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This paper investigates the architectural requirements for simulating neural net-
works using massively parallel multiprocessors. First, we model the connectivity pat-
terns in large neural networks. A distributed processor/memory organization is de-
veloped for efficiently simulating asynchronous, value-passing connectionist models.
On the basis of the network connectivity and mapping policy, we estimate the volume
of messages that need to be exchanged among physical processors for simulating the
weighted connections of a neural network. This helps determine the interprocessor
communication bandwidth required, and the optimal number and granularity of pro-
cessors needed to meet a particular cost/performance goal. The suitability of existing
computers is assessed in the light of estimated architectural demands. The structural
model offers an efficient methodology for mapping virtual neural networks onto a
real parallel computer. It makes possible the execution of large-scale neural networks
on a moderately sized multiprocessor. These mapping techniques are useful to both
architects of new-generation computers and researchers on neural networks and their
applications. Until the technology for direct hardware implementation of large neural
networks is available, simulation remains the most viable alternative for the connec-
tion& community. 0 1989 Academic Press. Inc.

1. ARE EXISTING COMPUTERS ADEQUATE  FOR NEURAL SIMULATION?

Connectionist models of computation [ 161  have been in the limelight re-
cently as promising alternatives to traditional approaches to solving complex
problems in artificial intelligence [ 14,461.  In particular, they have been ad-
vocated for inferencing systems with learning capabilities, pattern recogni-
tion, computer vision, and robot control [ 19,38 1.
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A salient feature of connection&t models is that they involve a large num-
ber of elementary computations that can be performed in parallel [ 15 1.
Memory is completely distributed, processing is asynchronous, and the
models are inherently tolerant to malfunctioning processing units or connec-
tions [ 281.  Consequently, they are amenable to a highly concurrent hard-
ware implementation using thousands of simple processors, provided ade-
quate support is available for inter-processor communication.

This paper examines the architecture of parallel computers from the view-
point of their ability to effectively simulate large neural networks. The term
“neural network” is used in a broad Sen,se  to cover artificial neural systems
and other connectionist models, instead of having a restricted biological con-
notation. Our approach is summarized in Fig. 1,  which outlines the organiza-
tion of this paper. We do not focus on knowledge representation and learning
in a neural network. Instead, we explore ways of effectively implementing
neural networks on a highly parallel computer.

At present, a number of research groups are using commercially available
parallel computers for neural network simulations. These include coarse/

Structural Model

Simulation Efficiency

FIG. 1. Critical issues in developing a multicomputer for neural network simulation.
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medium-grained systems such as the transputer-based Computing Surface
with 42 processors at Edinburgh [ 181, the Warp [ 431,  and the 128~node
BBN Butterfly at Rochester [ 17 1. In addition, massively parallel comput-
ers, such as the AMT DAP [ 181  and the Connection Machine [ 201,  are
being used.

Are any of these systems adequate for simulating very large neural nets?
To answer this key question, we use a structural characterization of the appli-
cation domain to predict architectural demands. The results indicate that
indeed, none of the currently available machines can efficiently simulate a
neural network with 0( 10’)  interconnects at a speed of lo9 interconnects/
second, which corresponds to the computational capabilities of a fly [ 121.
Most coarse/medium-grained systems are not able to provide sufficient in-
terprocessor communication bandwidth. Moreover, their powerful proces-
sors are an overkill, since computational requirements are largely confined to
calculating matrix-vector products, which form the “inner loop” for neural
systems. On the other hand, massively parallel, fine-grained systems such as
the Connection Machine are seen to have insufficient local memory. This
forces the use of secondary storage, which causes the I/O transfer rate to be
the most critical bottleneck. These inadequacies provide the motivation for
developing tailor-made computer architectures to cater to such large-scale
simulations in the long run.

The rest of the paper is organized as follows: In Section 2, we present a
model to capture the essential structural features of large neural networks
using a few parameters. This model provides a way of mapping these net-
works onto multicomputer topologies. We also characterize the functionality
of a cell in asynchronous, value-passing computational models. This leads
to the distributed processor/memory organization presented in Section 3.
This architecture is tailored to the efficient simulation of asynchronous,
value-passing neural networks.

A central theme of this paper is analyzing interprocessor communication
bandwidth requirements during simulation, since this is perceived to be a
major bottleneck during highly concurrent execution. This is done both the-
oretically and experimentally in Section 4 using the structural model and
mapping policy developed in earlier sections. These estimates serve to indi-
cate how long a given neural network will take to execute on a multicom-
puter. They also provide a metric for determining the suitability of different
processor interconnection schemes and for choosing the system size. We
conclude this paper by reexamining the suitability of available computer sys-
tems for neural network simulations.

2. AMAPPINGMODELOFNEURALNETWORKS

A connectionist model is distinguished by the use of interconnections
among a large number of elementary computing units or cells as the principal
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means of storing information, and by the ability to simultaneously operate
on this information in a highly parallel and distributed fashion. This view-
point characterizes most artificial neural systems as well as massively parallel
marker/value passing networks and constraint-satisfaction networks [ 14,
16,461. These systems have some commonalities with the neural networks
of the human neocortex, where knowledge is stored and processed by a large
number of interconnected neurons. Neurons have elementary computa-
tional capabilities, but they operate in a highly parallel fashion. The concur-
rent processing by aggregates of neurons in a cooperative and competitive
manner is fundamental to the functioning of the brain.

Each cell of a connectionist system is capable of performing basic arithme-
tic or logic operations and has little internal memory but a large number
of connections to other cells. Every connection has a strength or a weight
associated with it, and the pattern of weights represents the long-term knowl-
edge of the system, The power of a neural system comes from its ability to
simultaneously apply the entire knowledge base to the problem at hand. All
the cells operate concurrently and computations are directly affected by
knowledge encoded in the network connections. By contrast, a symbolic ma-
chine can bring to bear only those representations which can be retrieved
from memory.

We view a connectionist network as a component of a cognitive system
(Fig. 2) rather than as a stand-alone computer. A similar viewpoint has been
expressed by researchers in the Cognitive Architecture Project [ 281.  The
neural network has two sources of inputs:

(i) Raw sensory data, preprocessed through filters, systolic arrays and/or
secondary neural networks, and

(ii) Feedback, training and control signals from the user or the inference
engine.

The inference engine is built on top of the neural network. It uses more con-
ventional symbolic processing to make decisions based on the output of the
neural network and on its own store of high-level knowledge (information,
rules, etc.). This inference engine may run on the host computer or on a
dedicated machine. For interactive systems, the host or network may also
control actuators that interact directly with the environment.

2 . 1 . Logical Structure of Neural Networks
The logical structure of a neural network is given by its underlying network

graph that shows the connectivity pattern of weights. Each vertex of this
graph represents a cell, and a directed edge exists between two vertices if and
only if there is a nonzero weight associated with the corresponding pair of
cells. The connectivity of a set of cells is the ratio of the number of actual
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C o n n e c t i o n i s t

Raw Sensory Data

FIG. 2. Architecture ofa cognitive system.

connections among these cells to the number of connections if the cells were
fully connected.

Table I outlines the structural characteristics of some common network
classes. Several common features become apparent in large networks. Fully
connected neural networks with symmetric weights can be made to converge
to one of a finite set of equilibrium points that are the local minima of the
Liapunov or “energy” function [ 10,321. However, for networks with thou-
sands of cells, full connectivity is computationally prohibitive. This is be-
cause the total amount of computation required is directly proportional to
the number of interconnects and thus increases quadratically with respect to
the system size.

We will focus on the case where it is possible to partition the network into
groups of cells such that the connectivity within a group is much higher than
the overall network connectivity. Typically the cells of such groups are used
to effect the same function or related functions. For example, a winner-take-
all network ( WTA) [ 161,  used for selecting one out of a set of alternatives,
consists of a group of cells that are fully interconnected (conceptually)
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TABLE I
STRUCTURAL CHARACTERISTICSOF VARIOUS CONNECTIONIST  NETWORKS

Network type Connectivity Special features

Crossbar associative networks
[32,391

Semantic networks (local
representation) [50]

Full

Sparse

For large networks, a sizable number of
connections may have zero weights

Hierarchical organization

Semantic networks (distributed Moderate High connectivity within clusters; few
representation) 1521 connections among clusters

Multilayered networks [42,48] Moderate Most connections are between adjacent
layers or within a layer

Human neocortex [ 131 Moderate to high Hierarchical organization; spatial
locality of connections

through inhibitory links. Another commonly occurring configuration is that
of a group of cells which form a mutually supportive coalition by having a
number of reinforcing connections among themselves.

The connections among highly connected groups are not random. For ex-
ample, groups of cells representing competing hypotheses will have intercon-
nects representing inhibitory influences among them but few connections
with groups signifying independent hypotheses. The notions of competing
hypotheses and stable coalitions are a recurrent theme in neural networks
that are functionally characterized by the cooperative and competitive be-
havior of an ensemble of neurons [ 7 1. Competing coalitions of units at vari-
ous levels of abstraction form the basis of several neural models such as those
for computer vision [ 81.

Both analytical [ 23 ] evidence and neurological [ 13 ] evidence suggest that
a comprehensive neural network for cognition will have a hierarchical orga-
nization. At the lower levels, primary features are extracted from input data
with a high degree of concurrency and redundancy. Information is repre-
sented and processed in a distributed fashion. At higher levels, inferences are
made on the features extracted from lower levels. Representation is more
local, and a single concept or attribute is embodied in a small number of
cells. Such a model concurs with our view of a cognitive system as reflected
in Fig. 2.

2.2. A Structural Modelfor  Mapping Neural Networks

In this section, we present a general model to characterize the structure of
large neural networks. The model should be able to capture the essential
structural features of these networks in a few parameters. Second, the model
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should indicate how these networks can be partitioned for efficient mapping
onto multiprocessor / multicomputer systems. Finally, a reasonable predic-
tion of interprocessor communication requirements should be obtained on
using the mapping scheme for various multicomputer topologies.

To characterize a network, we first partition it into disjoint core regions of
comparable sizes. A core consists of a group of cells that are relatively highly
interconnected among themselves. For example, all the cells of a simple
WTA network can form a fully connected core. Though the core need not
be fully connected, the probability of finding a direct connection between
two cells should be much higher if those cells belong to the same core. Of
course, it may be possible to have a subgroup of cells within a core that is
even more highly connected.

It is desirable to partition the network into groups almost equal in size,
with relatively few interconnections among groups. A practical way of speci-
fying a very large network is through a hierarchical procedure where subnet-
works are distinguished by their functional properties and are gradually spec-
ified at finer levels of detail [28]. Partitioning schemes which follow from
this hierarchical decomposition usually give good results. This is because
cells achieving a common function or goal tend to have more interrelation-
ships among themselves than with cells belonging to subnetworks for dispa-
rate functions [ 171. For more randomly structured networks, simple tech-
niques developed for partitioning of graphs [ 371 prove effective. The idea
here is not to spend a lot of computation in trying to find optimum partitions,
but to come up with a reasonable one.

Cores whose constituent cells have a substantial number of intercore con-
nections are further grouped into infhence  regions. For instance, consider a
core consisting of cells in a mutually supportive coalition. The cores repre-
senting competing coalitions would be natural choices for inclusion in the
influence region of this core. The influence region of a cell is identical to the
influence region of the core to which the cell belongs.

For simplicity, we require the symmetric and transitive properties to hold,
so that, for any three core regions, A, B, and C,

(1) B is in the influence region of A, if and only if A is in the influence
region of B,

(2) If B and C are in the influence region of A, then they are in the influ-
ence region of each other.

Then the entire network can be partitioned into disjoint sets of cells such
that each set is precisely the union of the core and the influence region of an
arbitrary cell in that set. Moreover each cell can now distinguish among three
groups of cells, namely, those in its core, those in its influence region, and
the rest of the cells forming the remote region for this cell, as illustrated in
Fig. 3a.
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FIG. 3. (a) The universe of a processing cell. (b) A generic processing cdl of a neural network.

As an illustration, consider the celebrated approach to the traveling sales-
man problem (TSP) based on the Hopfield  model [ 331.  An N = n X n matrix
of cells is employed to solve an n-city tour problem. Each cell is connected
to all other cells in the same row or column, as well as to all cells in the two
columns immediately preceding or succeeding its own. A cell need not
be connected to any other cell besides the 4n - 3 cells s
that the corresponding network graph has degree 0( p”

cified above. Note
IV), even though the

computational model of Hopfield  assumes full connectivity.
For this TSP network, suppose we define the core associated with a cell to

be composed of all the cells in its column. The network then has n equal-
sized cores, each of which is fully connected internally. Furthermore, let the
influence regions be formed from cells in four consecutive columns. Thus
the influence region of a cell in column 1 comprises all cells in columns 2,3,
and 4; the influence region of a cell in column 6 is precisely the cells of col-
umns 5,7,  and 8; and so on. This partitioning is consistent with the require-
ments of symmetry and transitivity. For n = 2048, the probability that a
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connection exists between a cell and another one in its influence region is
about 0.5, while the probability that it is connected to one of the remaining
cells is less than 0.0005. In general, the probability that it has a connection
to another cell decreases as we go from the core region to the influence region
and finally to the remote region.

Let Gi be the number of cells in the influence region of cell a, and Ci be
number of connections of a to this region. Let the probability that a is con-
nected to a cell b in its influence region be denoted as Pi( a - b). If the con-
nections to the influence region were randomly distributed, then Pi( a - b)
= Ci/ Gi. However, in large neural networks these connections often tend to
be concentrated toward a few areas rather than being random. In such cases,
the probability that a cell a is connected to a cell b increases if there is another
cell c in the core of b that is connected to both a and b. We denote this
conditional probability as pi. Thus pi = Pi( u - b given u - c and b - c).
Random connections to the region of influence are modeled by pi = Ci/
G;. Higher values of p i denote a more clustered connectivity pattern for this
region. Similarly, we define p r = P,( a - b given a - c and b - c) when b and
c are in the remote region of a.

We characterize the structure of a large neural network (CN) by an eight-
tuple,

CN= (MT Gc, Gi, Cc,  Ci,  CT, Pi,  or),

where Mis the total number of cells in the network; G, and Gi are the average
number of cells in the core and influence regions, respectively; and C,,  Ci,
and C, represent the average number of connections from a cell to another in
the core, influence region, and remote region, respectively. Thus the average
number of connections per cell is C, + Ci + C,.  The conditional probabilities,
pi and pr,  indicate the amount of clustering or lack of randomness in the
connection patterns of the network. A network with completely random in-
terconnects has very low values for pi and p r,  while values near one are typi-
cal of highly localized interconnects. In Section 4, we show that these two
parameters have a dramatic effect on the communications support required
to simulate the network.

Table IV in Section 4 contains five sets of parameters which characterize
the networks which are considered for performance analysis in that section.
Note that all parameters in the eight-tuple are mean values of the actual dis-
tribution of these parameters over all cells. We assume that the variance of
these distributions is small. This is reasonable if the cores are of comparable
sizes, and the regions of influence are chosen appropriately.

A particular type of connectionist network can be structurally character-
ized in greater detail using a more specific model. A structural description
given by this elaborate model can be translated to the general model. This
has been illustrated for multilayered networks in [ 241.
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2.3. Functional Behavior ofIndividual  Cells
To determine the processing and memory requirements of a virtual con-

nection&t machine, we use the following characterization of the behavior of
each cell in a value-passing neural network: The generic cell, shown in Fig.
3b, receives inputs that are either global signals or the output signals of neigh-
boring cells modulated by the weight of the connection between them. At
any time, cell i has an internal state, qii( t ) . The number of possible internal
states is small, usually 10 or less [ 161. Each cell also has an output xj( t)
denoting its activation level. The output assumes integer values from a small
range, say (- 127 to 128),  and can thus be represented by 1 byte. The state
of a cell comprises its internal state and output. Each cell continuously up-
dates its state and passes its new output value to all neighboring cells.

The state of a cell is updated according to the equations

Xi(t  + I) = hi(l)  wl,j(t)xj(t)l

4l(t  + 1) = g[Qii(t)t  J4t), xO(t)l.

Xj( t) is the output of cell j (as seen by cell i) at time t, and w;,j(  t) is the
weight of the interconnect between cells i and j. By letting W;,i Z 0, we also
cater to autofeedback. The activation function, f, may depend on the current
internal state, which signifies, for example, whether the cell is disabled, satu-
rated, or in normal operation. Typically, f is a nonlinear threshold function.
Note that x0 is a special dummy cell used to cater to global signals which can
be used for broadcasting the thresholds and enable/disable and begin/end
signals.

In addition to the ability to update their states, the cells of an adaptive
system have the ability to modify the weights wi,j  governing their behavior.
Autonomous learning mechanisms [ 71 typically use a variation of Hebb’s
law where the strength of a connection is changed by an increment propor-
tional to the product of the activation levels of the two connecting cells. Su-
pervised networks [46], on the other hand, usually employ a gradient de-
scend algorithm to minimize an error function. For example, each weight
may be changed to reduce a local error given by the difference between the
present output xi(t)  and a desired output x:(t). In both cases, we note that
the weights can be updated locally.

3. MULTICOMPUTERSFORNEURALNETWORKSIMULATION

An artificial neural system can be either fully implemented in hardware or
virtually implemented in software [ 291.  A full implementation provides a
dedicated processor for each cell, and a dedicated information channel for
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each interconnect. Modest-sized fully implemented analog systems have
been realized on VLSI chips [ 34 ] . Electrooptical implementations are also
being explored [ 5 11. Once built, fully implemented systems are difficult to
reconfigure. However, they are attractive for certain special-purpose applica-
tions such as sensory processing and low-level vision analysis [ 29 1.

Virtual implementations simulate the function of a neural network using
fewer physical processors, by time multiplexing several cells on each proces-
sor. The simulation of a neural network of M cells on a computer system
with N processors is a virtual implementation if N < M. In this case, the
network is partitioned into N disjoint groups of cells. These groups are then
mapped onto a multicomputer as illustrated in Fig. 4. The activity of all cells
in a group is simulated by a single processor. Interconnects among these
groups are multiplexed over the physical interprocessor links. The states of
the cells, connection weights, and other system parameters are stored in local
memories. Since the implementation is essentially done in software, it is
more flexible for general-purpose applications.

Currently, all large neural systems are being virtually simulated [ 17, 291.
For example, “neurocomputers” that are being marketed for implementing
artificial neural systems are essentially conventional personal computers
with attached coprocessors  or array-processors, and specialized software.
Small bus-based multiprocessors such as the TRW Mark III take advantage
of the much faster speeds of electronic systems as compared to biological

Artilicial
Neural Network

Mapping

N =0(X?)-(105)

channel

FIG. 4. Mapping of neural nets onto parallel computers.
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systems in order to cope with the massive parallelism of the latter. The first
six entries of Table II summarize the specifications of leading commercially
available neural simulation packages, while the last five entries indicate the
computational capabilities of parallel computers that have been considered
for neural network simulation.

3.1. Processor and Memory Requirements

We are interested in the implementation of neural systems with possibly
millions of cells, on fine-grained multicomputer systems whose architectures
are tailored to meet the requirements of efficiently supporting artificial neu-
ral systems and other value-passing connectionist models. Such computers
need adequate software support for specifying, editing, and archiving the net-
work, and for interpretation and presentation of the results. Moreover, a
comprehensive interactive user interface is indispensable for these systems.
In this paper, we shall not explore these software design issues, but confine
ourselves to hardware design considerations.

Figure 5a shows the design of a virtual connectionist multicomputer. Fig-
ure 5b shows the detailed organization of each processor. A loosely coupled
system has been chosen instead of a tightly coupled one with shared memory.
This is because data can be partitioned into many segments without much
data sharing and dependence, and all cells can be processed concurrently.
The internal state of a cell as well as a list of its connections and their weights
is accessed only by the processor simulating that cell. However, its output
value needs to be conveyed to all its neighbors. These outputs, together with
global signals or conditions, are the only source of data sharing.

More importantly, it is not essential that the new output value of a cell be
immediately available to its neighbors, since neural computation is quite
robust. An exception occurs in applications such as speech processing, where
the temporal characteristics of the network are important and message la-
tency can seriously impair the accuracy of simulation. Effective consistency
can be ensured if the interconnection network has adequate bandwidth.
Therefore, a loosely coupled system is deemed more suitable for neural-net-
work simulation.

The entire network of M cells is partitioned into N disjoint sets of cells of
approximately equal sizes, one for each processor. We define the homegroup
of a processor to be the set of cells that are mapped onto it. This processor is
the home processor for all cells of its home group. A processor is a virtual
neighbor of a cell if its home group contains some neighbor of this cell. Two
processors are virtual neighbors if one of them is a virtual neighbor of a cell
in the other’s home group.

Computing with a neural model involves a “continuous” updating of the
states of all cells. Some global functions on the cell states are also evaluated
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FIG. 5. A multicomputer architecture for simulating neural networks. (a) Overall organiza-
tion. (b) Architecture of a single processor.
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at regular intervals for determining convergence and system outputs. In this
paper, a discrete-step version is assumed where the computation is carried
out through a sequence of iteration cycles. In each cycle, the processors oper-
ate concurrently and update the states of their respective home groups. The
processors have local clocks, but a macrolevel synchronization is done
whereby a processor starts with the next iteration only when all other proces-
sors have completed the previous one. Macrosynchronization alleviates the
problem of distributed synchronization among a large number of neurons
without severely impairing the accuracy of computation when temporal
characteristics of the network are important.

The virtual time of an iteration cycle corresponds to the mean value of the
time difference between successive state updates of a cell. For each processor,
an iteration cycle involves about M/N unit update cycles (approximately
one for each cell of the home group), and overhead for synchronization and
computation of global functions.

Figure 5b shows the organization within each processor. The scheme is
similar to that proposed in [ 291 and to the node architecture of the TRW
Mark III [ 401.  It differs primarily in the network interface which is now
tuned for a message-passing environment rather than for a bus-based multi-
processor, and in the implementation of the state update and transfer
functions.

The home memory stores the current internal state and a list of neighbors
for each cell of the home group. The weight table contains the weights of all
connections involving cells of the home group. The output table has two
sections: The home section records the current output of the home group.
The remote section contains a local image of the rest of the network. This
image consists of the outputs of those cells that are not in the home group
but have a connection with some cell within that group. Global signals that
might influence the local computation are also stored. Since communication
among the processors is not instantaneous, the local images may not be con-
sistent across the system. However, the local image should reflect outputs
that are either current or a few iterations old.

To update the state of a cell, its list of neighbors is read sequentially. This
list provides the addresses of successive ( Wi,j, Xj) pairs which are fetched from
the weight table and output table, respectively. The processing unit has a
pipelined architecture which accumulates the sum of successive products,
w,,  jx,. For adaptive systems, the processing unit also updates the weight co-
efficients. The proposed architecture can be extended to incorporate parallel
processing within a chip by having several pipelines and multiple data paths
so that the states of several cells in the home memory can be updated simulta-
neously.

The transfer function, T, is implemented by table lookup. If the 8 most
significant bits of the weighted sum are used to select one of 256 possible
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outputs, a 1-Kbyte RAM suffices for a table lookup for up to four different
transfer functions. The internal state of the cell is updated using a finite-
state machine. This is also implemented using a table lookup since a cell can
assume only a small number of internal states.

The new output of a cell updates the home section of the output table. It
is also sent to the network interface, which conveys this information to the
cell’s virtual neighbors via the interprocessor communication network. This
interface also updates the remote section of the output table when it receives
new output values from other processors. Each processor also has a commu-
nication link to the host for transmitting global signals, initialization, diag-
nostics, and readouts of system state.

3.2. Choice of Interconnection Network

The value of a cell is passed to a virtual neighbor through a message. Due
to their small size, it is impractical to send such value-based messages indi-
vidually. The overheads involved in message setup, destination decode,
store, and forward would easily dominate the actual transmission time. We
therefore combine values from the same home group that are destined for
the same processor into message packets. Each packet contains a set of
((internal) 11 ‘d t’tce 1 en 1 y number, output value} pairs, besides header infor-
mation containing the addresses of the source and destination processors and
control bits. The size of a packet which conveys 16 values will be about
50 bytes.

What are the basic considerations in choosing an appropriate interconnec-
tion network for a connectionist machine with over 1000 processors? Ideally,
the interconnection network should have adequate bandwidth to pass the
new output of each cell to all its virtual neighbors within one iteration cycle
time. Let BT be the bandwidth required of the interconnection network to
achieve this goal. Due to the small size of the packets and the large number
of virtual neighbors per processor, packet switching with asynchronous com-
munication and distributed control of message routing is preferred. This
means that some packets may not be able to reach their final destination
within an iteration time because of contention delays. Experiments have
shown that, for moderate loads, the bandwidth of a large system is reduced
by about 50% due to contention or unused wires [ 301.  Thus, if a contention-
free bandwidth of 2 BT is provided, then most of the packets will reach their
destination within an iteration cycle. This is acceptable because the compu-
tational model is robust enough to prevent a few stragglers from affecting the
results. This also indicates that system throughput is more critical than met-
rics like worst case communication delays.

Multiprocessor systems can be based on four types of networks: direct in-
terconnection networks with a point-to-point (static) topology, multistage
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interconnection networks ( MINs), crossbars which have a dynamic topol-
ogy, and bus-connected systems. In MINs,  the time to communicate between
any two processors increases logarithmically with the system size, even in the
absence of resource contention. Since MINs  do not provide quick communi-
cation between particular processors, they do not benefit from the locality of
messages exhibited by the neural networks being considered.

Crossbar switches can be used to provide a pseudo-complete connectivity
among the processors. Currently, crossbar switches have fewer than 100 in-
puts. Recent research in the design of large crosspoint switches using multiple
one-sided chips [ 531 indicates that larger crossbar switches may soon be fea-
sible. Still, the full connectivity offered by crossbars is superhuous,  since a
good mapping strategy ensures that each processor communicates only with
a fraction of the other processors.

Bus-based systems entail more complex hardware for bus allocation and
arbitration. A single bus cannot support a large number of processors. How-
ever, multiple-bus systems or a system using both buses and direct intercon-
nects can be viable for a medium-sized system, particularly if a lot of broad-
casting or partial broadcasting is involved. This issue is further investigated
in Section 4.2.5.

Point-to-point topologies are deemed suitable for systems with thousands
of nodes due to direct communication paths among the computer modules,
simpler communication protocols, and more efficient support for local com-
munication [ 61. In particular, the recently proposed techniques of virtual
cut-through and wormhole routing significantly reduce the packet-forward-
ing overhead for such networks [45]. Massively parallel systems based on
the hypercube, mesh, or binary tree topologies [ 351 have already been con-
structed. A class of modular networks called hypernets  has been proposed
recently for hierarchically constructing massively parallel multicomputer
systems [ 361.  They are constructed incrementally with identical building
blocks that are well suited for VLSI implementation. Hypernets provide cost-
effective support for a mixture of local and global communication. Like the
cube-connected cycles [ 441,  hypernets exhibit a constant node degree and
0( log N) network diameter. However, hypernets are more suitable for incre-
mental construction, since links once formed need not be changed as the
system grows in size.

Tree-based topologies are notorious for a communication bottleneck to-
ward the root, though this can be alleviated by augmenting them with extra
communication channels [ 271,  or by ensuring that there is little communi-
cation between the nodes of the left and right subtrees. Due to their extremely
sparse connectivity, these topologies are not being considered for construct-
ing connectionist machines. Large interconnection networks based on hy-
percubes, hypernets, and the torus [ 49 ] have attractive properties for imple-
mentation on VLSI chips. Efficient algorithms for distributed routing and
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broadcasting also exist for them [ 3 1, 361.  Therefore, these three topologies
are assessed in Section 4 regarding their suitability for supporting a neural
network.

3.3. Mapping ofNeural  Networks

How should we partition the cells of a neural network into home groups?
What should the criteria be for allocating these groups to processors? In a
fully connected network, these choices are not critical, since all equal-sized
partitions are topologically equivalent. But in a partially connected network,
proper partitioning and allocation can significantly affect the volume and
characteristics of interprocessor communications, and hence the demands
on the processor interconnection network.

Let uk,/ be the number of cells in the home group of processor k that have
processor 1 as their virtual neighbor. Let the distance between two processors
be given by the shortest number of communication links traversed from one
to the other. Suppose each pair ofprocessors had a dedicated communication
link, i.e., they were at a distance of 1. Then, an optimal partitioning of the
cells into home groups to minimize the total interprocessor communication
bandwidth would be that for which Ck C, vk,/,  1 d k, 1 G N, is minimum.
This would also be the objective function if a crossbar or a single bus was
used to provide pseudo-complete connectivity among all processors. For a
direct interconnection network, the distance between processors k and 1, dk,,,
is not constant for all processor pairs. In this case, the partitioning and alloca-
tion policies are interrelated and depend both on the structure of the neural
network and on the topology onto which it is mapped. The joint optimizing
function is

mint  C C &w), l<k, l&N. (3)
k I

Finding the optimal partitioning and allocation is an NP-complete prob-
lem. In fact, for a network specified by the general model of Section 2.2, an
optimal solution is not possible because the overall network structure is
given, but the individual connections are not enumerated. However, the
model suggests the following heuristic approach:

Partitioning Principle. Prefer cells belonging to the same core for inclusion
in the same home group. If a core is larger than a home group, then this
policy tends to minimize the number of home groups to which the cells of a
core are distributed. Otherwise, it tends to minimize the number of cores
mapped onto the same processor.

Mapping Principle. If the home group of processor k consists largely of
cells in the core or influence region of the cells mapped onto a processor 1,
then the distance, dk.1,  should be as small as possible.
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More formally, we first observe that interconnection networks can be
readily partitioned into equal-sized subnetworks such that the average dis-
tance between two processors in a subnetwork is less than the average dis-
tance for the entire network. For example, an n-dimensional boolean hyper-
cube can be subdivided into 2 q ( n - q)-dimensional  hypercubes. Moreover,
the process is recursive in that the subnetworks can be further partitioned
into smaller networks having smaller values for the average distance. In the
partitioning and mapping scheme given below, care is taken to ensure that
all partitions of the interconnection network have this property.

The interconnection network is first divided into subnetworks of approxi-
mate size M/(  Gi + G,) each. The cells that are mapped onto the processors
of a subnetwork are in more frequently communicating cores or influence
regions. If the core size is greater than home size, let G, = M/N,  for some
integer, r. A core is divided into r sets of equal or comparable sizes, which
form the home groups for the processors in a subnetwork of size r within the
larger subnetwork of size M/(  Gi + G,) . Otherwise, we allocate all cells of a
core to a single processor. This allocation scheme is consistent with the two
principles given above and yields a good approximation to Eq. (3) without
requiring extensive computation.

3.4. Packaging and VLSI Considerations
The memory capacity of a connectionist machine is measured by the num-

ber of cells and interconnects that can be stored. The speed of the machine
is measured in the number of interconnects processed per second (IPS) . Pre-
viously, some authors used the term connection updates per second (CUPS),
which is equivalent to IPS if the network is trainable. In this section, we
determine the amount of hardware required to build a connectionist system
with a given capacity and speed.

Let H = M/N be the average size of a home group. To support networks
with up to 2 ” cells and an average of Cconnections  per cell, the home mem-
ory of each processor will require at least n HC bytes to store the neighbor
lists. If outputs and weights are 1 byte each, then the weight table requires at
least another HC bytes. For networks up to 224 cells and with C in the range
0( 10 2- 10 3 ) , the size of the output table is much less than 4 HC bytes because
many cells in the home group have common neighbors.

The network interface of processor k stores the list of virtual neighbors for
each cell of the home group. The virtual neighbors of the processor k have
buffers or bins allocated to them. The updated output of a cell is stored in
the bins of its virtual neighbors. The capacity of the bin allocated to processor
I is min (packet size, v~,,).  When this bin gets full, its contents are bundled
into a packet and sent to 1.

A total of about 6 HC bytes is required for the three memories and the
neighbor lists and bins in the network interface. Less than 10% of this is due
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to the remote section of the output table. If a single system-wide memory
had been used, then the total size of the home memory and weight table
would be about N times that in the local memory of a processor, but the
replication of data in the remote output tables would have been avoided. We
see that the increase in total memory due to the loosely coupled implementa-
tion with distributed memory is not very significant. The sizes of the output
table and interface buffers scale almost linearly with the home size, H, pro-
vided H is not much less than G,. So the total memory required does not
increase significantly with the system size until H 6 G,.

For N = 2 I2  and C = 1000, about 2 Mbytes of memory is required per
processor if networks with up to 1 million cells are to be supported. This is
reduced to around 128 Kbytes if the number of processor is increased to
64K. This amount of memory will dominate the real-estate requirements for
a processor, since the pipelined arithmetic unit and other logic require much
less area on silicon. So the size of a processor is inversely proportional to the
network size, as the total memory required is almost constant for the range
of network sizes under consideration.

Let us look at packaging considerations for building a system with 64K
processors. In view of current technology, the following limits are assumed:

Max. processors/chip = 32 (area limited)

Max. I/O pins/chip = 256 (pin limited)

Max. chips/ board = 256 (area limited)

Max. I/O ports/ board = 2400 (connector limited).

Suppose each bidirectional link needs two I/O pins, namely serial in and
serial out. Under the above limitations, a 4 X 8 mesh or a (5, l)-net  (either
bus-based or cubelet-based) can be implemented on a chip. For the hyper-
cube, however, only 8 processors can be implemented on a chip since a 4-
cube will require 16 X 2 X 12 = 384 I/O pins, which exceeds the limit. At
the board level, the area limitation is again more critical than pin/connector
limitations for the torus. So a board can accommodate the maximum limit
of 8K processors for a torus, so that all the processors require 8 boards. In
the case of the hypernet, four (5, 2)-nets can be implemented on a single
board, and 32 boards are required to accommodate all 64K processors. In
contrast, only a 7-cube  can be accommodated on a board, by barely meeting
the I/O connector limit. The total number of boards required is 16 times,
and the number of interboard connections is almost 18 times, that for the
hypernet.

These packaging statistics are summarized in Table IIIa,  where only the
links required to make the connections specified by the topology are consid-
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ered in determining the I / 0 pins or off-board connectors used. The low link
complexity of the torus is reflected in its hardware demands. However, the
hardware savings due to the interconnection network is not commensurate
with the much greater bandwidth requirements as compared with the hyper-
cube or hypernet. For the hypercube, pinout limitations become crucial at
both chip and board levels, while for the hypemet, the limit on I/O wires
becomes significant only at the board level. This results in the hypercube
requiring much more hardware and further underscores the advantages of
small-degree networks [ 451.

It should be noted that, if a smaller number of processors were used with
more memory per processor, then the maximum number of processors per
chip would be smaller. In that case, the pin limitations of the hypercube
would not be so evident. For example, if we were allowed only 4 processors
per chip, then a 12dimensional  hypercube would require 16 boards as com-
pared to 4 boards for the torus or the hypemet. On the other hand, if a wider
bus were used, the pin-out limitations would become even more critical,
making high-degree topologies quite untenable for large systems. This is ex-
emplified in Table IIIb,  which is based on allocating 8 pins per input / output
channel pair.

4. EFFICIENCYOFNEURALNETSIMULATION

Highly parallel simulation of large neural networks is restricted by the in-
terprocessor communication required to transmit the activation level of each
cell to its neighbors. In this section, we estimate the minimum bandwidth
required of a multicomputer interconnection network so that interprocessor
communication does not become a bottleneck during the execution of a neu-
ral network specified by the general model of Section 2.2. First, theoretical
estimates are given. Experimental results are presented and compared with
the theoretically obtained values. The effect of the structure of a neural net-
work on communication demands is shown. Hypercubes, hypemets, and
toruses  are evaluated with respect to their ability to handle the desired vol-
ume of interprocessor message traffic. Finally, the effectiveness of broadcast-
ing messages is examined.

4.1. Communication Bandwidth Requirements

An efficient simulation is based on a balanced utilization of all resources:
processors, memory, interconnection network, and system I/O. For our
purposes, the crucial balance is that between processing and communication
capabilities. So we need to estimate the bandwidth required in terms of the
average number of packets that a processor handles per iteration cycle. This
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metric indicates the bandwidth required of the physical communication
channels to sustain a given computational rate. Alternatively, given the spec-
ifications of an interconnection network, it yields the number of iteration
cycles that can be reasonably executed per second for a particular problem.
A packet-switched network using a store-and-forward routine for packets in
transit and infinite buffer storage is considered.

The packets handled by a processor are those for which the processor is
either the origin or the final destination, as well as the packets which reach
their final destination via that processor. Let +i be the average number of
message packets that are sent by processor k per iteration cycle to simulate
the connections between its home group and those cells that are in the influ-
ence region of this group. We define @‘c  and Cp,  in a similar fashion to cater
to the connections in the core region and the remote region. We first estimate
9i. Let pc  = CJG, be the probability that two cells within a core are con-
nected, and H = M/N be the size of a home group. Following the mapping
policy given in Section 3.3, we have two cases:

Casel.G,aff.

Here, the home group of processor k consists solely of cells belonging to
the same core. Consider a cell a in this home group which is connected to a
cell b in its influence region. Let cell b be allocated to processor I,1  Z k. If the
connections to the influence region were randomly distributed, the average
number of connections between cell a and the cells mapped onto processor
1 is max( 1, HCi/  Gi).  However, due to the clustering effect, the probability of
a connection between cell a and a cell in I increases to pcpi,  if pi is high
enough. Thus, the average number of connections between cell a and a vir-
tual neighbor is about max( pep iH,  1, HCJG;).  These connections can be
simulated by a single message to the neighbor for every output update. Thus,
the average number of messages sent per cell, which is the same as the average
number of virtual neighbors of a cell, =Ci/pHp  where

H
’ = max(pcp,H,  1, HCi/Gi)  ’ (4)

To find the number of packets sent by processor k, we first determine the
expected value of 2)k.l.  If pH  = max( 1, CiH/Gi),  then we can assume the
connections to be randomly distributed, so that the average value of l)k,l is
H(  1 _ e-IfL;/c, ), as deduced later (see Eq. (9)). Otherwise, let E be the set
of cells on processor 1 which are neighbors of cell a, and Fbe the set of home
neighbors of cell a. If e E E, and f E I; are chosen at random, then
the probability that there is no connection between e andf is 1 - pi. Cell
a has approximately p c H neighbors on its home processor, and pH  neigh-
bors on processor 1. Thus, the probability that S has a neighbor in set F is
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1 - (1 - pi)PH, which is approximately 1 - e-@@  if pi g 1.  Furthermore, if
p,H[l  - e-Ppi*’ ] %-  1, then we can assume that every cell in processor k’s
home group has a home neighbor that is also a neighbor of processor 1.  Then

uk,[ = H[  1 - ePPpiH]. (5)

Therefore, the average number of packets sent per processor is

a;  =
I
H[ 1 - eePPiH]  x Ci

B 1 pH[l  - epPPiN]  ’ (6)

where p is given by Eq. (4)) and B is the maximum number of messages per
packet, as stated earlier.

Case2.rGc=H,r>  1.

Again, let 1 be the home processor for a cell b that is connected to cell a
and is in its region of influence. Besides the core of b, the home group of
processor 1 includes r - 1 other cores. All these groups are in the influence
region of one another, and by transitivity, in the influence region of cell a.
However, the existence of the connection to cell b does not affect the proba-
bility of cell a’s having a connection with a cell in one of the other cores on
processor 1. Therefore, the average number of connections from a to the
home group of processor 1 is

The first term is the number of connections to the core of b, while the second
is the expected connects to the r - 1 other cores that share the same home
group. The number of messages sent by a cell is Ci/ HP’,  where

With an analysis similar to that for Case 1, we can approximate the average
number of messages reaching a virtual neighbor 1 of processor k by

t)k,/ = H[l - e-“‘i”] if p’H[l  - eep’@] > 1 PcCiH, 1or 7 ,
I

vk,l  =

H[  1  -  e-P’Pi”] 1 + (r- 1)CiPcH otherwise. (7)r Gi I
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The average number of packets sent per processor is

2
L”vk.1 ’

03)

where 2)k,/  is given by ( 7 ) . Equations ( 6 ) and ( 8 ) give the average number of
packets sent per processor to simulate those connections of its home group
that go to their regions of influence. From the mapping scheme, we see that
the processors that receive these packets are randomly distributed in a sub-
network of size NG;/M  that includes processor k.

A processor also sends @‘r message packets to processors outside this sub-
network to cater to the connections of its home group to the “remote” region.
The value of a’,  can be estimated in the same way as that for Cp;,  by substitut-
ingp,forpi,G,forGi,andC,forCiinEqs.(6)and(8).

An estimate for 9,  is obtained more simply. For Case 2, all core connec-
tions are internal to a processor. So no packets need to be sent to other pro-
cessors, that is, !Bp, = 0. In Case 1, a core is spread over lGJH1 processors. If
p JY b 1 then, with high probability, all the other 1 G,/ Hl - 1 processors are
virtual neighbors for a cell in any one of these processors. Therefore,

For reference, let us now estimate the number of packets sent to processors
in the influence region if pi was not given and instead we assumed that the
connections to this region were distributed randomly. We call this the ZUZCOIZ-
ditional  case. It gives an upper bound for the number of packets and also
indicates the effect of p i in reducing interprocessor communication.

The influence region of a cell is spread among Gi/ H home groups. Since a
cell has Ci connections to this region, the probability that it has no connec-
tions to a specific home group is ( 1 - H/ Gi) ‘i,  which can be approximated
by e- “‘;“j if G;/H  % 1. Thus the average number of processors that are
virtual neighbors of a cell because of its connections to the influence region
is

Since the connections are random, the number of cells in processor k that
have processor 1 as a virtual neighbor is simply given by

vk,/ = H( 1 - e-Hci'Gi)e (9)
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Therefore, the average number of packets sent by processor k is

for ok.1 3 1,

cJai  = Gi( 1 - e-r’c‘,&) elsewhere.

The value of 9,  for the unconditional case is calculated in a similar way
and can be calculated by simply substituting G, for Gi and C, for C, in
Eq. (10).

The average number of packets handled by a processor depends on the
multicomputer topology used. Let d, be the average distance (in terms of the
number of links traversed from source to destination) to a virtual neighbor
in the core region. Similarly, we define di and d, for virtual neighbors in
the influence region and the remote region, respectively. Then the average
bandwidth required per processor per iteration cycle is

ec(dc+  l)+@i(di+  l)++r(dr+ 1). (11)

To estimate the average distance to a processor in a particular region, we
first observe that the processors in a specific region are essentially confined to
a subnetwork of size M/ Gregion.  By assuming the destination to be randomly
placed within this subnetwork, we get a conservative value of the average
distance. Consider a subnetwork of size 2 q. If this network is a boolean hyper-
cube, the average distance is q/2. In the case of a torus the average distance
is given by

0.5 x (1 - 2q’9

0.75 x (1 - 2@1)‘2)

if q  is even ;

if q  is odd.

For a (d, h)-hypernet constructed from cubelets, this distance is bounded
above by 2 h-2  (d + 2) - 1. If the hypernet is constructed from buslets,  the
distance is reduced to 2h - 1 provided there is no bus contention. Thus,
given the number of processors in each of the three regions and the multi-
computer used, we can calculate d,,  di,  and d,.  Since we already know how
to estimate Qc,  ipi, and ip,, we can now evaluate Eq. (11).

4.2. Analysis of Simulation Results

Table IV gives the specifications for the network graphs of six hypothetical
neural systems that were used for simulation. The descriptions are in accor-
dance with the structural model described in Section 2, except that pi and pr
are not specified. Nets A to D have about 16 million cells each. The average
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TABLE IV
ST R U C T U R A L  D E S C R I P T I O N  O F  V A R I O U S  N E T W O R K S

Name M G G, c c, C,

Net A 2’” 512 65,536 128 128 3 2
Net B *a 256 16,384 6 4 128 128
Net C 2’4 512 8,192 256 256 16
Net D 2’4 2048 65,536 1024 1024 512
Net E *x 128 8,192 128 128 3 2

number of connections per cell ranges from 288 (net A) to 2500 (net D).
Net A serves as a reference structure, compared to which the connections of
net B are more spread out while the connections of net C are more concen-
trated in regions of locality. Net D is characterized by almost an order of
magnitude greater number of connections as compared to the other nets.
Finally, net E has a structure similar to that of net A but has only 1
million cells.

To obtain values of a,,  +i, and Q, through simulation, an instance of each
net is first generated by getting the values of the model parameters from a
normal distribution with standard deviation, u,  equal to a tenth of the mean
values given in Table IV. Each net is thus represented as a “macronetwork”
consisting of interconnected cores. The values of p i and p r are then used to
obtain the distribution of connections between these cores. This results in a
network described by a list of individual core sizes and the number of con-
nections between each pair of cores. These cores are mapped onto hyper-
cube, hypernet, and torus architectures using the principles given in Section
3.3. The number of packets that need to be handled per processor per itera-
tion is then determined from the average number of connection paths going
through a processor.

The packet size, given by the (maximum) number of messages sent in a
packet, is 16, unless mentioned otherwise. As mentioned in Section 3.2, a
packet contains a cell identity number and an output value for each message
that it conveys. In addition, it carries header information containing the ad-
dresses of the source and destination processors, and control bits. Thus, the
size of a full packet is about 50 bytes.

4.2 .1 . E$“ect  of Clustering

First, we mapped net A on a 14dimensional  hypercube and calculated the
bandwidth required for various values of pi and pr.  In the unconditional
case where the connections within each region are distributed randomly, the
average number of packets handled per processor is 265,2  16, which corre-
sponds to over 16 Mbytes/iteration cycle. Figure 6 shows the number of
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FIG. 6. Effect of clustering on bandwidth requirements.

packets handled for different values of the conditional probabilities. The
dashed lines correspond to the theoretical estimates, while the solid lines are
the experimentally observed values. We see that for net A, pi is somewhat
more critical than p r in determining the bandwidth. If both pi and P, are
greater than 1 / 16, then the bandwidth required is reduced to well within 1
Mbyte/iteration cycle, which is less than 5% of the unconditional case. This
indicates that prominent clustered features in the structure of a neural net-
work are critical in bringing bandwidth requirements to a manageable level.
We also observe that the theoretical estimates are more conservative. The
experimental values obtained are from 2 to 9% greater than the theoretical
predictions.

4.2.2. Eflect  of System Size

Figure 7a shows how the bandwidth varies with the number of processors
in the system. The curve is based on the mapping of net B with pi = 1 / 8 and
p, = 1 / 16, onto hypercube sizes ranging from 1024 to 256K processors. The
increase in bandwidth required when the system size is smaller than 64K is
attributable to two factors:

l The size of a home group increases. A processor has to send more
messages to its virtual neighbors. This factor is not so dominant because a
cell needs to send at most one message to a processor irrespective of the
number of cells in that processor’s home group to which this cell is con-
nected.
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l When more than one core is mapped onto a processor, the impact of
clustering is diluted because some external core may have many connections
to one core but very few to the other cores in the same home group. This is
largely responsible for the 20-fold  increase in bandwidth for 1024 processors
as compared to the “optimal” system size of 64K.
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Interestingly, the bandwidth requirement shoots up dramatically when the
system size is increased beyond 64K, despite the presence of smaller home
groups. This is mainly due to three factors: First, the cores are now spread
over several processors, and so messages to simulate core connections also
need to be sent. Second, a cell has very few connections going to a neighbor-
ing processor. Since the total number of connections per cell is the same, the
number of messages sent by a cell increases. Finally, l)k,/ is very small due to
the small home sizes. Packets are almost empty. This is particularly signifi-
cant for packets sent to the remote region where the average number of mes-
sages conveyed per packet was found to range from 1 .Ol for net C to 7.52
for net D when 256K processors were used. These factors again weaken the
clustering effect. The message patterns approach those of the unconditional
case as the system size approaches M.

The total number of packets handled in the system per iteration cycle of
course is expected to increase with the system size. This is verified in Fig. 7b.
This means that the total number of communication demands increases
faster than the speedup achieved by adding more processors to the system,
provided all processors have the same computational power. For example,
suppose a processor can process 1 million connections per second. Neglect-
ing overheads, one iteration of net B will take about 1.25 set on a system
with 4K processors. This demands a total communication bandwidth of 3.2
Gbytes/sec. If we use 64K processors, then one iteration takes only 0.078
set,  provided the bandwidth is 18.5 Gbytes/sec. The rapid increase in re-
quired total bandwidth with the system size is brought out in Fig. 8, where
the bandwidth required to achieve a linear speedup is shown as a function
of the system size, when net B (with p, = l/8, pr = 1 / 16) is mapped. It is
assumed that each processor has a speed of 1 MCUP.

4.2.3. Eflect  ofNetwork  Structure
Figure 9 shows the bandwidths required by the other five nets for the same

values of p i and p r,  when mapped onto hypercubes of various sizes. All these
nets need less bandwidth than net B. This is particularly remarkable for net
D, which has many more connections than net B. It was experimentally ob-
served that for net D, more packets were sent in the influence region. How-
ever, the number of packets sent to the remote region was significantly less
as compared to that for net B. This counterintuitive observation is due to
two effects. First, the number of messages sent per cell was actually less by
46 to 77% for net D because the denser cores of D caused the clusterings to
be more prominent. Second, l]k,/ was larger for net D because of the denser
cores and increased number of connections. Consequently each processor
had fewer virtual neighbors on the average when net D was mapped. In gen-
eral, the sparseness and spread of connections are seen to be more demand-
ing on the system bandwidth than the actual number of connections.
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Some other observations made from Fig. 9 are

l For all curves, the minima correspond to system sizes for which the
home group and the core sizes become comparable.

l Net D has a structure similar to that of net A but almost 10 times as
many connections. However, the bandwidth requirements do not increase
proportionally. This reinforces our earlier observation that the distribution
of connections can be more critical than the actual number of connections
for determining the system bandwidth.

l Net C requires the least amount of interprocessor communication be-
cause of the greatly localized nature of its connections.

l Net E has a structure similar to that of net A but contains only 1/
16th the number of cells. This does not cause a significant reduction in the
bandwidth demands, though there is a prominent shift in the optimum sys-
tem size.

4.2.4. Influence of Multicomputer Topology
To examine the effect of the multicomputer topology on bandwidth de-

mands, net A (with p i = l/8,  p r = 1 / 16 ) was mapped onto different architec-
tures. The hypemet used for comparison is built from 5-cubelets  [ 361.  The
busnet  is a particular type of hypemet constructed using 5-buslets.  In the
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simulation of a buslet, an ethernet type of protocol was assumed with a 25%
chance that a packet would be accepted. The results are shown in Fig. IOa.

Not surprisingly, hypercubes, which have the highest degree of the four
topologies, have to handle the least number of packets. However, hypemets
are seen to have a comparable performance while using fewer communica-
tion links per processor. The torus suffers from a large diameter (O( fi)),
and so performs poorly, particularly when the network size is large.

For a meaningful comparison between networks with different numbers
of output ports per node, we normalize the bandwidth demanded by multi-
plying it by the number of ports per node [ 6,27  1. This is based on fixing the
total bandwidth available per node, so that the bandwidth available per port
is inversely proportional to the number of ports for that node. When this is
done, hypemets are seen to be more effective than hypercubes, as shown in
Fig. lob. The advantages of networks with low link complexity are further
accentuated when the finite size of message buffers and VLSI layout consid-
erations are also taken into account [ 11,451.
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Since hypemets provide more support for local communication while
maintaining a constant degree, they are more suited for implementing net-
works in which most of the connections from a cell are confined to a small
subnetwork. This can be seen readily from Fig. lOc, which shows the normal-
ized bandwidth (for pi = 1 / 8 and p r = 1 / 16) when net C is simulated. We
conclude that hypernets are more cost effective in supporting interprocessor
communications when the neural models being implemented have a highly
localized or clustered structure.

4.2.5. Broadcast Options

In the previous section, the outputs of a cell were conveyed to its virtual
neighbors through personalized packets. An alternative is to broadcast the
output to all processors (total broadcast) [ 2 1 I, or to the processors in a prede-
fined neighborhood called the broadcast domain (partial broadcast) [ 221.

On receiving a broadcast packet, a processor examines the sender’s address
and records only those messages that are needed by its home group. Other
messages are simply ignored. Optimum distributed broadcast schemes have
been proposed for the hypercube, hypemet, and torus [ 3 1,36 1. For the first
two architectures, a broadcast message is received by all processors in
0( log N) time. For the torus, 0( fi) time is required. In all three schemes,
each node is visited only once.

Broadcasting is more efficient than sending personalized messages if, on
the average, a sizable number of processors in the broadcast domain are actu-
ally virtual neighbors of the sender cell. Since the percentage of virtual neigh-
bors is very low in the remote region, it is not advisable to broadcast over the
entire network. Total broadcasting requires a processor to handle about
M/P packets per iteration. This is because a processor needs to send H//3
packets per iteration, and each packet goes to M/H - 1 processors. For a
network with 224  nodes and a packet size of 16, this translates to over 1
million packets per processor per iteration cycle. This far exceeds the require-
ments for personalized communication for all the networks considered. On
the other hand, broadcasting to processors implementing the same core re-
gion (for Case 2) always shows an improvement.

Broadcasting to all processors implementing an influence region is prefera-
ble if p i is less than some threshold. It is shown in [ 241 that broadcasting to
this region is surely less demanding when

Cidi
Pi<-

P,G,  .
(12)

4.3. Simulation Eficiency  of Existing Parallel Computers

The suitability of existing parallel computers for simulating neural net-
works can be evaluated on the basis of the architectural requirements deter-
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mined by the simulation efficiency analysis. Our analysis suffices to detect
bottlenecks and imbalances between processing, memory, and communica-
tion requirements. A more thorough assessment would require examining
machine characteristics and implementation strategies in great detail, to-
gether with a more intimate analysis of the neural network structure.

Consider the simulation of a neural net with 1 million cells and an average
of 1000 connections per cell. Such a network will come close to attaining the
computational capabilities of,  a cockroach if executed at over 20 iterations/
set [ 12 1. Table V presents typical requirements per processor for simulating
thisnetwork,givenpj=  1/8andp,= l/16.

On comparing the specifications of existing multiprocessors, such as the
Intel iPSC,  NCUBE/ten,  Ametek/  14, and BBN Butterfly, with this table,
we find that medium-grained systems suffer from inadequate memory and
communication bandwidth to fully exploit their processing capabilities. For
example, the NCUBE/ten offers a configuration with 1K processors. Using
noninteger operations, this system could simulate the network at almost 2
iterations/set  only if there was enough memory to store the network. A BBN
Butterfly Plus [ 21 with 256 processors falls short in memory storage as well
as processor speed and communication bandwidth for the magnitude of the
network being considered. The diversity of these complex-instruction-set-
computer (CISC) based systems is not utilized fully since processing is
largely confined to a fast execution of matrix-vector products which form
the inner loop for neural computations. Transputer-based systems, such as
the Meiko Computing Surface with 130 transputers [ 18 1, also suffer from
the fact that their memory capacity and communication bandwidth are not
commensurate with processing speed for neural network simulations.

One way to solve the memory capacity problem is to have a larger number
of processors so that less memory is required per node. On examining fine-
grained systems such as the CM-2 and the DAP, however, we find that the
lack of local memory is even more critical for these machines. For example,
in CM-2 each processor has only 8 Kbytes of local memory [ 31. So we are

TABLE V
A R C H I T E C T U R A L  R E Q U I R E M E N T S  F O R  S I M U L A T I N G  A  N E U R A L  N E T W O R K

W I T H  1  M I L L I O N  C E L L S

System size Memory
(No. of processors) (Mbytes)

1,024 8
4,096 2

16,384 0.5

Communication bandwidth
(Mbytes/iteration)

(Hypercubd (Torus)

0.5 4
0.5 8
2 3 2

Processor speed
(M  interconnects

per iteration)

I
0.25
0.07



326 GHOSH AND HWANG

forced to use secondary storage, which leads to a new bottleneck in I/O trans-
fers. For the 1 -million-cell network, the processors are capable of completing
1 iteration/set,  but the I/O bottleneck restricts speed to over 14 set per itera-
tion. On the other hand, if infinite I/O access speed was available, then the
interprocessor communication abilities would have restricted speed to about
10 set per iteration. Thus the I/O transfer rate is the more critical limitation.

We feel that transputer-based systems, massively parallel machines such
as CM-2, and the new generation of message-passing multicomputers such
as the Ametek 2010 [ 471 still offer the best alternatives for highly parallel
neural simulation. The first has the advantages of high-speed concurrent
communication links, hardware support for process scheduling, and a large
addressable memory space. However, forwarding of messages through inter-
mediate nodes can be achieved only through software routines. This slows
down communication between nonadjacent processors and limits its viabil-
ity to systolic implementations [ 4 11.

For massively parallel machines, a method of allocating one processor for
each cell and two processors for each weight has been suggested recently by
Blelloch and Rosenberg [ 91. This spreads the weights of the connections of
any cell over several processors. These weights can be efficiently processed
using scan operations and pipelining. Using such a representation, the
CM-2 is able to make up to 64M interconnects.

For the Ametek 2010, a configuration of 1024 mesh-connected nodes
would have just enough memory to store the target network and execute it
at 1 iteration/set.  At this speed, the interconnection network bandwidth is
not a bottleneck since the “wormhole routing” mechanism incorporated in
the 2010’s automatic message-routing device enables each node to handle
over 20 Mbytes/set  per channel with little overhead [ 471.  Furthermore, the
high-resolution graphics display can provide a visual trace of the network
execution.

An orthogonal approach is to have a much smaller number of extremely
powerful numerical processors communicating over a common bus. This
reduces the communication requirements while providing enough process-
ing power and storage capacity for moderately large neural nets. A pipclined
architecture with a limited instruction set or the use of fast multipliers is
appropriate for the processor nodes [ 401.  A notable effort in this direction
is the MX-I / 16 being developed at MIT Lincoln Laboratories [ 261.  This
multiprocessor is intended for AI applications such as machine vision that
involve both numeric and symbolic computations. It comprises 16 digital
signal processors, each capable of 1 OM multiply-accumulate operations/
set,  interconnected through a crossbar to one another and to a host Lisp
machine. The system aims for rapid prototyping of parallel algorithms and
their evaluation using large data bases.

In conclusion, a fully configured Ametek 20 10 or the prototype MX- 1 / 16
will provide enough storage and processing power for meeting today’s neural
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network simulation needs but still fall far short of the computational capabil-
ities of modest biological systems. This provides motivation for the long-
term development of specialized computers for highly concurrent simulation
of large neural networks.

5. CONCLUSIONS

This paper presents a distributed processor/memory organization for
highly concurrent simulation of neural networks. On the basis of the struc-
tural model and mapping policy, we estimated the interprocessor communi-
cation bandwidth required to balance processing and communication de-
mands. The interconnect patterns among the cells have a dramatic impact
on the bandwidth requirements. A moderate amount of clustering can re-
duce the bandwidth demands by over 90% when compared to a totally ran-
dom interconnect pattern. Since the communication bandwidth is expected
to be the principle bottleneck in a highly parallel implementation, this pro-
vides an incentive for developing connectionist nets with local and clustered
interconnects.

We reason that architectures with direct links or multiple buses for inter-
processor communication are preferable to multistage networks. Topologies
such as hypemets and cube-connected cycles are considered suitable for
designing a concurrent connectionist machine as they have low link com-
plexity and are able to provide support for both localized and global commu-
nication patterns.

Instead of sending personalized messages between processors, one can use
broadcasting techniques. It is seen that broadcasting messages throughout a
large system is very expensive. However, a partial broadcast to the influence
regions leads to less communication when Eq. (12) is satisfied. This suggests
that the interconnection network can be profitably augmented by adding
local buses or fan-out trees. Alternatively, one can use architectures such as
bus-based hypemets that employ both local buses and direct communication
channels.

Even net C, which has the lowest requirements of the nets considered with
pi = l/8, pI = l/16, needs a total bandwidth of over 6 GBytes/sec  when
mapped onto a 16-dimensional hypercube, in order to keep the iteration
cycle time within 1 sec. Implementation of large networks also motivates
the search for new technologies, such as optics, that can provide very high
bandwidths. Issues involved in using optical interconnects for constructing
a neural net simulator are explored in Ghosh and Hwang [ 25 1.

An alternative is to reduce bandwidth demands by modifying the compu-
tational model. For example, a cell may broadcast its updated output only if
it differs significantly from its old output. Moreover, it may be allowed to
update its state even when it has not received the updated outputs of many
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of its neighbors. The effect of these pragmatic policies on execution speed,
and indeed on the results themselves, is an area not fully explored yet [ 22 1.
Other important areas of research include specification of network models
to solve a given problem, effective knowledge representation and techniques
for network compilation, run-time modifications to cater to new knowledge,
extraction of knowledge and results from the networks, and the design of
user interfaces [ 17, 191. Significant progress in all these areas is needed to
realize the full potential of connectionist computation.
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