

has a high privacy.

Intuitively, if the local models are more de-
tailed, the combined model can be improved at

the cost of decreased privacy. In particular, there

is an asymptotic linear relation between the aver-

age logarithm of privacy (log-privacy) of the local

models and the quality of the optimal mean model.

Consider the local datasets Xi ¼ fxijgmi
j¼1,

1 6 i 6 n. The data objects fxijgmi
j¼1 can be consid-

ered to be i.i.d. random variables following the un-
known true model k0. Hence, the log-privacy

values of the objects w.r.t. the corresponding local

model hij ¼ logPðxij; kiÞ ¼ � log pkiðxijÞ 1 6 j 6 mi

are also i.i.d. random variables with mean,

l ¼ Ex�p
k0
½� logðpkiðxÞÞ�, i.e., negative cross entro-

py of ki w.r.t. k
0. By definition, the log-privacy of

the local dataset Xi w.r.t. the corresponding local

model ki denoted by �hi is just the mean or the
empirical average of the log-privacy values of the

individual objects. From the weak law of large

numbers and Chebyshev inequality (Papoulis,

1984), the empirical average �hi (i.e., log-privacy

of Xi w.r.t. ki) converges to the mean l (i.e., cross

entropy of ki w.r.t. k0) in probability when the size

of the local dataset mi tends to 1. Applying the

same argument for each data source, we find that
the average log-privacy of the datasets w.r.t. the

corresponding local models converges to the aver-

age cross entropy between the local models and k0.
Further, this average cross entropy is identical to

the cross entropy between the mean model and

k0, which in turn is linearly related to the KL-

divergence between them, i.e., the quality of the

mean model. Hence, as the privacy of the local
models increases, the quality of the mean model,

which is the optimal unconstrained model, also

goes up. On the other hand, when the privacy of

the local models decreases, the mean model tends

to be more accurate.
4. Experimental evaluation

In this section, we provide empirical evidence

that for a reasonable global sample size and privacy
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level, the global model obtained through the DMC

algorithm is better than the best local model for dif-

ferent types of data not only in terms of KL-diver-

gence, but also for other distance measures. We

also present results that show how the privacy
and quality costs vary with the local model

resolution.

4.1. Datasets and learning algorithms

We performed experiments on four different

types of data (shown in Table 1), which include

four artificial datasets and one real data set
(pendigits) from the UCI repository (Blake

and Merz, 1998). Artificial data was preferred

since the true generative model is known, unlike

in the case of real data, and one can perform con-

trolled experiments to better understand algorith-

mic properties. However, for the sake of stress

testing, we also evaluated our method on real

data by estimating the quality with respect to a
centralized model learned after pooling all the

data. The artificial datasets were generated from

an appropriate mixture model by sampling inde-

pendently using MCMC techniques. Each of these

datasets was then divided equally among five local

sites and local clustering models were trained

using the individual partitions. In the case of

pendigits dataset, we created two different
kinds of partitionings. In the first partitioning

(pendigits1), each site has a dataset with equal

class distribution (10% for each class) whereas in

the second partitioning (pendigits2), each site

has a dataset with unequal class distribution

(20% for two classes and 7.5% each for the rest).

The datasets can be downloaded from http://
Table 1

Details of generative models and datasets

Data type Model type #Dim/sequenc

Vector Gaussian 8

Vector pendigits1–2

Spherical Gaussian 16

Directional vector von Mises–Fisher 100

Discrete sequence Discrete HMM

5 states, 4 symbols 30

Continuous sequence Cont. HMM

5 states, 4 mixtures 30
www.lans.ece.utexas.edu/~srujana/

gencl/data.

To perform clustering, we use the appropriate

EM based mixture estimation algorithms. In par-

ticular, the EM algorithms employed for the Gaus-
sian models, von Mises–Fisher models and Hidden

Markov models are based on (Dempster et al.,

1977; Banerjee et al., 2003; Smyth, 1997) respec-

tively. The EM algorithms at both the local and

global level were run multiple times and the best

solution was chosen so as to reduce the probability

of getting stuck in local minima.

4.2. Performance metrics

For each setting, we computed the privacy costs

of the local models and the ideal quality costs

based on the various distance measures mentioned

in Section 2. For the artificial datasets (Figs. 1, 4

and 5), the distance measures are with respect to

the true generative model whereas for the pen-

digits dataset (Figs. 1 and 2), the distance meas-

ures are with respect to the centralized model. We

compare the performance of our method (glo-

bal) with the average (average), best (mini-

mum) and worst (maximum) of the various local

models, the mean of the local models (mean),

and the centralized model (centralized).

4.3. Results and discussion

We first studied the performance of our distrib-

uted clustering algorithms on the Euclidean vector

datasets for different choices of global sample size

and local model resolution. Based on these exper-

iments, we chose good values for the global sample
e length Total data size #Sites #Clusters

5000 5 5

10,992 5 10

5000 5 5

1000 5 5

600 3 5

http://www.lans.ece.utexas.edu/~srujana/gencl/data
http://www.lans.ece.utexas.edu/~srujana/gencl/data
http://www.lans.ece.utexas.edu/~srujana/gencl/data
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Fig. 1. Variation of global model quality with sample size for artificial Gaussian data. The error bars indicate the std-deviation over 10

trials.
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Fig. 2. Variation of global model quality (w.r.t. centralized model) with sample size for pendigits1.
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Fig. 3. Variation of global model quality (w.r.t. centralized model) with sample size for pendigits2.
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Fig. 4. Variation of privacy and global model quality w.r.t. base model resolution.
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size and model resolution and applied our algo-

rithms to different data types.

4.3.1. Variation of global model quality with sample

size

An important step in our model-based learning

approach is choosing the global MCMC sample

size. Theoretical results indicate that the quality of

model tends to improve as the sample size increases

to 1. In order to test this hypothesis, we ran our

algorithm multiple times on the Euclidean vector

datasets (artificial and pendigits1) changing only

the global sample size. Figs. 1 and 2 show how the
quality of the different models varies with the sample

size. The quality of the global model steadily im-

proves with the number of global samples. When

the sample size increases to that of the combined size

of all the data sources, the global model is better

than even the best of the local models.
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Fig. 5. Global model quality for different types of data. The rows 1–

discrete and continuous sequence data respectively. The white bar r

standard deviation over 10 trials.
4.3.2. Global model quality with varying local model

bias

Fig. 3 shows the performance of our method on

the pendigits2 datasets where each local site

has a different bias. In this case, all the models
(i.e., local models, global model and mean model)

have higher quality costs compared to Fig. 2 where

all the local sites have the same class distribution.

However, the performance gains of the global and

the mean model over the individual local models

are significantly higher than in Fig. 2, which sug-

gests that our technique would perform better with

increase in the diversity of the local datasets.

4.3.3. Variation of privacy and quality cost with

model resolution

Another significant aspect of our framework is

the trade-off between privacy restrictions and the

quality of the combined model obtained. This
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trade-off can be controlled by picking a suitable

model resolution, e.g., number of clusters. Fig. 4

shows the variation of the average log-privacy

and quality cost with the number of clusters in

the local models for artificial Euclidean vector
datasets. From the plots, we note that the average

log-privacy as well as the quality costs decrease as

the number of clusters increases. At a thousand

clusters/location (i.e. one cluster per point) there

is maximum loss of privacy, but because of the

natural clusters in the data, comparable cluster

quality can be obtained much before this limiting

value, i.e., at a much smaller privacy cost.

4.3.4. Quality of global model for different data

types

We also applied our learning algorithms to dif-

ferent data types to illustrate the generality of our

approach. For a fair comparison, we chose the glo-

bal sample size to be equal to the combined size of

all the data sources and the model resolution of the
local models to be the same as that of the true

model. Fig. 5 shows the quality of the different

models for all four data types. In all the cases,

the global model performs better than the best

local model. Moreover, the global model quality

is in general closer to the quality of the centralized

model than the average quality of the local models.
i¼1
5. Concluding remarks

We presented a privacy preserving framework

for distributed clustering that is applicable to a

wide variety of data types and algorithms, so long

as they can provide a generative model. Our ap-

proach is based on obtaining a global model from
‘‘virtual samples� generated from the local models

using MCMC sampling techniques. We also pro-

posed practical algorithms for distributed cluster-

ing based on this approach. Surprisingly good

results are obtained with low communication over-

head even though the sharing restrictions are

rather severe. Further studies of distributed data

mining for a wider range of data analysis goals/
procedures and information sharing restrictions

are warranted in order to unearth the full potential

of this emerging pattern recognition area.
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Appendix A. Proof of Theorem 1

Xn
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log
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Appendix B. Proof of Theorem 2

From Jensen�s inequality, we have for any con-

vex function f(Æ) and random variable Y,

f(E[Y]) 6 E[f(Y)]. Assuming D(k0,k) to be convex

function in the first argument, i.e., D(k0,k) = f(pk),

where f(Æ) is a convex function. Now, consider a

random variable Y over the set fpkig
n
i¼1 following

a discrete distribution fmigni¼1, then using Jensen�s
inequality, we obtain

f
Xn
i¼1

mipki

 !
6

Xn
i¼1

mif ðpkiÞ () f ðp�kÞ

6

Xn
i¼1

mif ðpkiÞ () Dðk0; �kÞ

6

Xn
miDðk0; kiÞ:
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