
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 12, DECEMBER 1996 1265

A Concurrent Architecture
for Serializable Production Systems

Jose Nelson Amaral, Member, /€€E, and Joydeep Ghosh, Member, /€€E

Abstract-This paper presents a new production system architecture that takes advantage of modern associative memory devices to
allow parallel production firing, concurrent matching, and overlap among matching, selection, and firing of productions. We prove that the
results produced by the architecture are correct according to the serializability Criterion. A comprehensive event driven simulator is used
to evaluate the scaling properties of the new architecture and to compare it with a parallel architecture that does global synchronization
before every production firing. We also present measures for the improvement in speed due to the use of associative memories and an
estimate for the amount of associative memory needed. Architectural evaluation IS facilitated by a new benchmark program that allows
for changes in the number of productions, the size of the database, the variance between the sizes of local data clusters, and the ratio
between local and global data. Our results indicate that substantial improvements in speed can be achieved with a very modest increase
in hardware cost.

Index Terms-Production systems, parallel architectures, performance evaluation, Rete network, benchmarking, TSP, rule partitioning,
system level simulation.

+
1 INTRODUCTION

ONSIDERABLE efforts have been made towards speeding C up production system machines in the past twenty
years [61,1301. Originally, production systems were realized
as interpreted language programs for sequential machines.
The high cost of matching motivated the development of
concurrent matching systems and, subsequently, systems
that also allowed multiple productions to be fired at the
same time. In a separate line of research, modern compile
optimization techniques were developed to run production
system programs more efficiently on general purpose se-
quential machines.

These efforts have led to great advances in the under-
standing of the issues involved in the construction of faster
production system machines, but only limited improvement in
actual performance. Also, there have been few attempts to in-
tegrate progress made in different areas: The use of the restric-
tive commutativity criterion for correctness and the notion of a
match-select-act ”cycle” forced even advanced architectures to
perform synchronization before each production firing; com-
pile optimization techniques were mostly restricted to sequen-
tial machines; many of the concurrent matching engines were
constructed with a large number of small processors and were
not combined with parallel firing techniques. Moreover, par-
allel processing researchers failed to take advantage of the fact
that, in typical production systems, reading operations are
performed much more often than writing ones.

J.N. Amaral is with the Electrical Engineering Department, Pontifi’ia
Universidade Catdlica do Rio Grande do Sul (PUCRS), AV. Ipiranga, 6681,
Caixa Postal 1429,90619-900-Porto Alegre-RS, Brazil.
E-mail: amaral@ee.pucrs.br.

ENS 516, University of Texas at Austin, Austin, T X 78712.
E-mail: ghosh@ece.utexas.edu.

Manuscript received Aug. 25,1994.
For information on obtaining reprints of this article, please send e-mail to:
transpds@computeu.org, and reference IEEECS Log Number 095247.

1. Gkosk is with the Department ofElectrica1 and Computer Engineering,

We propose a novel parallel production system archi-
tecture that uses the less restrictive serializability criterion
for correctness. This architecture eliminates the concept of a
production system ”cycle,” thus eliminating the need to
construct a global ”conflict set” and to perform global syn-
chronization before each production firing. Productions are
partitioned among processors based on information about
the workload of each production and on production de-
pendencies identified through compiling techniques. The
use of modern content addressable memories allows a new
production to be selected to fire before all the matches re-
sulting from previous production actions are complete.
This architecture follows an early recommendation of
Gupta et al. [161, i.e., that a parallel production system ma-
chine be constructed with a small number of relatively
powerful processors.

2 BACKGROUND
Attempts to speed up Production Systems (PS) date back to
1979 when Forgy created the Rete network, a state saving
algorithm to speed up the matching phase of PS [12]. Fol-
lowing a 1986 study by Gupta, which indicated that a sig-
nificant portion of the processing time in a Rete-based PS
machine is consumed in the matching phase [151, substan-
tial efforts were made to improve this phase. This includes
concurrent implementations of the Rete network [14], [17],
[26], [25], [40], generalization of the Rete network 1311,
elimination of internal memories from the Rete network to
increased speed [32], extension of the Rete network for
compatibility with real-time systems [lo], and the use of
message-passing computers to implement the Rete network
[21. Progress in other aspects of production system ma-
chines included compile time optimization for the Rete
network [20], nondeterministic resolution for the conflict
set combined with parallel firing of productions [22], [28],

1045-9219/96$05.00 01996 IEEE

mailto:ghosh@ece.utexas.edu
mailto:transpds@computeu.org

1266

loosely coupled implementations of produ
1221, and the use of meta rules to solve the c
Comprehensive surveys of the research towards speeding
up production systems are found in the works of Kuo and
Moldovan 1301 and Amaral and Ghosh 161.

The issue of which criterion to use for correctness in
the execution of a production system is still an open
question. The two most prominent candidates are the
commutativity criterion and the serializability criterion.
When commutativity is used, a set of rules can be exe-
cuted in parallel if and only if the result is the same that
would be produced by a n y possible sequential execution
of the set. Under serializability it is enough that the result
produced by the parallel execution be equal to at least one
sequential execution of the set [371.

The commutativity criterion proposed by Ishida and
Stolfo [21] is favored by programmers because it allows for
easy verification of correctness in a production system.
However, it is very restrictive and the amount of parallel-
ism extracted from a PS using this criterion is very low. The
use of the serializability criterion increases the amount of
parallelism available but makes the verification of correct-
ness in a program more difficult. Nevertheless, if serializ-
able production systems are proven to be sufficiently faster
than commutable ones, development tools will be created
to aid the verification of correctness.

Schmolze and Snyder [391 studied the use of confluence
to control a parallel production system. They suggest the
use of term rewriting systems [181, [271 to verify the conflu-
ence of a production set. They argue that a confluent pro-
duction set that is guaranteed to terminate will produce the
same final result independent of the sequence in which the
productions are executed. Therefore, for such a class of
systems, the verification of correctness with the serializa-
bility criterion would not impose an extra burden in the
programmer.

The need to improve other phases of production execu-
tion besides the match cycle is now evident [6] . In this pa-
per we present a parallel architecture based on the seri-
alizability criterion of correctness. The architecture exploits
the high read/write ratio of production systems, and the
increased importance of associative search operations when
global synchronization is eliminated, to yield a fast and
efficient production system engine. The next section pres-
ents the architectural model and proves that its operation is
correct. In Section 4, we present a partitioning algorithm
that performs the assignment of productions to processors.
Section 5 describes the benchmarks used to study perform-
ance and introduces a new benchmark program. Section 6
presents comparative measurements with a sy
architecture and an evaluation for the volume of activity in
the bus and the size of associativ

3 ARCHITECTURAL MODEL
The parallel architecture presented i
the realization that improvement
ing phase of the traditional mat
duction Systems (PS) fail to produ
Even machines that allow concurre

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 12, DECEMBER 1996

d matching phases, while maintaining the global
tion selection, yield limited improvements in speed.

The architecture proposed here allows parallel firing of
productions allocated to distinct processors. Within a proc-
essor, activities related to matching, acting, and selecting
are concurrent. Thus, the next instantiation to be fired may
be selected even before the Rete network updates due to a
previous production firing are completed.

Such aggressive parallelism is possible because the con-
cept of a match-select-act cycle is eliminated. The principle
of firing the most recent and specific instantiation is re-
placed by an approximation of it: Only instantiations that
are known at the time of the selection are considered, we
call this a partially znformed selection mechanism. The use of
associative memories allows for quick elimination of in-
stantiations that are no longer fireable. We also replace the
restrictive commutativity criterion by the serializability
criterion of correctness. The use of serializ
the number of situations in which synchroni
sary, increasing the amount of parallelism a

On surveying measurements published by other authors
[15], [34], we found that the ratios of reading and writing
operations in the benchmarks studied are between 100 and
1,000. We also found that in complex bench
more similarity with “real life” problems, t
be higher than in ”toy problems.” This is primarily because
productions have a larger number of antecedents than con-
sequents in such problems [4]. Our observation motivates
an architecture based on a broadcasting
which only writing operations occur. Such
model imposes limits to the number of processors used.
However, two characteristics of PS make them compatible
with an architecture with a moderate nu
The amount of interproduction parallel
as a PS grows, the size of the database
than its production set.

Section 3.1 presents basic definition
ronment for the processing model. Section 3.2 introduces
the architectural organization and expands on the proces-
sor model, conflict set management, and processor opera-
tion. Section 3.3 presents a th em that demonstrates that
the results produced by the processing model is correct
according to the serializability criterion of correctness.

ask ~ ~ f j ~ i t ~ Q ~ s
A Production R, consists of a set of antecedents A(XJ and a
set of consequents C(R,): The antecedents speci
ditions upon which the production can be fired
quents specify the actions performed when the production
is fired.
DEFINITION 1. The database manipulated by a Production System

consists of a set of assertions. Each assertion zs represented
by a Working Memory Element (WME), notated by
W,. A WME consists of a class name and a set of attribute-
value pairs. The class name and the set of attribute names
of a WME together characterize zts type, T [W,].

DEFINITION 2. Each production antecedent specifies a type of
WME and a set of values for its attuibute-value pairs. A
WME W, is tested by an antecedent if it has the specified

AMARAL AND GHOSH: A CONCURRENT ARCHITECTURE FOR SERIALIZABLE PRODUCTION SYSTEMS 1267

type. A n antecedent is matched by a WME if the WME
has the type specified and all the values in the antecedent
match the ones in the WME.

DEFINITION 3. If an antecedent of a production Ri tests WMEs of
type T[Wk], then we say that wk is tested by the produc-
tion R,, this is notated by Wk b A(4) .

DEFINITION 4. A nonnegated antecedent tests for the presence
of a matching WME in the memo ry. A negated antece-
dent tests for the absence of any matching WME in the
memory. A production R, is said to be fireable if all its
nonnegated antecedents are matched and none of its ne-
gated antecedents are matched.

The consequent of a production can speufy three kinds of
actions that mod@ W E s : addition, deletion, or modification.
DEFINITION 5. A WME wk is modifiable by the consequents of

a production RI iff the firing of R, adds (deletes) any WME
of type T[Wk] to (from) the Working Memory. This is de-
noted by Wk D CIII,).

DEFINITION 6. If an antecedent of production R, tests for the pres-
ence of a WME Wk, this is a positive test, notated by
S [Wk] = +, which is read as "RI has at least one antece-

dent that tests for the presence of a WME of type TIWkl."
In a similar fashion, if the test is for absence of wk, it is a
negative test, denoted by SA(4)[Wk]=- .

4 4 1

DEFINITION 7. When the consequent of a production specifies the
addition of a WME wk to Working Memory, it is a posi-
tive action, denoted by S [Wk] = +. A negative action

specifies the deletion of a WME wk, denoted by
C(RZ 1

CONSEQUENCE 1. The notation SA(R,)[Wk]# S c (R , I [y] implies

that lNk D A(&),W, D C(R,), and that the R, test of Wk is

positive (negative) while RI action on Wl is negative
(positive).

In the processing model discussed in Section 3.2 some
productions fire locally while others need to change WMEs
that are stored in the local memory of remote processors.
The following definitions describe important situations that
appear in the execution of the model.
DEFINITION 8. A WME wk is local to a processor PI iff Wk is

stored in the local memory of P, ; wk is not stored in the local
memo y of any other processor PI ; and there is no production
allocated to a processor other than P, that changes wk.

DEFINITION 9. A WME wk is pseudolocal to a processor P, iff
wk is stored in the local memory of PI; wk is not stored in
the local memory of any other processor PI; and there is at
least one production allocated to PI # P, that changes Wk
We say that PI shares Wk

For example, a WME that is written by many processors
and read by only one processor is pseudolocal for the proces-

sor that reads it; it is a shared WME for all processors that
write it. A processor does not store shared WMEs in its lo-
cal memory.
DEFINITION 10. A production R, fires locally in a processor

P, iff b' Wk D C(R,) , Wk is local or pseudolocal to P,.
CONSEQUENCE 2. A production that does not fire locally, is said

to be a global production. Such a production must
propagate actions to remote processors.

DEFINITION 11. A production R, enables a production
R, iff 3wk such that sc(x,)[wk] = SA(R,)[Wk]. A PrOdUC-

tion R, disables a production R, iff 3Wk such that

' c (~ ,) [~ k] ' S ~ (~ ,) [W k l *

DEFINITION 12. A production R, has an output conflict with a
production R, iff3Wk such that Sc(~, [Wk]#Sc(Is , , [Wk] .

Productions that can fire locally are classified as Inde-
pendent of Network Transactions (INTI or Dependent on
Network Transactions (DNT), according to their depend-
encies with other productions that belong to other proces-
sors. INT and DNT productions have to be mapped and
processed differently for correct execution according to
the serializability criterion. Productions are partitioned
into disjoint sets with one set assigned to each processor.
R, E P, indicates that production R, belongs to processor
P,. The Working Memory is distributed among the proc-
essors in such a way that a processor stores in its local
memory all and only the WMEs tested by its productions.
DEFINITION 13. A production that can fire locally is DNT if and

only if at least one of the following conditions holds:
1) Two of the antecedents of the production are changed by

the consequents of a single production allocated to an-
other processor: One of these changes produces an ena-
bling dependency and the other produces a disabling
one;

2) The production has two conflicting writes with a pro-
duction allocated to another processor;

3) The production has an output conflict and a disabling
dependency with a production allocated to another
processor.

At compile time, after the set of productions is partitioned
among the processors, the set of antecedents and the set of
consequents of each production are analyzed to determine
whether the production is global, local INT, or local DNT. To
check if a production is local DNT is a simple matter of
checking if any of the conditions of Definition 13 holds.
DEFINITION 14. A production R, is INT iff R, can fire locally

An INT production can start firing at any time as long as
its antecedents are satisfied. A DNT production PI only
starts firing after all tokens generated by a production PI,
currently being fired by a remote processor, are broadcast
in the network and consumed by the processor that fires P,.
This prevents Pi and PI actions from being intermingled,
avoiding thus nonserializable behavior.

and X, is not DNT.

1268 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 12, DECEMBER 1996

3.2 System Overview
The architectural model proposed in this paper consists of a
moderate number of processors interconnected through a
broadcasting network. The set of productions is partitioned
among these processors with each production assigned to
exactly one processor. A process ads data only from its

re performed over the
etwork reads and the low

frequency of network writes, a simple bus should be ade-
quate as the broadcasting system. This conclusion is sup-
ported by detailed experimental results showing the bus not
to be a bottleneck even for a twenty processor system. A
number of associative memories implement a system of loo-
kaside tables to allow parallel operations within each proces-
sor. This scheme does not allow parallel production firing
within a processor, but allows the match-select-act phases of
a PS to overlap. A snooping directory isolates the activities in
remote processors from the activities in a local processor, and
interrupts a local operation only when pieces of data that
affect it are broadcast over the network.

The parallel architecture is formed by identical proces-
sors connected via a Broadcasting Interconnection Network
(BIN), as shown on Fig. 1. At start-up the 1 / 0 processor
(I/OP) loads the productions on all processors. System
level 1 / 0 and user interface are also handled through the
I/OP. The main components of each processor are the
Snooping Directory (SDI, the Matching Engine (ME), the
Production Controller (PC), and the Instantiation Control-
ler (IC). Whenever a processor P, needs to broadcast a
change to a WME that is d in other processors’ local
memories, P, creates a t to broadcast in BIN. The
Snooping Directory is an associative memory that identifies
whether a token broadcast on BIN conveys an action rele-
vant to the local processor. Relevant tokens are kept in a
Broadcasting Network Buffer (BNB) until the IC and the
ME are able to process it. The Matching Engine is a Rete-
based matcher that implements a state-saving algorithm.
The IC uses specialized memory structures to maintain and
rapidly update the list of fireable instantiations. To perform
this task, it has to monitor the outputs of ME as well as the
firing of local (through PC) and global (through SD) pro-
ductions. One of the memories controlled by IC is the Fir-
ing Instantiation Memory (FIM) that keeps a list of all the
production instantiations that are enabled to fire. The Pro-
duction Controller (PC) selects an instantiation to be fired
from the list maintained by IC, and, whenever necessary,
synchronizes the production firing with BIN operations to
guarantee that production firings appear to be atomic.

Productions are divided in three categories: local INT,
local DNT, and global. The firing of a local INT production
does not require BIN ownership because all its actions
modify local WMEs only. Therefore, upon selecting an INT
production, the PC immediately propagates its actions to
ME and IC. To avoid interleaving of actions belonging to
distinct productions, all tokens broadcast in BIN during
local production firing are buffered in BNB. These tokens
are processed as soon as the local firing finishes. When a
local DNT production is selected, its execution has to wait
until the BIN changes ownership, which is an indication

Fig. 1. Parallel machine model.

that the firing of a global production has been concluded.
The local DNT production is then fired in the same fashion
as a local INT.

A global production modifies shared WMEs, i.e., WMEs
that belong to the antecedents of productions assigned to
other processors. Thus, the anges need to be broadcast
to all processors. When a global production is selected, PC
acquires access to the BIN, processes all outstanding
changes in the BNB, and, if the selected production is still
fireable, proceeds to broadcast tokens with changes to
shared WMEs. The BIN ownership is not released until all
actions that change shared WMEs are broadcast. After re-
leasing the BIN, PC prevents any incoming token from pro-
ceeding to local processing. These tokens are buffered in
BNB and processed locally after the local execution of the
selected production is complete. This avoids write inter-
leaving in the local memories and guarantees an atomic
operation for production firing within a processor.

The main steps in the machine operation are presented
below in an algorithmic form. The steps of the algorithm
are performed by different structures of the processing
element.

PRODUCTION-FIRING
1. execute all outstanding tokens in BNB

2. select a fireable instantiation I k in FIM
3. if Ik is global
4. then Request BIN ownership
5.
6.
7.
8.
9.
10. release BIN
11. else end PRODUCTION-FIRING
12. else if I k is DNT
13.

first-serve basis

while BIN ownership is not granted

if Ik is still fireable
execute tokens broadcast in BIN captured by SD

then broadcast actions that change shared WMEs
execute actions that change shared WMEs

then while BIN ownership does not change
execute tokens broadcast in BIN captured by SD

if is still fireable and Ii,
16. then disable local exec
17. execute local actions
18. enable local execution of incoming tokens

Note that no production is fired while there are out-
standing tokens in BNB. The selection of a fireable instan-
tiation in step 2 of PRODUCTION-FIRING is done accord-
ing to the ”pseudorecency” criterion: The most recent in-
stantiation in FIM is selected This is not a true recency cri-

AMARAL AND GHOSH: A CONCURRENT ARCHITECTURE FOR SERIALIZABLE PRODUCTION SYSTEMS

I 1

1269

Snooping I
Dlredory :

Broadcasting I ~

Network
Buffer

terion because ME may still be processing a previous token,
and thus the instantiations

that it will produce are not in FIM yet.
The test in step 7 is necessary because between the time

the BIN was requested and the time its ownership is ac-
quired, incoming tokens might have changed the status of
the production selected to fire. If this occurs, the firing of
the selected production is aborted. Steps 12-14 are executed
for productions that are dependent on network transac-
tions, as defined in Section 3.1. If such productions were to
start firing while a remote processor is in the middle of a
production execution, the intermingling of actions could
result in inonserializable behavior. Notice that the BIN is
released in step 10, before changes to local memory take
place. To guarantee that no token is processed before the
local changes are executed, buffering of tokens in BNB in
step 15 is activated immediately upon releasing the BIN.

The architectural model presented in this section bears
some similarity to the systems proposed by Schmolze and
Goel 1381 and Ishida et al. [22]. In all three systems, each
production is uniquely assigned to one processor and all
WMEs tested by the production are stored locally. Contrary
to the architecture presented in this paper, the systems
proposed in 1221 and 1381 use a taxing synchronization
mechanism and require each processor to keep a list of all
dependencies that each production has with other proces-
sors. The bus-based architecture with snoopy mechanism
presented in this paper substantially simplifies synchroni-
zation and avoids the potential for incorrect behavior or
deadlock. Similar synchronization mechanisms are nowa-
days employed for cache coherency in several commercial
medium-scale multiprocessor systems [19].

3.2.1 Detailed Processor Model
The processor architecture is detailed in Fig. 2. The Instan-
tiation Firing Engine (IFE) implements the outgoing interface
with the Broadcasting Interconnection Network (BIN) and
synchronizes internal activities. The IFE selects an instantia-
tion to be fired among the ones stored in the Fireable Instan-
tiation Memory (FIM). If the production selected to fire is
global, the IFE places a request for ownership of the BIN.
Upon receiving BIN ownership, IFE waits until all out-
standing tokens stored in BNB are processed. If the selected
instantiation becomes unfireable due to such processing, IFE
has to abandon it and select a new instantiation. Otherwise
IFE broadcasts tokens with changes to the shared WMEs,
releases the BIN, and executes the local actions.

The Snooping Directory (SD), along with the Broadcasting
Network 13uffer (BNB), implements the incoming network
interface. The Snooping Directory is an associative memory
that contains all WME types that belong to the antecedent
sets of the productions assigned to the processing element.
BNB is used to store tokens broadcast on BIN and captured
by SD during the local firing of a production, or during the
execution of local actions of a global production. The tokens
stored in BNB are processed as soon as the firing of the cur-
rent production finishes. In the rare situation in which BNB
is full, a halt signal is issued to freeze the activity on BIN.
When the halt signal is reset, the activity in the bus resumes:
The same processor that had BIN ownership continues to

Wreable
Instantiation

Memory

Antecedents of
Fireable Inst

Mem0t-v

I

Fireable

Control

-
Instantlation - -

Fig. 2. Processing element model.

broadcast tokens as if nothing had happened.
Whether a WME change is originated locally or captured

from BIN, it needs to be forwarded to the Rete network and
to the Fireable Instantiation Control (FIC). Like the original
Rete network, the one used in this architecture has a- and
pmemories. To avoid the high cost of waiting for the re-
moval of a WME, which was pointed out by Miranker [321,
negated antecedents are stored in both pmemories and in
the fireable instantiations produced for the conflict set. The
presence of the negated conditions in this representation
allows the quick removal of nonfireable instantiation when
a new token is processed. There is a possibility that a WME
change previously processed by FIC and not yet processed
by Rete disables an instantiation freshly generated by Rete.
To avoid a possibly nonserializable behavior, before adding
a new instantiations to FIM, FIC checks it against the
Pending Matching Memory (PMM), which stores all tokens
still to be processed by Rete. The deletion of an instantia-
tion from FIM is also performed by FIC. The operation of
FIM, AFIM, PMM, and FIC are explained in greater detail
in Section 3.2.2.

3.2.2 Conflict Set Management
The Fireable Instantiation Control (FIC) uses the Antece-
dents of Fireable Instantiation Memory (AFIM) to maintain
a list of all enabled instantiations in the Fireable Instantia-
tion Memory (FIM). AFIM and FIM are fully associative
memories with capability to store don't cares in some of
their cells. The fields in each line of FIM and ARM are
shown in Fig. 3. FIC maintains an internal timer that is used
to time stamp each instantiation added to FIM. Each line of
AFIM stores either a WME that is the antecedent of a fire-
able instantiation, or an a-test that specifies an instantiation
negated antecedent. Its fields are:

Presence-indicates whether the AFIM line is occupied. It

Negated-indicates whether this line stores a WME or a

Type-stores the WME type.
Bindings-contains the values stored in each attrib-

ute-value pair of the WME. Notice that the name of the
attribute does not need to be stored. Symbolic names are
translated into integer values at compile time.

is used to manage the space in the memory.

negated antecedent.

1270 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO 12, DECEMBER 1996

~ ~ _ _ _ _ _ _
_____-_I__

2
2

I : I : l : I : I : 1 : I 1
I l o I * l (a) AFIM I * I J

Fig. 3. (a) Antecedents of fireable instantiations memory; (b) fireable
instantiations memory.

Notice that because AFIM stores antecedents of fireable
instantiations, most of the variables are bound, therefore
the bindings field stores mostly constants. For an easy han-
dling of unbound variables, which match any value, the
bindings field of AFIM is a ternary memory. Besides the
values 0 and 1, it can also store a ”don’t care” value X. Such
a memory might be implemented using two bits per cell, or
using actual ternary logic in VLSI. One example of the lat-
ter is the Trit Memory developed by Wade [44]. One alter-
native to implement a nonbound value is to add a tag bit to
bzndzngs that indicates whether the value is bound or not.
The advantage of this representation is that there is only
one extra bit per word. Each line in FIM stores one fireable
instantiation, with the following fields:
Presence-indicates whether the line is occupied;
Fireable-indicates whether the instantiation stored in the

line is still fireable.’
PM-Address-contains a pointer to the Production Mem-

ory indicating where the production actions are stored.
Time-Tag-record the time in which the instantiation be-

came fireable. It is used to implement a p
terion to select an instantiation to be fired
The third piece of memory managed by FIC is a fully as-

sociative memory called Pending Matching Memory
(PMM). When a token is placed in the input nodes of the

1. An instantiation is only removed from FIM after an incremental gar-
bage collector removes the corresponding antecedents from AFIM

Rete network, it is also stored in PMM. The token is re-
moved from PMM when the Rete network produces a sig-
nal indicating that all changes to the conflict set originated
by that token have being processed. Upon receiving a new
fireable instantiation from Rete, FIC associatively searches
PMM. FIC has to perform an independent search for each
antecedent of the new instantiation. If any line of PMM
indicates the deletion (addition) of a WME that matches a
nonnegated (negated) condition of the instantiation, the
new instantiation is ignored. If no such line is found in
PMM, FIC records the new instantiation in one line in FIM
and stores each one of its antecedents in a separate line in
AFIM. Fig. 4 shows the organization of PMM with four
fields:

Presence-indicates whether there is a WME stored in the

Sign-indicates whether this WME has been added to or

Type-stores the type of WME.
Bindings-records the bindings of the WME.

2

line.

deleted from the worlung memory.

Presence Sign Type Bindings
I I

Fig. 4. Pending matching memory.

During the execution of a token, FIC performs three ac-
tions in parallel: Send the token to the Rete network input;
add the token to PMM; and update FIM and AFIM. To up-
date AFIM and FIM, first FIC executes an associative search
in AFIM for entries with the same WME present in the to-
ken, but with opposite sign. For each matching entry in
AFIM, FTC marks the corresponding instantiation in FIM as
unfireable. Finally FIC resets the presence bit for these en-
tries in AFIM. This process leaves ”garbage” in FIM and
AFIM, consisting of all the nonfireable instantiations still
present in FIM plus the antecedents of these instantiations
in AFIM.

FIC has an Incremental Garbage Collector that searches
FIM for an instantiation I/< that is nonfireable. FIC performs
an associative search in AFIM and remove all antecedents
of Ik , and then eliminates Ik from FIM. To guarantee the
consistency of FIM and AFIM, the garbage
ways performed as an atomic operation. F
position in FIM in which the last garba
executed is kept internally in FIC, and is used as the start-
ing point of the next search. If and AFIM are not full,
garbage collection is performe least once between two
instantiation additions. Whenever FIM or
extra garbage collection is executed to free
lution trades memory space for speed: A WME that is
tested by antecedents of many instantia

2 This instantiation must be ignored because the entry found in PMM m-
dicates that a token received after the one that enabled the instantiation,
which is not yet fully processed in Rete, will disable it

AMARAL AND GHOSH: A CONCURRENT ARCHITECTURE FOR SERIALIZABLE PRODUCTION SYSTEMS 1271

3.2.3 Broadcasting Interconnection Network Arbitration
Access arbitration in a broadcasting network is a well
studied problem. In this machine, we adopt the scheme
used in the first prototype of the Alpha architecture by
DEC [431. During startup each processor is assigned an ar-
bitrary priority number from 0 to N. N is the highest prior-
ity and 0 is the lowest. When a processor requests the net-
work, it uses its priority. The requester with highest prior-
ity is the winner and is granted access to the network. The
winner has possession of the network as long as it needs to
write all consequents of one production. After releasing the
network, the winner sets its own priority to zero. All proc-
essors that had a priority number less than the winner in-
crement their priority number by one, regardless of
whether {hey made a request.

This scheme works as a round robin arbitration if all
processors are requesting the network at the same time. If
fewer processors are requesting the network, this mecha-
nism creates the illusion that only these active processors
are present in the machine.

In Section 3.2, we establish that broadcast writes need to
be kept in a buffer while a processor is firing local produc-
tions. When this buffer overflows, a halt signal is issued by
the processor. This signal stalls all network broadcasting
activities, giving time for the overloaded processor to con-
sume its tokens and alleviate its buffer load. When the stall
signal is removed, the network continues its activity with-
out any change in the ownership. To avoid a great impact
in the speed of the machine, the buffer must be sufficiently
large to avoid frequent stalling of the network.

3.3 Correctness of the Processing Model
This section investigates whether the machine proposed in
Section 3 correctly executes a production system. The cor-
rectness criterion used is serializability 1371 and the condi-
tion of ownership is stated in axiom 1.
AXIOM 1. A WME Wk is stored in the local memoy of a proces-

sor P, iff W, D A(R,) and R, E P,.
THEOREM 1. Giving the parallel machine model presented in this

document, the definition of local DNT, local I N T , and global
productions, Axiom 1 is a necessa y and sufftcient condition
of ownership to guarantee correct execution of a production
systpm under the serializability criterion of correctness.

PROOF. First we prove that Axiom 1 is necessary. For the
sake of contradiction, suppose that the ownership
condition stated in Axiom 1 is not satisfied. Assume
that there is a production R, E P, and a WME W,,
such that Wk D A(R,) and Wk is not stored in the local
mernory of P,. Because reading operations are not al-
lowed in the broadcasting network, P, cannot perform
the matching of R,. Therefore, a production system
cannot be executed in such a machine. Thus, Axiom 1
is necessary.

To prove that Axiom 1 is sufficient, we must show
that, in every possible circumstance, the results pro-
duced by this model could be obtained by a sequen-
tial execution of the productions. Therefore, we must
analyze all situations in which parallel execution
might occur and show that each one of them results

in a serializable outcome. Because there is no parallel
production firing within a processor, the following
analysis is restricted to concurrent firing of produc-
tions allocated to distinct processors. Inter-processor
parallelism occurs in two situations: among produc-
tions firing locally in distinct processors and between
a production being broadcast over the BIN and one
(or more) firing locally. All situations described below
involve two productions allocated to distinct proces-
sors being fired concurrently.

SITUATION 1. Productions that have only local WMEs in its an-
tecedents and consequents.

The fact that all antecedents and consequents are
local indicates that the productions being fired in
parallel are completely independent of productions
allocated to other processors, therefore the same re-
sults produced by the parallel firing could be ob-
tained by any sequential firing of the same produc-
tions.

SITUATION 2. A production R, E PI enables a production R, E P,;
R, and R, might have nonconf7icting shared outputs; R,
does not disable R,; R, fires locally.

Since R, fires locally, all WMEs that are changed by
both R, and R, are pseudo-local for P, and shared for
Pi. Because those are nonconflicting outputs and R,
enables R,, parallelism occurs when R, starts firing af-
ter being enabled by an action of R, and before R, fin-
ishes broadcasting changes to the network. The firing
of R, prevents the changes broadcast by R, from being
processed locally until R, finishes. As long as the ac-
tions broadcast by R, are queued and processed after
R, finishes, the result is the same as if R, would have
been fired after R, finished. Thus, it is serializable.

SITUATION 3. A production R, E PI disables a production R, E
P, ; there is no enabling dependencies between R, and R,;
R, and R, might have nonconflicting shared outputs; R,
fires locally.

The only possibility for the parallel firing of R,
and R, is for P, to start firing R, before PI had broad-
cast any action that disables R,. Even if PI had broad-
cast some of the shared nonconflicting outputs when
R, starts firing, the effect is the same as firing R, be-
fore R,. Therefore, the result is serializable.

SITUATION 4. A production R, E P, changes a pseudolocal WME
Wk and a production R, E P, modifies W,. R, fires locally.

Because R, modifies W,, R, is a global production.
It is necessary to analyze three different cases:

CASE 1. wk is the only shared output between R, and R,.
Notice that the (possibly) conflicting WME W, is

exclusively stored in P,. Therefore, if P, disables the
BIN before PI broadcast changes to W,, the result is
the same of firing R, before R,. If P, disables BIN after
changes to W, are broadcast, the result is equivalent
to firing R, after X,. In both cases, it is serializable.

CASE 2. R, and R, have more than one shared output, but
no more than one of them is conflicting.

The concern with multiple shared outputs is that the
actions of the local and the global production might be
intermingled. This would happen if P, would inhibit
actions from the network after PI broadcast some but

1272 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 7, NO 12, DECEMBER 1996

not all actions of R,. Since R, has only one action con-
flicting with R,, the interruption of the remote firing
will either take place before or after this conflicting ac-
tion is broadcast. If the interruption occur before the
conflicting action is executed in PI, the result is equiva-
lent to R, firing before R,. If it occurs after, the result is
equivalent to R, firing after R,. In either case, this
situation results in a serializable behavior.

CASE 3. R, and R, have inore than one conflicting action.
In this case, if intermingled execution would be

allowed, nonserializable behavior would result.
However, according with condition 2 of Definition 13,
R, is DNT and therefore cannot start firing until the
network changes ownership, indicating that the
global production either has finished or has not
started. This ensures the necessary synchronization
and results in serializable behavior.

SITUATION 5. A production R, E PI is enabled and disabled by a
production R, E P,; R, fires locally.

In this situation, there would be a nonserializable
behavior if production R, would be allowed to fire

cast the action that enables X, and
that disables R, is broadcast. This

situation does not occur because, according to condi-
tion 1 of Definition 13, R, is DNT: It only starts firing
when the network changes ownership.

SITUATION 6. A production R, E PI is enabled by a production
R, E PI; R, has one output conflict with R,; R, and R,
m a y or m a y not have shared nonconjlictzng outputs; and
R, fires locally.

Parallelism occurs if R, starts firing in P, after the
action that enables R, have been broadcast by PI and
before PI finishes broadcasting R, actions. If at that
point the conflicting action has been already broad-
cast, the result will be equivalent to firing R, before
R,. If the conflicting action has not been broadcast,
the result is equivalent to R, firing before X,. Either
way, the result is serializable.

SITUATION 7. A production R, E P, is disabled by a production
R, E P,; R, has one output conflict with R,; R, and R,
may OY may not have shared nonconflicting writes; R, fires
locally.

This situation could result in nonserializable be-
havior if R, were to start firing after PI broadcasts the
conflicting action of R,, and before the action that
disables R, is broadcast. However, this cannot occur
because, according to condition 3 of Definition 13, R,
is DNT.

Situations 1 through 7 deal with possible depend-
encies involving two productions R, and R, allocated
to distinct processors. The local firing of R, in all
situations indicates that its consequents change only
local or pseudolocal WMEs. Table 1 helps to verify
that every possible combination of dependencies
among two productions in this situation have being
analyzed. In this table a "-" indicates no dependen-
cies, "1" indicates one dependency, "1 +" indicates
one or more dependencies, "2+" indicates two or
more dependencies, and " X indicates z
number of dependencies. Table 1 has fiv

"Enabling" column indicates the number of actions in
C(R,) that enable R,; "Disabling" indicates the num-
ber of actions in C(R,) that disable R,;
"Nonconflicting Write" indicate the number of non-
conflicting shared actions between X, and R,;
"Nonconflicting Write" indicate the number of non-
conflicting shared actions between R, and R,; and
"htuation" indicates which of the situations analyzed
in this proof covers each case. Every possible combi-
nation of dependencies between tw
covered in Table 1.

There is still the possibility that
volving more than two productions create a situa-
tion in which the parallel model yields a nonseri-
alizable behavior. The only situation in which this
might occur are in cycles of disablings, analyzed in
Situation 8.

SITUATION 8. There is a cycle of dzsablings among producfzons
allocated to distinct processors.

First, we analyze the special case in which the cycle is
formed by two productions R, E PI and & E PI. Accord-
ing to Definition 11, if there is a cycle of disabhg be-
tween R, and R,, there exist two WMEs W, and W, such
that sc(R,n)[wkl * ~ A (R n) W SC(Rn)[w,1 * S A (R ,) [W '

Therefore, W, is a shared WME for PI, Wl is a shared
WME for P,, and neither R, or R, can fire locally. The
acquisition of the broadcasting network works as a
synchronizing element preventing R, and R, from
firing in parallel. The same reasoning can be extended
to disabling cycles with any number of productions.

This concludes the proof. Since the results are seri-
alizable for any possible conflicting sit
clude that Axiom 1 is a sufficient CO
ship and that the results produced b
posed are serializable.

The problem of partitioning
joint production sets which are then mapped onto distinct
processors has been studied by a number of researchers.
Most partitioning algorithms are designed with the goal of
reducing enabling, disabling and output dependencies
among productions allocated to different processors 1381.
Oflazer formulates partitioning as a minimization problem
and concludes that the best suited architecture for Produc-
tion Systems has a small number of powerful processors [36].
Oflazer also indicates that a limited amount of imp
in the PS speed can be obtained by an adequate a
of productions to processors. Moldovan presents a detailed
description of production dependencies and expresses the
potential parallelism in a "parallelism matrix" and the cost of
communication among productions in a "communication
matrix" 1331. Xu and Hwang use a similar scheme with ma-
trices of cost to construct a simulated annealing optimization
of the production partition problem [45]

Although certain basic principles are maintained in all
partitioning schemes, partition algorithms are tailored to

AMARAL AND GHOSH: A CONCURRENT ARCHITECTURE FOR SERIALIZABLE PRODUCTION SYSTEMS

Nonconflic- Conflicting
ting Write Write

1273

Situation

1

TABLE 1
POSSIBLE DEPENDENCIES BETWEEN R, AND R,

1+

I+ 4, case 1
X 1 4, case 2
X 2+ 4, case 3
X X 5
X 1 6
X 1 7

.. I -
V i I+ I X I I 2

specific architectures. We are concerned with two kinds of
relationships among productions: productions that share
antecedents, and productions that have conflicting ac-
tions. Ass p i n g productions with common antecedents
to the same processor reduces memory duplication, while
assigning productions with conflicting actions to the same
processor prevents traffic in the bus. Previous partition
algorithms were greatly influenced by enabling and disa-
bling dependencies among productions [331, [361, 1451.
Our expeirience with production systems shows that
grouping productions with common antecedents is much
more effective to reduce the communication cost. Moreo-
ver, in the production system programs that we exam-
ined, a production seldom creates a WME that was not
tested on its antecedents. Therefore, productions that
have a greater number of common antecedents are also
most likely to have a greater number of enabling and
disabling dependencies among them. Thus, our partition
algorithm does not include these dependencies, but only
shared antecedents and conflicting outputs.

We analyzed and experimented with several partition-
ing algorithms and found the following algorithm to be the
most effective 141, [5]. The optimal partitioning of produc-
tions into disjoint sets is modeled as a minimum cut prob-
lem, which is NP-complete 1131. The polynomial time ap-
proximate solution presented in this section has three goals:
minimizing the duplication of working memory elements;
reducing traffic in the bus; and balancing the amount of
processing in each processor. In the architecture presented
in Section 3, these goals translate to: minimizing the num-
ber of global productions and reducing the number of local
DNT production. As a consequence, the number of local
INT productions is increased.

To represent the relationships among productions, we
define an undirected, fully connected graph PRG = (P, E)
called Production Relationship Graph. Each vertex in P repre-
sents one of the productions in the system, and each
weighted edge in E is a combined measure of the produc-
tion relationships. PRG has a weight function w: E + Z’,
defined by (1).

where n and m are the number of antecedents and p and q
are the number of consequents in productions R, and RI,
respectively, 4 is 1 if i = j and 0 otherwise, and

1 if antecedents AI of R, and A, of R, are of the same type
wLz,kJ = 0 otherwise c

1 if consequent W, of R, conflicts with W, of RI

Empirical studies with a parallel architecture simulator
show that the main factor limiting further reduction is the
time spent in the matching phase in the Rete network.
Consequently, the load balancing must concentrate on the
processing performed in the Rete network. Furthermore,
most of the time in the Rete network is spent in Pnode
activities. Thus, the number of Ptests performed in the
antecedents of a production is used as a measure of the
workload associated with this production. To address the
constraint of balancing the amount of processing amon
processors, we define the function B : Po, ..., P,, -+ Z ,
which computes the number of beta tests that are ex-
pected to be performed by processor P,.

8

where p(R ,) is the number of beta tests performed for
production RI, and qzl is 1 if RI is assigned to P,, and 0
otherwise. N is the total number of productions in the
system.

Let S, denote the set of productions assigned to proces-
sor P,. When the algorithm starts, all subsets s, are empty
and all productions are in the set S. The fitness of placing
production R, in set S k is measured by the value of the
function F(R,,S,).

3

N-l

(3)

2 if RI E S,

-1 if RI E S, # S,,
q l k = 1 ifR, E s I

The value of the fitness function indicates how the pro-
duction represented by the vertex R, fits in the subset Sk
F(R,,Sk) computes a weighted sum of the connections be-
tween vertex R, and all other vertices in PRG. A strong
connection with a vertex that has been assigned to a set
other than Sk reduces the fitness of R, to S,, while a strong
connection with a vertex already in Sk increases the fitness.
A strong connection with a vertex that has not been as-
signed to any subset has an intermediate value because S k

may be able to attract both vertices.
The strategy used in this partitioning algorithm consists

of selecting the processor with the least number of esti-
mated beta tests, and then finding the production best fit-
ted to this processor. The productions strongly related to
other productions in PRG are the first ones to be assigned
to processors. The algorithm ends when there are no more
productions in S.

3. p(R$ is an estimate of the number of beta tests performed because of
the presence of production RI. It is measured in previous runs of the same
production system.

1274 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 7, NO. 12, DECEMBER 1996

PARTITION (S , E , w, N, B, F)
1 while S # 0
2 do Sk t Sk U (RJR , E S and

vary the number of productions by creating continents with
different number of countries. The size of the
termined by the number of countries and the
of cities per country. Table 2 shows the relation between the
number of countries in each benchmark C, the average number
of cities in each country ,LL~ and important parameters in the
benchmarks generated by the CTSP facility, which is available
through anonymous ftp to: pine. ece. utexas . edu in

CE EVALUATION /a/pine/home/pine/ftp/pub/parprosys. Further details
about this benchmark and its flexible properties can be

B(Pk) = mink B(Pk) and
FG!,, S k) = max, F(X,, SJI

performance evaluation can be accomplished through
lation, and analytic modeling [24]. found in 181.
s of observing actual values for speci-

fied parameters in an existing system. Simulation consists
in creating a model for the behavior of a system, writing a
computer program that reproduces this behavior, feeding
the simulator with an appropriate sample of the workload
of the actual system, and computing selected parameters of
interest. In analytic modeling, a mathematical model of the
system is created and its solution provides the performance
evaluation P-41. In a related work, we used an analytical
model to investigate the effect of using multiple functional
units to update the Rete network within each processor [7].

In this research, we use an event driven simulator to

input of the simulator consists of production system pro-
grams written in OPS5 syntax. For syntax and lexical analy-
sis, the tools yyacc and yylex were used.

5.1 Benchmarking
A known weakness Of production system machine
research is the lack of a comprehensive and broadly used

process of searching for benchmarks to evaluate this novel
architecture, we contacted many researchers with the same
problem: a new idea to be evaluated in need of a suitable
set of benchmark programs. Most of the benchmarks ob-
tained were toy programs with a small number of produc-
tions in which the researcher can only change the size of
the database. A benchmark in which the number of pro-

changed would allow researchers to study various aspects

called Contemporaneous Traveling Salesperson Problem (CTSP)
[81, that has such characteristics. Another benchmark that
we wrote is a solution to the "Confusion of Patents Prob-
lem." The following sections briefly describe these two as
well as some other benchmarks used to test the architec-
ture.

TABLE 2
STATIC MEASURES FOR THE CTSP BENCHMARK

AS FUNCTIONS OF c AND

In the measurements presented in Section 6, instances of
the CSTP appear as south, south2, moun, and moun2, In
mOun and
optimization in all country borders, in south2 and

timization of each country border.

5.1.2 Confusion of Patents Problem
We constructed a solution for the formu Confu-
sion of Patents Problem presented in [ll] roblem
presents five patents, five inventors, five cities, and 10 con-
straints. Using these constraints we must decide who in-

combinations and constraints are present in the initial
database; 67 productions use the constraints to eliminate
combinations that are not possible; 19 productions select
the

a single set of prod

the speedup Of the architecture proposed. The moun2, a specialized set of productions i s used for the op-

4

set Of benchmarks for Of performance' In the vented what and where. In Our solution, all 125 possible

combinations and

ns &her change or test the Same
kinds of As a consequence, productions have strong

suited for clustering. Even in a machine with a moderate

cast on the network. The main source of parallelism is the
concurrent execution of different portions of the Rete net-
work, Performance to this solution of the confusion
of patents problem are reported under the name

5.1.3 The Hotel Operation Problem

and the database size can be interdependency, resulting in a production system poorly

Of new architectures. We have a new benchmark number of processors, most of the actions need to be broad-

5.1. I A Contemporaneous TSP
In this modified version of the TSP, the cities are grouped into
"countries." The tour has to be constructed such that the sales-
person enters each country only once. The location and bor-
ders of the countries must allow the construction of a tour ob-
serving this restriction. Our solution to CTSP has seventeen
local productions per
country boundary. This organization allows the researcher to

untry and twelve produc

Originally written by Steve Kuo at the University of South-
ern California, hotel is a production system that models
the operation of a hotel. It is a relatively large and varied
production system (80 productions, 65
nonexclusive contexts. Because each pr
related with the activities that actually take place in a hotel,
the amount of speedup obtained depends on the balance of
work among each one of these activities. For example, if a
hotel is saecified with a laree number of tables in the res- "
taurant and very few rooms, the productions that take care
of the restaurant tables will have a much larger load than
the productions that cleanup the rooms. This work unbal-

4. The front-end conversion of the OPS5 syntax into internal data struc-
ture was built by Anurag Acharya at Carnegie Mellon University for PPL
[31, [21

AMARAL AND GHOSH: A CONCURRENT ARCHITECTURE FOR SERIALIZABLE PRODUCTION SYSTEMS 1275

ance is transferred to parallel architectures that partition
the program at the production level.

5.1.4 The Game of Life
This is an implementation for Conway's game of life, as
constructed by Anurag Acharya. After our modifications,
life has 40 productions. Twenty-five of these productions
are in the context that computes the value of each cell for
the next generation and potentially can be fired in parallel.
The other 15 productions are used for sequencing and
printing and can be only slightly accelerated by Rete net-
work parallelism.

5.1.5 The Line Labeling Problem
Different versions of the line labeling problem (Waltz and
Toru-Waltz) have being used for performance evaluation
1281, 1291, 1351, 1381. Our version was originally written by
Toru Ishida (Columbia University), and successively modi-
fied by Dan Neiman (University of Massachusetts), Anurag
Acharya (Carnegie-Mellon University), and JosP Amaral
(University of Texas). The current version has two
nonoverlapping stages of execution, each one with four
productions. Because the system is partitioned at the pro-
duction level, the amount of parallelism is limited to four
fold. Such a low limit in speedup occurs because this is a
simple "toy" problem with only 10 productions, not ade-
quate for the architecture proposed. The line labeling
problem is identified as wal t 22 in our set of benchmark.

Table 3 shows static measures-number of productions,
number of distinct WME types, average number of antece-
dents per production, average number of consequents per
productions-for the benchmarks used to estimate per-
formance in the multiple functional unit Rete network.
south andl south2 are CTSPs with four countries and 10
cities per country; moun and moun2 are CTSPs with 10 coun-
tries and 15 cities per country; life, patents, waltz2, and
hotel are the benchmarks discussed in Sections 5.1.2 to
5.1.5.
6 PERFORMANCE MEASUREMENTS
The benchmarks described in Section 5.1 were used to
evaluate the performance of the proposed architecture. First,
we measure the amount of speedup over an architecture
with global synchronization and without overlapping be-
tween mal ching and selecting-acting within a processor.
Then we investigate the effectiveness of the use of associa-
tive memories. Finally, we obtain estimates for the size of
associative memories needed for each one of the bench-
marks and for the level of activity in the bus.

Notice that this section measures performance im-
provement obtained from two distinct ideas: Section 6.1
measures the improvement solely due to elimination of
over-synchronization and Section 6.2 measures the im-
provement solely due to use of associative memories.
However, because there is some interaction between these
improvements, their product is only a rough estimate of the
combined benefit of these ideas.

6.1 Parallel Firing Speedup
To measur e the advantages of parallel production firing
and of the internal parallelism in each processor, we define

TABLE 3

I Bench I # Prod I Ant./prod I Cons./prod I # WME I
STATIC MEASURES FOR BENCHMARKS USED

a globally synchronized architecture that is very similar to
the one proposed in this paper, except that it performs
global conflict set resolution to implement the OPS5 re-
cency strategy. This synchronized architecture is also very
similar to the one suggested by Gupta, Forgy, and Newel1
[161. In this architecture, each processor reports the best
local instantiation to be fired to the bus controller. The bus
controller selects the instantiation whose time tag indicates
it to be the latest one to become fireable. This added deci-
sion capability in the bus controller implements the recency
strategy to solve the conflict set. The processor selected to
fire a production broadcasts all changes in the bus. A proc-
essor only selects a new candidate to fire when the match-
ing in the Rete network is complete. The bus controller
waits until all processors report a new candidate to fire.
This mechanism reproduces the global synchronization and
conflict set generation/resolution present in many of the
previously proposed architectures. In order to have a fair
comparison, we considered that the synchronized archi-
tecture uses an associative memory to store and solve the
local conflict sets, and that the bus controller chooses the
"winner" in one time step.

Since the synchronized architecture also uses associative
memory to store and search the local conflict sets, the com-
parisons of Figs. 5 and 6 do not reflect the advantages of
using such memories in our architecture. We delay this
analysis until Section 6.2.

Fig.5 shows the speedup curves for the benchmarks
life, hotel, patents, and waltz2. In this and the next
section, we will observe a significant difference in perform-
ance and memory requirements between this group of
benchmarks and the ones based on CTSP (south, south2,
moun, and moun2). This is due to a gap in complexity be-
tween the two groups of benchmarks: The CTSP programs
have higher data locality, larger number of productions,
and larger data sets. Due to these characteristics, CTSP
programs reflect more closely the characteristics encoun-
tered in production system applications in industry. The
curve names starting with "s" indicate measures in the
synchronized architecture; the curve names starting with
"a" indicate measures in the architecture proposed in this
paper. All speedups are measured against a single proces-
sor synchronized architecture. For the benchmarks pre-
sented in Fig. 5, there is not much distinction between the
two architectures when they have a single processor. This
indicates that the parallelism between the matching phase
and the selecting/execution phase does not result in much
speed improvement for these benchmarks. Yet, even with

1276 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 7, NO. 12, DECEMBER 1996

n of the global synchronization provides sig-

0
of Processors

nt measures comparing “a” curves repre-
ng the new architecture that eliminates oversynchronization with

the “s” curves of an idealized synchronous architecture that solves
conflict set in one time step Both systems use associative memories.

Fig. 6 shows the comparative performance for the CTSP
benchmarks. Here, significant speedup is observed over the
synchronized architecture even for the single processor
configuration. This measures the amount of speed that is
gained due to the parallelism between matching and se-
lecting/firing. The apparent superlinear speedup in the
curves of Fig. 6 reflects the fact that these curves are show-
ing the combined speedup due to two different factors:
intra and interprocessor parallelism. To obtain the speedup
due exclusively to parallel production firing, the reader
should divide the values in the ”a” curves by the values in
the same curve for a single processor machine. These re-
sults confirm our initial conjecture that the elimination of
the global synchronization in a production system allows
the construction of machines with significant speedup.

40

asouth ---

._ ._ - - - -

of Processors

Fig. 6. Speed improvement measures comparing “a” curves repre-
senting the new architecture that eliminates oversynchronization with
the ”s” curves of an idealized synchronous architecture that solves
conflict set in one time step. Both systems use associ

Another way to compare the two architectures is to
measure how much speedup the proposed architecture has
over the synchronized one with the same n
essors. Measurements were made for ma
through twenty processors. Table 4 show
the variance for the speedups obtained wi
ration. It also shows the maximum and mi
obtained with any number of

generating a global conflict set,
production execution might caus
synchronized architecture (see the minimum spe
patents). The gap in performance bet
the other benchmarks in Table 4 indicat
architecture is very effective on extracting parallelism of PS
programs that possess data locality.

cessors. Because our ar-
cture implements ”eager” production firing without

re cases, some extra
be slower than the

TABLE 4

USING THE SAME NUMBER OF PROCESSORS
SPEEDUP OVER SYNCHRONIZED

fdectiveness of Associative Memories
n associative memory or content addressable m ” y (CAM) is

a storage device that retrieves data upon receiving a partial
specification of its contents. We adopt Wade’s terminology
and call a traditional memory accessed by addresses a refer-
ence addressable memory (RAM) [44]. CAMs are most benefi-
cial for systems in which storage devices are often searched
for a cell with a given pattern. The most well known appli-
cations of the CAM mechanism are the tag matching in a
cache memory and the data checking in a snooping cache
or directory. When a CAM receives a request for a piece of
data, it searches all positions of the memory and reports the
contents of the records that match the specified pattern.
Obvious advantages of a CAM over a RA
bility of parallel matching when enough hardware is avail-
able to implement it, the liberation of the processor during
memory searches, and reduced traffic between processor
and memory [421.

In Section 3, we stated th
is based on the premise tha
improves the processing speed. In this section we address
suestions that come to the mind of an inau
architect when analyzing the architecture
machine configuration in which all me
are CAM: What would be the impact of replacing one of
these CAMs for a RAM? Second, consider a machine in
which all memories are RAM: How much speedup would
be gained if one of these memory components were to be
replaced for a CAM?

we implemented options in the simulator that allow us to
specify whether each one of the individual memory com-

To evaluate the speedup obtained by t

AMARAL AND GHOSH: A CONCURRENT ARCHITECTURE FOR SERIALIZABLE PRODUCTION SYSTEMS 1277

ponents-AFIM, FIM, and PMM-is a CAM or a RAM. If a
component is specified as a RAM, the simulator counts the
number of accesses performed until the searched data item
is found. This number is multiplied by the RAM access
time to find the time for that particular access. If a compo-
nent is specified as a CAM, every access takes the same
amount of time.

The effectiveness of a CAM in the architecture depends
on the amount of data stored in the memory, the frequency
of access, and whether its accesses are in the critical path of
execution. Thus, the amount of speedup obtained by a
given combination of CAM/RAM memories depends on
the production system program that the machine is exe-
cuting. For a production system program that maintains a
large number of productions in the conflict set, the use of
CAM for AFIM and FIM might result in a considerable
speed improvement. If the conflict set is small, the use of
CAM for these memories only improves the speed slightly.

To set up experiments to measure these speedups, we
defined two quantities: Speedup(M, B) and Slowdown(M, B) .
Speedup(M, B) is the amount of speedup that results when
the memory component M is replaced for a CAM in a ma-
chine that was originally formed only by RAMs. M desig-
nates one of the memory components-PMM, AFIM, or
FIM-and B is a benchmark program. While Speedup(M, B)
in this section measures the amount of speed gained because
of the use of CAMs, the speedup measured in Section 6.1
was relating the asynchronous firing of production with a
machine that fires productions synchronously but also uses
CAMs. Because the base machine to compute the speedup
in this section and in Section 6.1 are different, these two set
of measurements are not to be compared. Equation (4)
shows how the speedup of PMM is measured.

Time(PMM, , FIM, , ATIM, , B)
Tzme(PMMc, FIM, , AFIM, , B) '

Speedup(PMM, B) = . (4)

where M , indicates that the memory component M is RAM
and Mc indicates that the memory component M is CAM.
Time(PMM, F I M , AFIM, B) is the amount of time taken to
execute the benchmark B with the architecture configura-
tion specified.

Considering a machine that uses only CAMs, Slow-
down(M, B) measures the reduction in speed that would
occur if the memory component M were to be replaced for
a RAM. Equation (5) shows the measurement of the slow-
down that results from the transformation of PMM from a
CAM to a RAM.

Time(PMM, , FIM, , AFIM, , B)
Time(PMMc, FIMc, AFIMc, B) '

Slowdown(PMM, B) = (5)

For a given benchmark program the amount of speedup
obtained by using CAM memories varies with the number
of processors used in the architecture. Table 5 presents the
average speedup for machines with one up to twenty proc-
essors. In practical designs, CAMs might be slower than
RAMs: either because they are constructed with older tech-
nology, or because they need to use more silicon area for
the comparator circuits. To account for these factors we
introduce a technology factor T that indicate how much
slower a basic operation such as the reading or writing of a

single data element was considered in this comparison.
Table 5 shows measures for a machine with CAMs with the
same speed as the RAMS (T = 1) and for a machine with
CAMS that are four times slower (T = 4) thdn the RAMs.
Observe that there is no significant difference in speedup
between the two measures, indicating the advantage of the
use of CAMs, even if they are slower than RAMs.

Tablc 5 shows the speedup and the slowdown due to
each piece of associative memory for each one of the
benchmarks presented in Sectlon 5.1. The last column
shows the speedup that compares a configuration with all
three memories associative against one in which all three
memories are RAM. Table 5 shows that replacement of just
one memory for a CAM results in quite low speedup. Thia
limited speedup is result of the slow operation of the RAMs
in the machine. Only when all three memories are made
CAMs, the processing speed shows considerable improve-
ment. The numbers in the slowdown columns show that
the use of RAM in PMM or AFIM alone might cause sig-
nificant reduction in speed. Both experiments show that the
use of CAM for FIM is not very important. Overall, these
results confirm our initial conjecture that the use of CAMs
can provide considerable speedup in production system
architectures.

6.3 Associative Memory Size
The next question that the inquisitive computer architect
must ask is: How large do these associative memories need
to be? The simulator has an option to report the "crest" of
each memory component in any given run. Table 6 shows
the maximum and the average crest over machines with up
to twenty processors. The average crest is the average of the
largest memory needed for each machine configuration.
The maximum crest indicates the minimum memory size
needed to run that specific benchmark. Observe that for
some memory/benchmark the average crest is several
times smaller than the maximum crest (see AFIM in moun2
and PMM in wal t z 2) . If memory size becomes a concern in
the construction of the machine, a RAM can be used to
contain overflow. The absence of a direct correlation be-
tween the size of the memory crest and the speedup and
slowdown shown in Table 5 reflects the fact that the proc-
essing speed is not solely dependent on the amount of data
stored in each memory: It also depends on the frequency
and time of access of these memories.

The speed comparison with the synchronized architecture
presented in Section 6.1 considered that both architectures
used associative memory to store and search the conflict set.
The average and the maximum crests of the associative
memories for the synchronized architecture are presented in
the rightmost columns of Table 6. Observe that for most of
the significant benchmarks, the synchronized architecture
needs a much larger memory. For the CSTPs benchmarks
(moun2 and south2) the maximum crest in the synchronized
architecture was 10 times larger than in the architecture pro-
posed in this paper. This evidences that the "eager firing''
mechanism also reduces the demand for memory.

5

5. The crest of a memory component is the maxlmum amount of data
stored in that memory component in any processor of the machine for a
given benchmark and a specified number of processors.

1278 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 12, DECEMBER 1996

TABLE 6
MAXIMUM AND AVERAGE “CREST” FOR MEMORY SIZE (BYTES)

6.4 Use of Bus
oncern dbout any bus-based parallel archi-
mitation of a bus as a broadcasting network.

In sections 2 and 3 we conjectured that bus bandwidth is
not a limitation in the architecture proposed. Table 7 pres-
ents the measurements for the percentage of time that the
bus is busy for machines with four, eight, and 16 proces-
sors, assuming that bus bandwidth is the same as that of
local memory. These measures include the arbitration time
and the token broadcasting time Observe that technologi-
cal limitations would have to render the bus much slower
than the memories before the bus speed becomes a concern
in this architecture.

TABLE 7
PERCENTAGE OF TIME THAT THE BUS IS BUSY

7 LUDING REMARKS
We proposed a new architecture fo duction systems that
eliminates global synchronization the generation of a
global conflict set. The increased importance of associative
search for maintaining fireable instantiation tables in this
setting is underscored by the big performance gains obtained
by using modest amounts of associative memory. Note that a
single physical CAM can be logically partit

n average of 20 values, obtamed
through 20 processors

FIM, and AFIM, and the ”cre
expected to occur in the sam r and at the same
time. Thus, only a few lulobytes of associative memory is
sufficient for most of the benchmarks considered

A number of issues remain for future research in th
area. With the improved speed in production selection and
firing due to the CAMS, the matching in the Rete network is
again a bottleneck. We have developed an analytical model
to investigate the utilization of multipl
the Rete network of each processor.
cate that a small number of functional U

cant improvement in the Rete network
now study the system-level effect of
for the architecture proposed in this paper.

Acharya and Tambe have showed the usefulness of
handling collections of WMEs instead of single WMEs
during the match phase [l]. The manipulation of collections
in the architecture presented in this paper would further
reduce the amount of traffic in the bus. However, more
theoretical studies are necessary before collection oriented
production systems are built. For exa
self-disabling productions in collection
needs to be studied with care.

This research assum he use of serializa
rectness criterion. Our erience with PS benchmarks in-
dicates that programmers often rely on knowledge about
conflict set resolution strategies when writing PS programs.
This is mostly evidenced by the omission of important an-
tecedents in producti that are enabled but never se-
lected to fire by a spec
writing a serializable correct PS was fairly
Now that our study has indicated that seri
offer great speed improvements, it

ming aid tools to help in th
f a wider range of serializa

fication and veri-

AMARAL AND GHOSH: A CONCURRENT ARCHITECTURE FOR SERIALIZABLE PRODUCTION SYSTEMS 1279

8 ACKNOWLEDGMENTS
We are very thankful to Anurag Acharya for letting us use
the front-end of his parallel compiler [2] , for being so help-
ful with many questions, and for providing some of the
benchmarks that we used. We would also like to acknowl-
edge Howard Owens for tracking a difficult bug in the im-
plementation of the simulator, and Dan Miranker for fruit-
ful discussions. J.N. Amaral was supported by a fellowship
from Conselho Nacional de Desenvolvimento Cientifico e
Technol6gico (CNPq). J. Ghosh was supported in part by
U.S. National Science Foundation grant ECS-9307632, Air
Force Office of Systems Research contract F49620-93-1-0307,
and Army Research Office contract DAAH04-95-10494.

REFERENCES
A. Acharya and M. Tambe, "Collection-Oriented Match: Scaling
Up the Data in Production Systems," Technical Report CMU-CS-
92-218, Carnegie-Mellon Univ., Pittsburgh, Dec. 1992.
A. Acharya, M. Tambe, and A. Gupta, "Implementation of Pro-
duction Systems on Message-Passing Computers," IEEE Trans.
Parallel and Distributed Systems, vol. 3, pp. 477487, July 1992.
A. Acharya, "Design of PPL: A Parallel Production Language,"
School of Computer Science, Carnegie Mellon Univ., preliminary
draft, 1993.
J.N. Amaral, "A Parallel Architecture for Serializable Production
Systems," PhD thesis, Univ. of Texas at Austin, Electrical and
Computer Eng., Dec. 1994.
J.N. Amaral and J. Ghosh, "An Associative Memory Architecture
for Concurrent Production Systems," Proc. 2994 IEEE Int'l Conf.
Systems, Man, and Cybernetics, pp. 2,219-2,224, San Antonio, Tex.,
Oct. 1994.
J.N. Amaral and J. Ghosh, "Speeding Up Production Systems:
From Concurrent Matching to Parallel Rule Firing," Parallel Proc-
essingfor AI , L.N. Kanal, V. Kumar, H. Kitani, and C. Suttner, eds.,
chapter 7, pp. 139-160. Elsevier Science Publishers B.V., 1994.
J.N. Amaral and J. Ghosh, "Using Queueing Theory for Analytical
Performance Evaluation of a Multiple Functional Unit Rete Net-
work," Proc. 15th Congress Brazilian Computer Soc., pp. 611-625,
July 1995.
J.N. Amaral and J. Ghosh, "Versatile Benchmarking for Concur-
rent Production System Architectures," Proc. 25th Congress Brazil-
ian Computer Soc., pp. 599-610, July 1995.
J.N. Amaral and J. Ghosh, "Automatic Generation of Versatile
Benchmarks for Parallel Production System Architectures," Tech-
nical Report TR-PDS-1996-011, Dept. of Electrical and Computer
Eng., Univ. of Texas, Austin, July 1996.
F. Barachini and N. Theuretzbacher, "The Challenge of Real-Time
Process Control for Production Systems," Proc. Nat'l Conf. Artifi-
cial Intelligence, pp. 705-709, Aug. 1988.
R.E. Fikes, "REF-ARF: A System for Solving Problems Stated as
Procedures," Artificial Intelligence, vol. 1, no. 1, pp. 27-120,1970.
C.L. Forgy, "On the Efficient Implementations of Production
Systems," PhD thesis, Carnegie Mellon Univ., Pittsburgh, Penn.,
1979.
M.R. Garey, D.S. Johnson, and L. Stockmeyer, "Some Simplified
NP-complete Graph Problems," fieoretical Computer Science, vol. 1,

J.-L. Gaudiot and A. Sohn, "Data-Driven Parallel Production Sys-
tems," IEEE Trans. Software Eng., vol. 16, no. 3, pp. 281-291, Mar.
1990.
A. Gupta, "Parallelism in Production Systems," PhD thesis,
Carnegie Mellon Univ., Pittsburgh, Penn., Mar. 1986.
A. Gupta, C. Forgy, and A. Newell, "High-speed Implementations
of Rule-Based Systems," ACM Trans. Computer Systems, vol. 7, pp.
119-146, May 1989.
A. Gupta, M. Tambe, D. Kalp, C.L. Forgy, and A. Newell,
"Parallel Implementation of OPS5 on the Encore Multiprocessor:
Results and Analysis," Int'l J. Parallel Programing, vol. 17,1988.
G. Huet, "Confluent Reductions: Abstract Properties and Appli-
cations to Term Rewriting Systems," J. ACM, vol. 27, no. 4, pp. 797-
821, Oct. 1980.

pp. 237-267'1976,

[191 K. Hwang, Adv
and Programmab

[201 T. Ishida, "Opt
Proc. Nat'l Conf.

I211 T. Ishida and S
in Production S
ing, pp. 568-575,1985.

[22] T. Ishida, M. Yokoo, and L. Gasser, "An Organization
to Adaptive Production Systems," Proc. Nat'l Conf. A
Iigence, pp. 52-58, July 1990.

[23] P.C. Jackson, Introduction to Artificial Intelligence. New York Do-
ver, 1985.

1241 K. Kant, Introduction to Computer System Performance Evaluation.
New York McGraw-Hill, 1993.

1251 M.A. Kelly and R.E. Seviora, "An Evaluation of DRete on CUPID
for OPS5 Matching," Proc. Int'l Joint Conf. Artificial Intelligence, pp. 84-
90, Aug. 1989.

I261 M.A. Kelly and R.E. Seviora, "A Multiprocessor Architecture for
Production System Matching," Proc. Nat'l Conf. Artificial Intelli-
gence, pp. 3641, July 1989.

1271 D.E. Knuth and P.B. Bendix, "Simple Word Problems in Universal
Algebras," Computational Problems in Abstract Algebras, J. Leech,
ed., pp, 263-297. Pergammon Press, 1970.

[28] C.-M. Kuo, D.P. Miranker, and J.C. Browne, "On the Performance
of the CREL System," J, Parallel and Distributed Computing, vol. 13,
pp. 424441, Dec. 1991.

[29] S. Kuo and D. Moldovan, "Performance Comparison of Models
for Multiple Rule Firing," Proc. Int'l Joint Conf. Artificial Intelli-
gence, pp. 4247, Aug. 1991.

1301 S. Kuo and D. Moldovan, "The State of the Art in Parallel Produc-
tion Systems," J. Parallel and Distributed Computing, vol. 15, pp. 1-26,
June 1992.

1311 H.S. Lee and M.I. Schor, "Match Algorithms for Generalized Rete
Networks," Artificial Intelligence, vol. 54, pp. 249-274, Apr. 1992.

[32] D.P. Miranker, TREAT: A New and Efficient Match Algorithm for AI
Productzon Systems. Pittman/Morgan-Kaufman, 1990.

[33] D.I. Moldovan, "Rubic: A Multiprocessor for Rule-Based Sys-
tems," lEEE Trans. Systems, Man, and Cybernetics, vol. 19, pp. 699-
706, July/Aug. 1989.

[34] P. Nayak, A. Gupta, and P. Rosenbloom, "Comparison of the Rete
and Treat Production Matchers for SOAR (A Summary)," Proc.
Nat'l Conf. Artificial Intelligence, pp. 693-698, Aug. 1988.

1351 D.E. Neiman, "Design and Control of Parallel Rule-Firing Pro-
duction Systems," PhD thesis, Univ. of Massachusets, Amherst,
Sept. 1992.

1361 K. Oflazer, "Partitioning in Parallel Processing of Production
Systems," Proc. Int'l Conf. Parallel Processing, pp. 92-100,1984.

[37] J.G. Schmolze, "Guaranteeing Serializable Results in Synchronous
Parallel Production Systems," J. Parallel and Distributed Computing,
vol. 13, pp. 348-365, Dec. 1991.

[38] J.G. Schmolze and S. Goel, "A Parallel Asynchronous Distributed
Production Systems," Proc. Nat'l Conf. Artifrcial Intelligence, pp. 65-
71, July 1990.

[39] J.G. Schmolze and W. Snyder, "Using Confluence to Control Par-
allel Production Systems," Proc. Second Int'l Workshop Parallel
Processing for Artificial Intelligence (PPAI-93), Aug. 1993.

[40] A. Sohn and J.-L. Gaudiot, "A Macro Actor/Token Implementa-
tion of Production Systems on a Data-Flow Multiprocessor," Proc.
Int'l Joint Conf. Artificial Intelligence, pp. 36-41, Aug. 1991.

[41] S. Stolfo, H. Dewan, and 0. Wolfson, "The PARULEL Parallel
Rule Language," Proc. 1992 Int'l Conf. Parallel Processing, pp. 36-
45,1991.

1421 A. Asthana Stolfo et al., "A High Bandwidth Intelligent Memory
for Supercomputers," Proc. Supercomputing Conf., pp. 517-524,
May 1988.

1431 C.P. Thacker, D.G. Conroy, and L.C. Stewart, "The Alpha Demon-
stration Unit A High-Performance Multiprocessor," Comm. ACM,
vol. 36, pp. 5547, Feb. 1993.

[44] J.P. Wade, "An Integrated Content Addressable Memory Sys-
tem," PhD thesis, Massachusetts Inst. of Technology, May 1988.

[45] J. X u and K. Hwang, "Mapping Rule-Based Systems onto Multi-
computers Using Simulated Annealing," J. Parallel and Distributed
Computing, vol. 13, pp. 442455, Dec. 1991.

1280 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 7, NO 12, DECEMBER 1996

Jose Nelson Amaral received his PhD in elec- Joydeep Ghosh was educated at IIT Kanpur
trical engineering from the University of Texas at (BTech '83) and at the University of Southern
Austin in 1994. He received his MS in electrical California (MS, PhD '88). He is currently an
engineering from the lnstituto Tecnologico de associate professor with the Department of
Aeronautica (Brazil) in 1989, and his BS in elec- Electrical and Computer Engineering at the
trical engineering from Pontificia Universidade University of Texas at Austin, where he holds
Catolica do Rio Grande do SUI (PUCRS) (Brazil) the Endowed Engineering Foundation Fellow-
in 1987. ship. He directs the Laboratory for Artificial Neu-

Dr. Amaral is a professor and Graduate Co- ral Systems (LANS), where his research group
ordinator at the Electrical Engineering Depart- is studying adaptive and learning systems. Dr.
ment at PUCRS. He holds a research productiv- Ghosh served as the general chairman for the

nselho Nacional de Pesquisas Cientificas e Tec- SPlEiSPSE Conference on Image Processing Architectures, Santa
nologicas (CNPq). His research interests include computer architec- Clara, California, February 1990, as conference co-chair of Artificial
ture, symbolic processing, neural network applications, approximated Neural Networks in Engineering (ANNIE) '93, ANNIE '94, and ANNIE
solutions for combinatorial optimization problems, genetic algorithms, '95, and on the program committees of several conferences on neural
and plant identification for inverse control. networks and parallel processing He also served on the editorial board

of the IEEE Computer Society Press.
Dr Ghosh has published more than 80 refereed papers and co-

edited five books and several book chapters He received the 1992
Darlington Award given by the IEEE Circuits and Systems Society for
the Best Paper in the areas of CASICAD, and also "best conference
paper" citations for four papers on neural networks. He is an associate
editor of /€€E Transactions on Neural Networks and Paffern Recogni-
tion

