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Abstract. This paper studies the behavior of a large 
body of  neurons in the continuum limit. A mathemati- 
cal characterization of such systems is obtained by 
approximating the inverse input-output nonlinearity of  
a cell (or an assembly of  cells) by three adjustable 
linearized sections. The associative spatio-temporal pat- 
terns for storage in the neural system are obtained by 
using approaches analogous to solving space-time field 
equations in physics. A noise-reducing equation is also 
derived from this neural model. In addition, conditions 
that make a noisy pattern retrievable are identified. 
Based on these analyses, a visual cortex model is pro- 
posed and an exact characterization of the patterns that 
are storable in this cortex is obtained. Furthermore, we 
show that this model achieves pattern association that 
is invariant to scaling, translation, rotation and mirror- 
reflection. 

I Introduction 

Biological neural networks consist of  very large num- 
bers of neurons. The human brain has over 10 ~1 neu- 
rons, with an average connectivity in the thousands. 
Faced with numbers of this magnitude, it is impossible 
and often meaningless to monitor every single neuron 
as it interacts with its surroundings. To gain insight into 
the complex functions performed by neural systems, a 
description of the overall network behavior is required 
that is not overwhelmed by detailed behavior of  indi- 
vidual neurons. This problem can be tackled by a 
two-step approach. The first step is to deal with the 
interaction of numerous individual cells in one homoge- 
neous neuron-assembly using statistical methods 
(Amari 1972; Chang et al. 1992). The second step is to 
deal with the interaction of  numerous homogeneous 
assemblies by way of a neural field or continuum theory 
(Amari 1977). 
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In this paper, we focus on the second step by 
considering a high-density neural network as a continu- 
ous "field", wherein the discrete subindex used to label 
a particular neuron (or assembly of  neurons) is re- 
placed with a continuous position vector. Although the 
penalty is that we need an additional variable to iden- 
tify the neural quantities, the system description gets 
reduced from numerous coupled differential equations 
to only one integro-partial-differential equation. By 
solving the derived spatio-temporal equation, we can 
get a good picture of the neural system. 

The continuous neural model studied in this paper 
is based on a somewhat detailed characterization of  
individual neurons stemming from an associative net- 
work model with a time delay factor. This model is 
used to deal with the problems of storable pattern 
formation and its retrieval in a high-density neural 
system. The primary concerns of this investigation are 
to determine the patterns associated with the neural 
system and the conditions required for such patterns to 
be retrievable from some noisy versions. Under the 
hypothesis of  adiabatic learning (Caianiello 1961), ex- 
pressions for key quantities, such as output voltage are 
obtained. The results are applied to analyze a visual 
cortex model with "on-center, off-surround" intercon- 
nections and sigmoidal input-output transfer function. 
An exact solution of the associative storable output 
activity is achieved and is used to explain several known 
characteristics of a visual system, such as visual invari- 
ances to pattern scaling, translation, rotation and mir- 
ror-reflection. 

Section 2 summarizes related research on neural 
continuum models and their applications to pattern 
generation, pattern retrieval and visual invariances. 
In Sect. 3, starting from a discrete neural model of  
associative memory, a continuous model of  neural net- 
works is presented and its corresponding pattern gener- 
ation equation is obtained. Then, the noise-reducing 
equation is derived. These mathematical results are 
used in Sect. 4 to analyze a visual cortical system with 
Mexican-hat type interconnections and sigmoidal input- 
output transfer function. The characteristic of invari- 
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ances with respect to an affine transformation is pre- 
sented in Sect. 5. 

2 Background 

2.1 Neural continuum models 

There have been several neural field studies (see, e.g., 
Wilson and Cowan 1973; Ellias and Grossberg 1975; 
Stanley 1976; Amari 1977; Amari and Orbib 1977; 
Ermentrout and Cowan 1980). All these researchers 
considered a 1-d or 2-d cortical domain. Then, they 
argued that the interconnection strengths are dependent 
only on the distance between connections and addition- 
ally assumed that the neural tissue is isotropic. Under 
these conditions, they took the continuum limit of a 
discrete associative neural model (see also equation 
(1)), assuming there are infinitely many neurons dis- 
tributed on a cortical surface. In this manner, they 
obtained a version of a continuous neural field of the 
form: 

C au(x, y, t) = _ l  u(x, y, t) 
dt R 

+ S ~ w(x, y)v(x, y, t) dx dy 
x y  

+ I~)(x, y, t) .  

By way of the similar technique of neural field, Wilson 
and Cowan (1973) proposed a plausible field equation 
and showed by computer simulations that their model 
has three interesting types of pattern dynamics. Rever- 
beration and propagation of excitation patterns was 
studied in discrete homogeneous nerve networks 
(Amari 1975). Amari (1977) also studied the neural 
layer characteristics of  certain types of  pattern dynam- 
ics in a 1-d case, and subsequently, extended the earlier 
model to a 2-d competitive-cooperative neural field 
(Amari and Arbib 1977). Using some simplifying as- 
sumptions such as ignoring the time lag, Amari et al. 
(Amari 1977; Amari and Arbib 1977) studied the quan- 
tity of average membrane potential (input voltage) in a 
macroscopic sense. They gave an analysis of the equi- 
librium states of the system and their stability, and the 
interaction of different stimuli separated in space and 
time. These theoretical foundations are explored by 
graph analysis in phase space. However, there is no 
explicit mathematical expression for the associative spa- 
rio-temporal patterns, and also no mechanism is pro- 
posed for their retrieval. 

2.2 Pattern generation 

The concept of a neural field was applied to biological 
pattern generation by Ermentrout and Cowan (1979), 
who considered an excitatory and inhibitory neural 
system and studied a time coarse-grained current or 
firing rate. By making a linear approximation to a 
sigmoidal type transfer function, they showed the exis- 
tence of a variety of doubly-periodic patterns, such as 
hexagons, rolls, etc., as solutions to 2-d neural networks 
under the continuum limit. 

In 1980, a generalized model for the spatio-tempo- 
ral activity of neural networks was proposed (Ermen- 
trout and Cowan 1980). In this work, stationary 
periodic spatial patterns are discussed from the view- 
point of bifurcation theory. Existence of spatial pat- 
terns on the whole line is established by the implicit 
function theorem. Singularity theory is used to study 
the local structure of the bifurcation equations. A Poin- 
carr-Lindstedt series is developed to establish the form 
of the periodic stationary states and their stability. 
Some of these results are obtained as a special case of 
the neural field model developed in this paper. 

Ermentrout et al. (1986) also examined an excita- 
tory and inhibitory neural system and considered both 
discrete time and continuous time models. They studied 
the quantity of pigment secretion and assumed that it is 
stimulated by neural activity or is simply proportional 
to neural activity. Then, they presented lots of spatial 
patterns on the shells of molluscs by computer simula- 
tions. Nevertheless, they did not give a general close 
form expression for the possible spatio-temporal pat- 
terns, and again, no mechanism is proposed for their 
retrieval. 

2.3 Pattern retrieval and visual invariances 

The use of artificial neural networks as distributed 
associative memories, and the associated problem of 
retrieval of memorized patterns from noisy inputs, has 
a long history. For instance, Anderson used various 
kinds of filters designed so as to minimize the probabil- 
ity of error by maximizing a certain signal-to-noise 
ratio (Anderson 1968), and Kohonen used the concept 
of adaptive filter operation for autoassociative and 
heteroassociative recall (Kohonen 1989). 

Another related work is invariant pattern recogni- 
tion. In general, we can classify techniques for invari- 
ant pattern recognition into three categories: The first 
one is by way of invariant feature spaces. It has long 
been recognized that it is possible to extract features 
(such as Zernicke moments) which are invariant to 
transformations (e.g. rotations) of an input. The next 
category is invariance by training, wherein a number 
of different examples of the same object are directly 
presented to the neural networks during training. This 
approach is considered impractical for real life pat- 
terns. The final category is invariance by structure. 
The idea of imposing invariance on a neural network 
by placing limitations on its structure has been pro- 
posed by various authors (Fukushima 1980). Roughly 
speaking, our scheme belongs to the third category. 
In this paper, we investigate the application of a 
continuous neural system to invariant pattern re- 
trieval from a similar consideration but using a novel 
approach. 

3 Analysis of spatio-temporal neural systems 

In this section we develop and analyze a continuous 
neural field model which can associate spatio-temporal 
patterns. 
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A discrete neural model shown in (1) has been 
widely used to describe the dynamics of n intercon- 
nected networks of neural-like elements since about- 
circa 1964-5 (Cowan, 1967): 

C dui(t) _ 1 ui(t) + b ~ Wik(t)[vk(t ) + 1] + I~S)(t) 
dt R k = l  

(1) 

In (1), u~(t) denotes the membrane voltage, of the ith 
neuron or cell at time t, and v~(t) is its corresponding 
output voltage obtained through a sigmoidal transfer 
with range from - 1 to I. A dimensionless constant b is 
introduced to rescale the range of output voltage for 
comparisons with biological models. In the absence of 
input to this cell, its output voltage decays exponen- 
tially to 0 (the arbitrarily chosen "resting-voltage") 
with a passive time constant 1/a = RC, due to the cell 
membrane behaving as an resistive-capacitative circuit. 
The "conductance" wik(t) of synapse from k to i, may 
be positive (excitatory) or negative (inhibitory). I! s) (t) 
represents the external input stimulus (current). Recol- 
lect that the system variables and parameters in (1) can 
alternatively be interpreted as the average values in a 
homogeneous cell assembly from the neural ensemble 
theory (Amari 1972; Chang et al. 1992). Equation (1) 
then describes the behavior of interactions among n 
neural assemblies. 

First, we introduce the inverse input-output transfer 
function f (v i  (t + A t)) = ui (t) - 0(t), taking into account 
for the time delay factor A t occurring in the transfer of 
input-output activity, and the threshold O(t) for neuron 
firing. Thus, (1) becomes 

df(v  i (t + A t)) 
dt "= - a  f ( v i ( t  +At))  - - a  O(t) 

dO(t) b ~ 
- d~- + C k~,l= Wik(t)[vk(t) + 1] 

1 
+ ~ I~ s) ( t ) .  (2) 

Equation (2) is such a highly complex nonlinear equa- 
tion set that there is no general method to solve it. 
Fortunately, by exploiting the special features of the 
"neuron" (or "neural assembly") itself and its "connec- 
tivity", we can still solve the problem and obtain an 
understanding about the system's spatio-temporal be- 
havior, as follows. 

The inverse sigmoidal function is approximated by 
three lines, i.e., a linear middle region bounded by 
positive and negative saturations on either side as 
shown in Fig. 1. Then, we solve for cell (or cell assem- 
bly) dynamical behavior in every region separately. The 
complete solution is obtained through combining these 
sub-solutions by matching boundary conditions im- 
posed from continuity. Let us linearize the desired 
section of the inverse function in such a way that 

f ( v  i (t)) "~ f ( v , )  + f'(v,)[Vi(t) -- Vt], (3) 

where vt represents the x coordinate of a tangent point 
on curve y =f(x) .  (2) then becomes 

_v\ 7 # 

u -  o = f C v )  " 

0 / ' \ v  
Vb Vt 

Fig. 1. Inverse sigmoidal input-output transfer function and its lin- 
earized sections 

dvi(t + At) b " 
- a v i ( t + / l t ) -  ~ -J , =Cf '~Vt)  k2,  wik(t) vk(t) dt 

I~ s)(t) 1 F b ~ w i k ( t ) -  
+ C f'(v,-----~+ f - - ~  t_ C k = l  

a O(t) 

d0(t) ] 
dt I-a f ' (vt)vt  - a f ( v t )  . (4) 

For example, if we are interested in the middle section, 
we may set vt = 0 so thatf(vt) = 0. Then the solution vi (t) 
of (4) corresponding to this value of v, should lie in 
(--Vb, Vb) (see Fig. 1). If vi(t) goes out of this range at 
some later time, the solution obtained is no longer valid 
but it indicates the region into which the system variable 
vi (t) has now actually entered. So we simply evaluate (4) 
using the new yr. In this way, we can get the right solution 
of vi(t) by using the proper linearized section in (3). 

Meaningful ranges for various parameters can be 
obtained from biological data. We know that the brain 
has numerous neurons with high cell density and con- 
nectivity. Experimental data have shown that the total 
cortical thickness of the tissue in area 17 in the cat is on 
the order of 48,000 to 50,000 neurons per mm 3 
(Beaulieu and Colonnier 1983), and its primary visual 
cortex amounts to an average of 6,000 synaptic connec- 
tions per cell (Beaulieu and Colonnier 1985). This 
microscopic consideration motivates a continuous ver- 
sion of the neural model in which the discrete cell 
subindex i is replaced by a continuous position vector r. 
Thus (4) gets transformed into: 
& ( r ,  t + At) 

Ot 
- - a  v(r ,  t + At) 

bQ I~S)(r, t) 
+ Cf'(v~--)! w(r, r', t)v(r, t)dr' + 

C f'(v~---'~ 

+ f'-~v.~ w(r, r', t) dr' - a O(t) 

d0(t) 1 - d--t- +a f ' ( v t ) v~  - a f ( v t )  , (5) 

where Q is the cell density in the whole system do- 
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main 9 .  We assume that this density is constant for 
simplification. 

If  a small portion of a nerve system consists of 
many randomly connected neurons, it can be regarded 
as a homogeneous neural assembly. Then, a statistical 
manipulation in every assembly yields a continuous 
field equation for the entire neural system (Amari 
1977), and we can use a continuous position vector r to 
represent the location of  the ith assembly of cells. This 
induces a neural continuum from a macroscopic view- 
point. By taking p properly, (5) is qualified to represent 
the dynamics among n neural assemblies. 

Physiological observations justify the use of  an adia- 
batic learning hypothesis to simplify the problem by 
holding connection strengths and thresholds as con- 
stants (not functions of  time) when finding change in cell 
outputs (Caianiello 1961). Moreover, because of short 
range interaction between neurons, we can also claim 
~ w(r, r)dr '  is constant (not a function of position) if we 
neglect the boundary effects. This will become more clear 
when we deal with the visual model in the next section. 
Throughout  the discussion, the last term in (5) is ap- 
proximated by a time and position independent value. 

3.1 Stored patterns 

During a storing process, we interpret the entire exter- 
nal stimuli I(S)(r, t) as an input pattern to be stored, and 
the corresponding output activities after the time delay 
At (see (5)) as the pattern that is actually presented to 
the memory. These two spatio-temporal patterns could 
only be different by a scaling factor p with dimension 
conductance. Thus, we call (5) a pattern-storing equa- 
tion when I(~)(r, t ) = p v ( r ,  t + At). The associated ho- 
mogeneous differential equation of  (5) may be solved 
by the method of  separation of variables. Let us try the 
form of  "a  product  term" as follows: 

v(r, t) = ~b(t)TJ(r) ) 

I(~)(r, t) = pq~(t + At)TJ(r) ~ �9 (6) 

Inserting (6) into the associated homogeneous differential 
equation of  (5) and dividing the latter by 4~(t)~(r) on 
both sides, a pair of  single-variable equations are derived: 

p q~(t + At) " 1  �9 (t)l d q ~ ( t + A t ) +  a bo 
(7) 

-,,--;;~-7 - f w(r, r )~ ( r  )dr '  ----- K~(r)J '--  
Cf(v,) 

with K a constant. A particular solution of the non- 
homogeneous differential equation is given by 

boR ~ w(r, r ' )dr '  -- 0 + f'(vt) v, -- f(v,)  
vp(r) -- 

f '(v,) - bQR ~ w(r, r ' )dr '  - Rp (8) 

From the first of  (7), the solution of the temporal part 
can be obtained directly by integration: 

qb(t) = e x p  { [ p Cf'(v,) a ] ( t - t s ) } ~ ( L )  

{I ] } + K ~ exp 0 ,~ Cf'(v,) a ( t -  z) ~(z - At)dz 

(9) 
with ts denoting a starting time when the output activity 
enters a region of  the output-input transfer function. 
However, the solution expression of  ~(t) in (9) is 
dependent on its past history from t, - A t to t - A t. A 
more practical but narrow form of the solution can be 
obtained as follows: 

Suppose q0(t)/cb(t + A t) = g(A t) = g(R) (A  t) + ig(~ t) 
for t/> ts. So, the next state 4~(t + A t) depends only on 
the present state ~(t), and thus the solution of  temporal 
patterns can be expressed either as a discrete time form 

dP(t) = g(A t) - ' -  ,s/4tq~(ts) ( 1 O) 

when (t - L)/At is a positive integer, or as a continuous 
time form 

{[ 1 4~(t) = exp K g(m(At) + Cf'(v,) a + iK g(Z)(At) 

(t - ts) t ~(t~), (11) 

from the first of (7). Here g(m(At) and g(~)(At) are real 
and must satisfy: 

g(m(A t) = cos[ - K A t g(Z)(A t)] 

[( x exp a Cf'(v,) At 

x exp[ - K At g(m(At)] 

gm(A t) = sin[ - K A t g(l)(d t)] 

[( x exp a Cf'(v,)  At 

x exp[ - K At g(m(At)] 

(12) 

because (10) and (11) should be equivalent at t = 
ts + j A t  for all positive integers j. Note that this proce- 
dure makes (10) and (11) completely equivalent for all 
time, i.e., (10) is no longer for discrete time only. 
Moreover, from the graph analysis of (12) we know the 
following: 

1. The solution for g(t)(dt) in the second of  (12) always 
exists, and g(~ = 0 is a trivial solution. 
2. Because g( / )= 0 is one of the solutions for the 
second of  (12), then by the first of  (12) either K ~> 0 or 
1~At exp{[p/(Cf'(vt)) - a] At - 1} i> - -K  > 0 guaran- 
tees the existence of  a solution for g(m(At). This gives 
the existence condition for a real solution g(At). Neuro- 
physiologically, the time delay At is a small interval of  
the order 1 x 10 3 sec, and the above restriction is well 
satisfied. On the other hand, if there is a solution for 
g(~) other than g( / )= 0, then solutions g(m(At) for the 
first of  (12) always exist. In this case, g(A t) has complex 
solutions. 

A special case is obtained for the no delay model, i.e., 
when At=O.  Then from (12), g ( m ( A t ) = l  and 
g(t)(At) = 0, and the temporal part reduces to 

4~(t) = exp I ( K  + P Cf'(vt)  a ) ( t - t s ) ]  fb(t') 



from (11). Another interesting case is that from (11) a 
periodical solution could theoretically exist in one linear 
region if 

Kg(R)(At) - a + Cf ' (v t)  - 0 

gq)(At) # 0 

Therefore, periodical phenomena are possible for the 
time evolution of average cell activity. This agrees with 
the neurobiological oscillations observed for a group of 
cells (Traub et al. 1989). Besides, this result also shows 
that for the special form of the solution dictated by 
(11), a non-zero time-delay factor At is requisite if 
oscillation is to occur just in one linear region. 

If  the lateral connection strength is a function of 
absolute distance between two neurons, such kernel is 
not identically zero and is symmetric continuous. Thus, 
the second of (7) is an eigenvalue problem and there 
exists one or more eigenvalues (Smirnov 1964). For 
convenience, we define a linear functional operator fie 
called the conductance operator and rewrite the equa- 
tion as: 

if" %(r)  - Cf'(v,____~) K,~,(r)  (l = 1, 2, 3 . . . .  ), (13) 
bQ 

where ~Ut(r ) and [Cf'(v,)]/(bQ)Kt are the eigenfunction 
and eigenvalue respectively associated with the sub- 
script I which denotes the quantum number. Because 
tPt(r) must be zero on the boundary of ~ ,  this Dirichlet 
boundary condition usual_ly makes Kt discrete. More- 
over, w(r, r') is real, so W is hermitian. Thus, all the 
corresponding eigenvalues are real and a set of mutu- 
ally orthonormal eigenfunctions ~t(r) 's  can always be 
chosen, such that, 

~Ul(r)~*(r)dr = 6u,, 

where gu, denotes the Kronecker delta. Here, the sub- 
script "*" means complex conjugate. If W is also 
compact, all of its eigenfunctions form a complete set in 
a Hilbert space and any spatial pattern belonging to 
this space can be spanned by these basis functions 
(Porter and Stirling, 1990). 

The quantization of the spatial part forces the cor- 
responding temporal pattern to be also quanfized. 
From (9), (10) and (11), we get 

I } 4~t(t) =exp  C f'(v,) a (t - t~) ~t(t,) 

+ K t exp Cf'(vt)  -- a 
ts 

x (t -- ~) t ~t(z - At)dr 

�9 ,(t) = g t (~  t) - ' -  '~/~'~< ( t ~ )  

�9 t(t) = exp 1(l gtR)(At) + Cf'(v,---~ 

iKl g ~ n ( A t ) I ( t -  G ) ~ t ( t , )  (14) ~ a ~ 

_1 J 
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By the theory of differential equation and (6), (8), and 
(13), the most general solution for the associative spa- 
tio-temporal patterns of output activity which are 
storable in the neural system, is given by: 

v ( r ,  t)  = Ept~t(t)~t(r) 
l 

bo R S w(r, r ')dr '  - 0 +f ' (v t )  v, - f ( v , )  

if(v,) - b e R  ~ w(r, if)dr' - Rp ' 

with q~(t) shown in (14). Note that all pzs are uniquely 
determined by the starting pattern v(r, ts), because from 
the property of orthonormality, 

1 ~ [ v(r, G) 
Pl = ~ l ( t s )  _ 

b~R ! w ( r , r ' ) d r ' - O  +J ' (v , l v t - - f ( v , )  ] ~P* (r) dr. 

As a result of above analyses, the dynamic behavior of 
an associative storable pattern is completely predicted 
after the initial pattern of external input stimulus is 
given. 

3.2 Pattern retrieval process 

Retrieval is a process that attempts to recover a de- 
graded pattern by using some prior knowledge of the 
degradation phenomenon. As in many other pattern 
retrieval schemes, our goal here is to "improve" an 
initial noisy pattern in some sense. Since biological 
systems for retrieval use feedback and resonance, we 
study an iterative rather than a "one-pass" scheme. The 
mechanism is shown in Fig. 2. Recollect that an exter- 
nal input pattern I(S)(r, t) is considered associative or 
storable if I(S)(r, t) = pv(r, t + At). If  a noisy version of 
this pattern, expressed as I(')(r, t)+pE(~ t) is pre- 
sented instead, we expect the output pattern will be 
v(r, t + At) + EO)(r, t + At). Here, E(~ t + At) is the 
corresponding output noise, and the superscripts (0) 
and (1) denote the zeroth and the first iterations respec- 
tively. 

In the retrieval process, we receive a noisy pattern 
(external stimuli) at some particular time t" and make it 
stay in the dynamical state associated at time t'. I f  the 
feedback signal is closer to a stored signal than the 
original noisy signal, it may be possible to further 
reduce the noise in subsequent iterations. Step by step, 
we hope to erase the noise and figure out the original 
unnoisy signal (one of certain stored patterns). How- 

initial (noisy~pat~eomq.. . . . . .~ neural system 

D 
f e e d ~  pattern 

[output (noisy) pattern 

Fig. 2. System model of  the retrieval process 
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ever, it is also obvious from (5) that whenever the 
initial noise is expressible as 

r176 t) = ~ qz~t(t + At)lpt(r), (15) 
l 

it cannot be reduced further. The reason is that noise of 
form given in (15) when added to a storable pattern, 
translates it to another storable one. 
By the notations given above, we rewrite (5) as a noisy 
pattern form at that time t': 

O[v(r, t + At) + E( l ) ( r ,  t + At)] I 

cqt ] t= c 
= --a [v(r, t' + At) + E<~)(r, t' + At)] 

b~ 
-~ W{v(r, t ') + ~(')(r, t')] 

Cf ' (vc )  

P t' + ~ [ v ( r ,  + At) + Er176 t')] 
t ~ j  tvt) 

1 I~ ~w(r,r')dr'-aO+af'(v,)v,-af(v,) }. +f-~j~) 
(16) 

When there is no noise, (16) reduces to the pattern-stor- 
ing equation at time t'. Suppose the noise is not signifi- 
cantly large so that both equations are governed by the 
same linear section of the neural transfer function. 
Then the time dependent noise-reducing equation can 
be derived by taking the difference between (16) and the 
pattern-storing equation at time t'. That is 

d[E(1)(r, t + At)] [ = --ae(1)(r, t" + At) 
dt [ ,= c 

b0 + -  ~d~)(r, t') 
Cf ' (v , )  

P + ~ E(~ t'). (17) 

In an iterative manner, v(r, t ' ) +  EO)(r, t') becomes a 
new input feedback pattern and v(r, t') + c(2)(r, t') will 
be the next output pattern. This process is repeated 
many times and if the noise is reduced to some tolerant 
value, we say the noisy pattern is retrievable; else it is 
considered unretrievable. 

In experimental observations, usually the input 
noise is stationary. Thus, we seek a time independent 
solution to the time independent noise-reducing equa- 
tion, which is 

e(O(r) =f,~vt) [pE(~ + bQ ~/'E~l)(r)] , (18) 

from (17). The second term in the right hand side of 
(18) can be expanded as an absolutely and uniformly, 
convergent series in eigenfunctions of the opearator W 
(Smirnov 1964). By finding the expansion coefficients, 
we can then get the solution of (18) as follows: 

=f'(v,)RP(T K r  E~ ~ 1 - - - -  e~~ (19) 
a 

with 

e~ ~ = 7 e(~ dr ,  

i.e., the Fourier coefficients of function E(~ with 
respect to bases 7~t(r)'s. When some of K/s  are equal to 
a, these corresponding basis functions must be ex- 
tracted from the summation and become separate 
terms. Such a critical case will be omitted from the 
present consideration. 

Recursively inserting e ( ' -  ~ into (19) to find out 
E(~ from t = 1 to m, the ruth iterative noise becomes 

E<m)(r ) = Rp " 1 -- K, e~ ~ ~,(r) 
a 

= Lf@,) .=o E 

e$0) tpl(r ) 1 .  (20) x 

This result implies that 

Idm)(r)l < Lf,(v,) sup(~) IF~)(r)l, (21) 

with 

~t KI e} ~ 7Jz(r) 1 ~ ~c ~< m.  (22) F(~)(r) = a - KI 

Suppose that [2RQ/f'(vs)] m converges faster than 1/ 
sup(~) IF(~)(r)] for any point r ~ ~' ~ ~ ,  then the corre- 
sponding pattern v(r, t) with r ~ ~ is retrievable and 
our neural system can be regarded as a pattern retrieval 
filter. 

4 Neural model of  a visual cortex 

There is both anatomical and physiological evidence 
from the mammalian brain that the following type of 
lateral interaction exists between cortical cells (Ko- 
honen 1989; Blinkov and Glezer 1968): 

1. Lateral excitation reaching up to a radius of 50 to 
200 lam (in primates). 
2. The excitatory area is surrounded by a penumbra of 
inhibitory action reaching up to a radius of 200 to 
600/am. 
3. A weaker excitatory action surrounds the inhibitory 
penumbra and reaches up to a radius of several cen- 
timeters. The degree of lateral interaction is usually 
described as having the form of a Mexican hat (Fig. 3). 
4. In human beings, the total cortical surface area is 
approximately 1600cm 2 and more than half of it is 
related to vision. 

These biological evidences suggest that the lateral con- 
nections can be regarded as short-range interaction if 
the longer-range weak excitatory action is neglected. 
Thus, many researchers have chosen a difference-of- 
Gaussian function to approximate such interconnec- 
tions (Amari 1977; Hochstein and Spitzer 1985). In this 
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section we choose a similar weight kernel: 

w(r, r') = Ae exp[ - ap ]r - r'[ 2] - As exp[ - . ~  [r - r'l~] 

(23) 

to perform our analysis. Note that we have given a 
general ~ - d  expression of the weight kernel. Moreover, 

w(r, if)dr' = ( ~/27z)~lZ[Apa~ y/4 -- ANa~ ~/4 ] 

is a constant, which supports our claim in Sect. 3. 
In (23), Ae,  ae, AN and a N can be chosen appropri- 

ately to satisfy the required features, i.e. as the distance 
I r - r '  I increases, w(r, r') decays to its minimum (a 
negative value) and then approaches zero monotoni- 
cally within a short distance. This allows us to replace 
the integral domain ~ with an infinite space for conve- 
nience of calculation, when we solve the neural equa- 
tions later. Because w(r, r') approaches to zero in a 
short distance, the region external to the cortex domain 
has little contribution to the integration. This approxi- 
mation releases the Dirichlet boundary condition. As 
we can seen in the following paragraphs, all the formu- 
lae of the discrete forms derived in the last section will 
yield their continuous versions. 

As usual, we use a sigmoidal input-output transfer 
function v = tanh[2(u -0) ] .  Then, we obtain its inverse 
function u - 0 =f(v)  = 1/(22)1n[(1 + v)/(1 - v)] and 
derivative function f ' ( v ) =  1/[2(1-  v2)] with respect to 
v. From (3), the three linearized sections of the inverse 
input-outupt transfer function are given by: 

1 ( l - - v , )  I 
f ( v ( r , t ) ) ~  In ~ + 2 ( 1 - - v  f f ) [v ( r ' t ) - v ' ] "  

(24) 

Consider a special case of the cortical model of Sect. 3, 
which is characterized by (23) and (24). Given a quan- 
tum number ~ ,  the corresponding eigenvalue of the 
conductance operative if" defined in (13) is 

b02(1 - v~) - x/@eX exp ~ 

AN exp ( - 

and its eigenfunction is 

~ ( ~ - ) ( r )  = (27r) - ' /~ /2  ~, Pu exp(ik, �9 r) ( 2 5 )  
# 
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with k , . k ,  = Yd. The spatial patterns of (25) are a 
generalization of the patterns obtained by Ermentrout 
and Cowan (1979). Through an inverse logarithmic 
mapping, the visual hallucination phenomena men- 
tioned in (Ermentrout and Cowan 1979; Schwartz 1980) 
can also be explained from this visual cortex model. 

There are more than one independent eigenfunc- 
tions that corresponds to the same eigenvalue of the 
conductance operator if'. When this occurs, we have a 
degeneracy. Mathematically, the orthogonality of eigen- 
functions is guaranteed and can be obtained by proper 
linear combination of these degenerate states. In our 
visual cortex system, it is easy to see that for given 
continuous quantum numbers (k~, k2, �9 �9 �9 k ~ )  = k, we 
have the eigenvalue 

CK(k) _ ~ ~/2 ~ _ _  
bQ2( 1 -- v,2) / 

(kk) 
~ J V "  exp 4ap 

X/~Nd/. exp 4aN 

Its eigenfunction is uniquely determined by 

~(k)(r) = (2~)--U/2 exp(ik - r) ,  (27) 

which forms a complete set in an L2 over E ~ space and 
satisfies the "orthonormal" condition 

7~(k)(r)7~'k.)(r)dr = 6(k -- k ' ) ,  (28) 

with 6 ( k -  k') the Dirac delta function. 
Following the same procedures as in the last section 

(except that the discrete technique is replaced with the 
continuous one), we can obtain all the parallel results. 
According to (12) and (14), three alternative expres- 
sions of the temporal pattern q~(k)(t) are: 

, {[ i_: ] 
+ lexp a 

t s 

• ( t  - 1 05(k)(  - At)d  
J 

i,~(1)1 t -  t~/at q~(k)(t) = [g~))(dt) + 6(,)J ~(k)(ts) 

{ [  P2(1 - v2) 
= exp + C - "  

g(m(At)](t--ts)}O(k)(t~) + iK(~) (i) , (29) 

with gl() ) and ~-(1)(k) determined by 

g~()) (At) = cos[ - K(k) At g[~(At)] 

• exp[ (a  P2(lfv~))At] 
• exp[ - K(k) At g~))(At)] 

g(1) r = sin[ -- K(k) A t g~/~ (A t)] (k)~, J 

• exp[ (a  p)~(1 -- v~) 

x exp[ -- K(k ) At g~](At)] .  (30) 
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So, a general associative pattern of spatio-temporal 
output activity for the visual model presented in this 
section is solved as 

v(r, t) = (2n) --,~/2 S p(k)~(k)(t) exp(ik �9 r)dk + c, (31) 

with constant l[ 
2 1 -- v2t ~ + (xf2zr)~/2boR(Aea-'Ar/4P - -  ANaN ~r -- 0 

C =  

with 

Fr = (2~)-~-/2 ~ K(k) 
oo oo a - -  K(k ) 

• e(~ exp(ikr)dk. 

1 (~rc)':W/2bQR (Apa~ ~/4 - ANaN ~/4) -- Rp 
2(1 -- v t 2) 

from (8). In addition, from (28) and (31) 

(2~) -~/2 
p(k) - q~(k)(t,) _~ [v(r, ts) - c] exp( -- ik. r) dr, 

which means that the coefficient p(k) is uniquely deter- 
mined by a starting pattern v(r, t~). Thus, the associa- 
tive spatio-temporal pattern for storing is completely 
governed by (31). 

An approximation of the sigmoidal function is a 
linear middle line v ( t )=  2[u( t ) -  0] bounded by two 
saturation lines v(t) = - 1  and v(t) = 1. The connection 
points are ( - 1 / 2 , - 1 )  and (1/2, 1). For the middle 
region, we set v, = 0 in (29), (30) and (31) to get the 
desired solution. For the saturation regions, by setting 
v t ~  ___1 we get 1/1(1 - -v~)~oQ,  (1--vt 2) ln[(1 -~-l)t) / 
( 1 - vt)] ~ O, Kck) ~ 0 and ~(k)(t~) --* 0. Thus, the spa- 
tio-temporal output activity in these extreme regions 
is nothing but v(r, t) = v, ~ _+ 1, which is as expected. 
All the information is then embodied in the middle 
region. 

Next, let us consider the pattern retrieval capability 
of the visual system. The time independent noise-re- 
ducing equation is 

d~ = 2R(1 - v~)[pd'- l ) (r)  + bo l~dm)(r)] 

and its corresponding mth iterative result, which is 
similar to (20), is 

E(m)(r) = [ Rzr) - Y/Z[Rp2(1--  V2t )]m S ( 1 - -  K{k) ) a 

• d~ exp(ik �9 r) dk 

= (270-.~/2[Rp2(1 _/)2)]m ~ c(~n) 
x = O  

_ m a - -  K ( k  ) 

• e(~ exp(ik �9 r) dk ] ,  ( 3 2 )  

with 

e(~ = (27r) ~,V'/2 ~ dO)(r) exp(--ik- r) dr 

i.e., the Fourier transformation of d~ Similar to 
(21) and (22), we get 

16m)(r)] < [2R02(1 - v~)]" sup(~)Ir<~)(r)], 

5 Application to invariant pattern recognition 

Invariance with respect to certain transformations is 
one of the main characteristics of a versatile patter- 
recognition system. One considers a neural visual model 
to be incomplete if it is not able to identify an object 
from its certain transformed versions. For example, an 
object should be identifiable regardless of its location, 
and the aspect and size of the image projected from it 
through the retina to the visual cortex. In the following 
paragraphs, we will apply the noise-reducing equation 
introduced in the previous section to identify some 
invariant features of the visual cortex model developed 
in this paper. 

Most neural networks in the brain, especially those 
in the cerebral neocortex, are essentially 2-d layers of 
processing units (cell or cellular modules) (Kohonen 
1989). Let us pay attention to a 2-d pattern in this 
section. The approach can be easily generalized to an 
X - d  case in a similar way. 
A general 2-d affine transformation formulation 

X (old) = C l l X  (new) ~ cl2y (new) + Ct3 "~ 

y(old) s + r (new) + s 

is able to perform transforms of scaling, translation, 
rotation and mirror-reflection by choosing the co- 
efficients Cmn properly. 

If we pick up a pattern at some time t', then from 
(31) the dynamical pattern associated at that time can 
be expressed as 

= - ~  (kl '  k2)( t  ) v(x, y, t') ~ p(k~, k2) ~ ' 

• exp[i(k~x + k2y)]dk~ dk2 + c, (33) 

Then, a stationary noise 

E<~ y )  = ~ _ ~ ~ s ( l c l , / c 2 )  

• exp{i[kl(cl lx + cj2y + C13) 

+ k2(c2~x + c22y + c23)]}dkl dk2 

1 ~ ~ s (k l , k2)  
2~ _~  

• exp[i(klx + k2y)]dkl dk2 



is the noise which induces the above mentioned trans- 
formations of  pattern v(x,y, t) at time t'. Here, 
s(kl, k2) = p(kl, k2)~(k ~. k2)(t') for the fixed value t '  and 
theoretically, we take s(k~, k2) to be of class L~ over the 
space defined by - ~ < k ~ < ~  and - ~ < k 2 <  
(Bochner and Chandrasekharan 1949). By change of 
variables in the integrals and some algebraic manipula- 
tion, we get the corresponding Fourier transformation 
of d~ y) as 

~(~ k2) = IA ]exp(i~3)s((~, (2) - s(k~, k2), 

with 

1 
A =  

cl, c22 - c,2 c2, 

~l = A(k, c22 - k2c21), 

~2=A(k2cl,-k,  Cl2) and ~3=~,c13+(2c23 . 

So, 

le(~ k2)l < IAs((,, (:)l + Is(k,, kOI. (34) 

By (34) and taking absolute values of both sides of 
(32), an inequality formula is obtained 

Idm~( x, Y)I < IAz2n + 1-----~l MaX(k" k2) 1K-P--2(l~v2'~)_ CK(k,,k2) " 

+ 7 dk . (35) 

Obviously, the behavior~ (35) depends 
critically on the electrical characterization of its biolog- 
ical elements. Let us first identify the magnitude of 
K~kt.k2). From (26), we get the extremum values of 
K(k j, k2)~ 

K(~176 A e C  ap AN)a N (36) 

and 

_ nb , (1 - [ 
ky) C I 

A-Z exp( - aN,if{ "(ext)) 
ap 

-- ANaN exp( -- aeJY ~ (ext)) I (37) 

where k2x + ky 2 = 4aeaNJ~ (ext), with ~(ext) ~ .  [ln(Ae/ 
AN)+21n(ae/aN)]/(ae--aN). We know that b is 
around 102 and the surface density of  the neuron 
number Q is around 105 per mm 2 in area 17 of  a cat 
(Beaulieu and Colonnier 1983; Thomas et al. 1991). 
Moreover, the orders of  A e and AN are 0.1 to 0.01 ItS 
(Wehmeier et al. 1989), and the short range of  excita- 
tion connection is from the cell center to a distance of  
200 Itm, and inhibition connections is from 200 to 
600itm. With these in mind, we may take 
Ap --- 0.080 ItS, AN = 0.036 ItS, ap = 0.8 • 10 - 4  per It m2 
and aN = 0.6 • 10 - 4  per Itm 2 as values that typically 
satisfy the above biological data. In the saturation 
regions, v~ ~ 1 and retrieval is trivial. In the middle 
region, 2 is the slope of input-output transfer function 
at (u - 0, v) = (0, 0), which cannot be too large and vt is 
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in domain ( -  1, 1). We may choose 2 = 1 and v t = 0. 
Because Ae/ae > AN~aN > 0 and ae > aN > 0, from 
(36) and (37) we know K(kL,k2) is always positive for 
any k, and k2, and the minimum value of  CK~ka,~2) is 
431.91 ItS. The leaking conductance 1/R is around 
0.1 ItS (Wehmeier et al. 1989) and p is an adjustable 
parameter. Biologically, the dimensionless constant 
0 < p 2 ( 1  --V2)/(CK(k•,k2) -- l/R) < 1 is obvious, and 
thus the Max term m (35) must be smaller when m 
becomes larger. Because s(k~, k2) belongs to class L, ,  
the integral term is bounded. Therefore, the noise will 
be reduced to a tolerant value and the pattern can be 
identified. This theory explains the invariances of scal- 
ing, translation, rotation and mirror-reflection transfor- 
mations in the visual system. 

6 Concluding remarks 

This paper provides, for the first time, a rigorous 
application of a neural field model for pattern associa- 
tion and retrieval. We are able to obtain the exact 
solution of the storable spatio-temporal patterns for the 
given visual cortex model. Moreover, the conditions 
that make the noisy versions of these associative pat- 
terns retrievable are determined through a simple pat- 
tern-iterative scheme. Interestingly, the proposed model 
also demonstrates the invariance of certain patterns to 
affine transformations. 

The biological interpretation and mathematical 
technique presented in this paper represent initial steps 
in analyzing high-density neural nets. Possible exten- 
sions of  this work include studying the convergent rate 
of  the retrieval mechanism, and the effects of  weight 
learning on the storable patterns and on the self- 
organization of the entire neural system. Also, the 
dynamics of more complex systems that contain con- 
trol sub-networks need to be investigated and com- 
pared with extensive simulation and biological ex- 
periments (Willner et al. 1990; Thomas et al. 1991). 
The theory proposed in this paper can potentially be 
used to construct a robust, biologically motivated sys- 
tem for perception. 
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