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A Concurrent Architecture 
for Serializable Production Systems 

Jose Nelson Amaral, Member, /€€E, and Joydeep Ghosh, Member, /€€E 

Abstract-This paper presents a new production system architecture that takes advantage of modern associative memory devices to 
allow parallel production firing, concurrent matching, and overlap among matching, selection, and firing of productions. We prove that the 
results produced by the architecture are correct according to the serializability Criterion. A comprehensive event driven simulator is used 
to evaluate the scaling properties of the new architecture and to compare it with a parallel architecture that does global synchronization 
before every production firing. We also present measures for the improvement in speed due to the use of associative memories and an 
estimate for the amount of associative memory needed. Architectural evaluation IS facilitated by a new benchmark program that allows 
for changes in the number of productions, the size of the database, the variance between the sizes of local data clusters, and the ratio 
between local and global data. Our results indicate that substantial improvements in speed can be achieved with a very modest increase 
in hardware cost. 

Index Terms-Production systems, parallel architectures, performance evaluation, Rete network, benchmarking, TSP, rule partitioning, 
system level simulation. 

+ 
1 INTRODUCTION 

ONSIDERABLE efforts have been made towards speeding C up production system machines in the past twenty 
years [61,1301. Originally, production systems were realized 
as interpreted language programs for sequential machines. 
The high cost of matching motivated the development of 
concurrent matching systems and, subsequently, systems 
that also allowed multiple productions to be fired at the 
same time. In a separate line of research, modern compile 
optimization techniques were developed to run production 
system programs more efficiently on general purpose se- 
quential machines. 

These efforts have led to great advances in the under- 
standing of the issues involved in the construction of faster 
production system machines, but only limited improvement in 
actual performance. Also, there have been few attempts to in- 
tegrate progress made in different areas: The use of the restric- 
tive commutativity criterion for correctness and the notion of a 
match-select-act ”cycle” forced even advanced architectures to 
perform synchronization before each production firing; com- 
pile optimization techniques were mostly restricted to sequen- 
tial machines; many of the concurrent matching engines were 
constructed with a large number of small processors and were 
not combined with parallel firing techniques. Moreover, par- 
allel processing researchers failed to take advantage of the fact 
that, in typical production systems, reading operations are 
performed much more often than writing ones. 
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We propose a novel parallel production system archi- 
tecture that uses the less restrictive serializability criterion 
for correctness. This architecture eliminates the concept of a 
production system ”cycle,” thus eliminating the need to 
construct a global ”conflict set” and to perform global syn- 
chronization before each production firing. Productions are 
partitioned among processors based on information about 
the workload of each production and on production de- 
pendencies identified through compiling techniques. The 
use of modern content addressable memories allows a new 
production to be selected to fire before all the matches re- 
sulting from previous production actions are complete. 
This architecture follows an early recommendation of 
Gupta et al. [161, i.e., that a parallel production system ma- 
chine be constructed with a small number of relatively 
powerful processors. 

2 BACKGROUND 
Attempts to speed up Production Systems (PS) date back to 
1979 when Forgy created the Rete network, a state saving 
algorithm to speed up the matching phase of PS [12]. Fol- 
lowing a 1986 study by Gupta, which indicated that a sig- 
nificant portion of the processing time in a Rete-based PS 
machine is consumed in the matching phase [151, substan- 
tial efforts were made to improve this phase. This includes 
concurrent implementations of the Rete network [14], [17], 
[26], [25], [40], generalization of the Rete network 1311, 
elimination of internal memories from the Rete network to 
increased speed [32], extension of the Rete network for 
compatibility with real-time systems [lo], and the use of 
message-passing computers to implement the Rete network 
[21. Progress in other aspects of production system ma- 
chines included compile time optimization for the Rete 
network [20], nondeterministic resolution for the conflict 
set combined with parallel firing of productions [22], [28], 
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loosely coupled implementations of produ 
1221, and the use of meta rules to solve the c 
Comprehensive surveys of the research towards speeding 
up production systems are found in the works of Kuo and 
Moldovan 1301 and Amaral and Ghosh 161. 

The issue of which criterion to use for correctness in 
the execution of a production system is still an open 
question. The two most prominent candidates are the 
commutativity criterion and the serializability criterion. 
When commutativity is used, a set of rules can be exe- 
cuted in parallel if and only if the result is the same that 
would be produced by a n y  possible sequential execution 
of the set. Under serializability it is enough that the result 
produced by the parallel execution be equal to at least one 
sequential execution of the set [371. 

The commutativity criterion proposed by Ishida and 
Stolfo [21] is favored by programmers because it allows for 
easy verification of correctness in a production system. 
However, it is very restrictive and the amount of parallel- 
ism extracted from a PS using this criterion is very low. The 
use of the serializability criterion increases the amount of 
parallelism available but makes the verification of correct- 
ness in a program more difficult. Nevertheless, if serializ- 
able production systems are proven to be sufficiently faster 
than commutable ones, development tools will be created 
to aid the verification of correctness. 

Schmolze and Snyder [391 studied the use of confluence 
to control a parallel production system. They suggest the 
use of term rewriting systems [181, [271 to verify the conflu- 
ence of a production set. They argue that a confluent pro- 
duction set that is guaranteed to terminate will produce the 
same final result independent of the sequence in which the 
productions are executed. Therefore, for such a class of 
systems, the verification of correctness with the serializa- 
bility criterion would not impose an extra burden in the 
programmer. 

The need to improve other phases of production execu- 
tion besides the match cycle is now evident [6] .  In this pa- 
per we present a parallel architecture based on the seri- 
alizability criterion of correctness. The architecture exploits 
the high read/write ratio of production systems, and the 
increased importance of associative search operations when 
global synchronization is eliminated, to yield a fast and 
efficient production system engine. The next section pres- 
ents the architectural model and proves that its operation is 
correct. In Section 4, we present a partitioning algorithm 
that performs the assignment of productions to processors. 
Section 5 describes the benchmarks used to study perform- 
ance and introduces a new benchmark program. Section 6 
presents comparative measurements with a sy 
architecture and an evaluation for the volume of activity in 
the bus and the size of associativ 

3 ARCHITECTURAL MODEL 
The parallel architecture presented i 
the realization that improvement 
ing phase of the traditional mat 
duction Systems (PS) fail to produ 
Even machines that allow concurre 
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d matching phases, while maintaining the global 
tion selection, yield limited improvements in speed. 

The architecture proposed here allows parallel firing of 
productions allocated to distinct processors. Within a proc- 
essor, activities related to matching, acting, and selecting 
are concurrent. Thus, the next instantiation to be fired may 
be selected even before the Rete network updates due to a 
previous production firing are completed. 

Such aggressive parallelism is possible because the con- 
cept of a match-select-act cycle is eliminated. The principle 
of firing the most recent and specific instantiation is re- 
placed by an approximation of it: Only instantiations that 
are known at the time of the selection are considered, we 
call this a partially znformed selection mechanism. The use of 
associative memories allows for quick elimination of in- 
stantiations that are no longer fireable. We also replace the 
restrictive commutativity criterion by the serializability 
criterion of correctness. The use of serializ 
the number of situations in which synchroni 
sary, increasing the amount of parallelism a 

On surveying measurements published by other authors 
[15], [34], we found that the ratios of reading and writing 
operations in the benchmarks studied are between 100 and 
1,000. We also found that in complex bench 
more similarity with “real life” problems, t 
be higher than in ”toy problems.” This is primarily because 
productions have a larger number of antecedents than con- 
sequents in such problems [4]. Our observation motivates 
an architecture based on a broadcasting 
which only writing operations occur. Such 
model imposes limits to the number of processors used. 
However, two characteristics of PS make them compatible 
with an architecture with a moderate nu 
The amount of interproduction parallel 
as a PS grows, the size of the database 
than its production set. 

Section 3.1 presents basic definition 
ronment for the processing model. Section 3.2 introduces 
the architectural organization and expands on the proces- 
sor model, conflict set management, and processor opera- 
tion. Section 3.3 presents a th em that demonstrates that 
the results produced by the processing model is correct 
according to the serializability criterion of correctness. 

ask ~ ~ f j ~ i t ~ Q ~ s  
A Production R, consists of a set of antecedents A(XJ and a 
set of consequents C(R,): The antecedents speci 
ditions upon which the production can be fired 
quents specify the actions performed when the production 
is fired. 
DEFINITION 1. The database manipulated by a Production System 

consists of a set of assertions. Each assertion zs represented 
by a Working Memory Element (WME), notated by 
W,. A WME consists of a class name and a set of attribute- 
value pairs. The class name and the set of attribute names 
of a WME together characterize zts type, T [  W,]. 

DEFINITION 2.  Each production antecedent specifies a type of 
WME and a set of values for its attuibute-value pairs. A 
WME W, is tested by an  antecedent if it  has the specified 



AMARAL AND GHOSH: A CONCURRENT ARCHITECTURE FOR SERIALIZABLE PRODUCTION SYSTEMS 1267 

type. A n  antecedent is matched by a WME if the WME 
has the type specified and all the values in the antecedent 
match the ones in the WME. 

DEFINITION 3. If an antecedent of a production Ri tests WMEs of 
type T[Wk], then we say that wk is tested by the produc- 
tion R,, this is notated by Wk b A(4) .  

DEFINITION 4. A nonnegated antecedent tests for the presence 
of a matching WME in the memo ry. A negated antece- 
dent tests for the absence of any matching WME in the 
memory. A production R, is said to be fireable if all its 
nonnegated antecedents are matched and none of its ne- 
gated antecedents are matched. 

The consequent of a production can speufy three kinds of 
actions that mod@ W E s :  addition, deletion, or modification. 
DEFINITION 5. A WME wk is modifiable by the consequents of 

a production RI iff the firing of R, adds (deletes) any WME 
of type T[Wk] to (from) the Working Memory. This is de- 
noted by Wk D CIII,). 

DEFINITION 6. If an antecedent of production R, tests for the pres- 
ence of a WME Wk, this is a positive test, notated by 
S [ Wk] = +, which is read as "RI has at least one antece- 

dent that tests for the presence of a WME of type TIWkl." 
In a similar fashion, if the test is for absence of wk, it is a 
negative test, denoted by SA(4)[Wk]=- .  

4 4  1 

DEFINITION 7. When the consequent of a production specifies the 
addition of a WME wk to Working Memory, it is a posi- 
tive action, denoted by S [ Wk] = +. A negative action 

specifies the deletion of a WME wk, denoted by 
C(RZ 1 

CONSEQUENCE 1. The notation SA(R,)[Wk]# S c ( R , I [ y ]  implies 

that lNk D A(&),W, D C(R,), and that the R, test of Wk is 

positive (negative) while RI action on Wl is negative 
(positive). 

In the processing model discussed in Section 3.2 some 
productions fire locally while others need to change WMEs 
that are stored in the local memory of remote processors. 
The following definitions describe important situations that 
appear in the execution of the model. 
DEFINITION 8. A WME wk is local to a processor PI iff Wk is 

stored in the local memory of P, ; wk is not stored in the local 
memo y of any other processor PI ; and there is no production 
allocated to a processor other than P, that changes wk. 

DEFINITION 9. A WME wk is pseudolocal to a processor P, iff 
wk is stored in the local memory of PI; wk is not stored in 
the local memory of any other processor PI; and there is at 
least one production allocated to PI # P, that changes Wk 
We say that PI shares Wk 

For example, a WME that is written by many processors 
and read by only one processor is pseudolocal for the proces- 

sor that reads it; it is a shared WME for all processors that 
write it. A processor does not store shared WMEs in its lo- 
cal memory. 
DEFINITION 10. A production R, fires locally in a processor 

P, iff  b' Wk D C(R,) , Wk is local or pseudolocal to P,. 
CONSEQUENCE 2. A production that does not fire locally, is said 

to be a global production. Such a production must 
propagate actions to remote processors. 

DEFINITION 11. A production R, enables a production 
R, iff 3wk such that sc(x,)[wk] = SA(R,)[Wk]. A PrOdUC- 

tion R, disables a production R, iff 3Wk such that 

' c ( ~ , ) [ ~ k ]  ' S ~ ( ~ , ) [ W k l *  

DEFINITION 12. A production R, has an output conflict with a 
production R, iff3Wk such that Sc(~, [Wk]#Sc(Is , , [Wk] .  

Productions that can fire locally are classified as Inde- 
pendent of Network Transactions (INTI or Dependent on 
Network Transactions (DNT), according to their depend- 
encies with other productions that belong to other proces- 
sors. INT and DNT productions have to be mapped and 
processed differently for correct execution according to 
the serializability criterion. Productions are partitioned 
into disjoint sets with one set assigned to each processor. 
R, E P, indicates that production R, belongs to processor 
P,. The Working Memory is distributed among the proc- 
essors in such a way that a processor stores in its local 
memory all and only the WMEs tested by its productions. 
DEFINITION 13. A production that can fire locally is DNT if and 

only if at least one of the following conditions holds: 
1) Two of the antecedents of the production are changed by 

the consequents of a single production allocated to an- 
other processor: One of these changes produces an ena- 
bling dependency and the other produces a disabling 
one; 

2) The production has two conflicting writes with a pro- 
duction allocated to another processor; 

3) The production has an output conflict and a disabling 
dependency with a production allocated to another 
processor. 

At compile time, after the set of productions is partitioned 
among the processors, the set of antecedents and the set of 
consequents of each production are analyzed to determine 
whether the production is global, local INT, or local DNT. To 
check if a production is local DNT is a simple matter of 
checking if any of the conditions of Definition 13 holds. 
DEFINITION 14. A production R, is INT iff R, can fire locally 

An INT production can start firing at any time as long as 
its antecedents are satisfied. A DNT production PI only 
starts firing after all tokens generated by a production PI, 
currently being fired by a remote processor, are broadcast 
in the network and consumed by the processor that fires P,. 
This prevents Pi and PI actions from being intermingled, 
avoiding thus nonserializable behavior. 

and X, is not DNT. 
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3.2 System Overview 
The architectural model proposed in this paper consists of a 
moderate number of processors interconnected through a 
broadcasting network. The set of productions is partitioned 
among these processors with each production assigned to 
exactly one processor. A process ads data only from its 

re performed over the 
etwork reads and the low 

frequency of network writes, a simple bus should be ade- 
quate as the broadcasting system. This conclusion is sup- 
ported by detailed experimental results showing the bus not 
to be a bottleneck even for a twenty processor system. A 
number of associative memories implement a system of loo- 
kaside tables to allow parallel operations within each proces- 
sor. This scheme does not allow parallel production firing 
within a processor, but allows the match-select-act phases of 
a PS to overlap. A snooping directory isolates the activities in 
remote processors from the activities in a local processor, and 
interrupts a local operation only when pieces of data that 
affect it are broadcast over the network. 

The parallel architecture is formed by identical proces- 
sors connected via a Broadcasting Interconnection Network 
(BIN), as shown on Fig. 1. At start-up the 1 / 0  processor 
(I/OP) loads the productions on all processors. System 
level 1 / 0  and user interface are also handled through the 
I/OP. The main components of each processor are the 
Snooping Directory (SDI, the Matching Engine (ME), the 
Production Controller (PC), and the Instantiation Control- 
ler (IC). Whenever a processor P, needs to broadcast a 
change to a WME that is d in other processors’ local 
memories, P, creates a t to broadcast in BIN. The 
Snooping Directory is an associative memory that identifies 
whether a token broadcast on BIN conveys an action rele- 
vant to the local processor. Relevant tokens are kept in a 
Broadcasting Network Buffer (BNB) until the IC and the 
ME are able to process it. The Matching Engine is a Rete- 
based matcher that implements a state-saving algorithm. 
The IC uses specialized memory structures to maintain and 
rapidly update the list of fireable instantiations. To perform 
this task, it has to monitor the outputs of ME as well as the 
firing of local (through PC) and global (through SD) pro- 
ductions. One of the memories controlled by IC is the Fir- 
ing Instantiation Memory (FIM) that keeps a list of all the 
production instantiations that are enabled to fire. The Pro- 
duction Controller (PC) selects an instantiation to be fired 
from the list maintained by IC, and, whenever necessary, 
synchronizes the production firing with BIN operations to 
guarantee that production firings appear to be atomic. 

Productions are divided in three categories: local INT, 
local DNT, and global. The firing of a local INT production 
does not require BIN ownership because all its actions 
modify local WMEs only. Therefore, upon selecting an INT 
production, the PC immediately propagates its actions to 
ME and IC. To avoid interleaving of actions belonging to 
distinct productions, all tokens broadcast in BIN during 
local production firing are buffered in BNB. These tokens 
are processed as soon as the local firing finishes. When a 
local DNT production is selected, its execution has to wait 
until the BIN changes ownership, which is an indication 

Fig. 1. Parallel machine model. 

that the firing of a global production has been concluded. 
The local DNT production is then fired in the same fashion 
as a local INT. 

A global production modifies shared WMEs, i.e., WMEs 
that belong to the antecedents of productions assigned to 
other processors. Thus, the anges need to be broadcast 
to all processors. When a global production is selected, PC 
acquires access to the BIN, processes all outstanding 
changes in the BNB, and, if the selected production is still 
fireable, proceeds to broadcast tokens with changes to 
shared WMEs. The BIN ownership is not released until all 
actions that change shared WMEs are broadcast. After re- 
leasing the BIN, PC prevents any incoming token from pro- 
ceeding to local processing. These tokens are buffered in 
BNB and processed locally after the local execution of the 
selected production is complete. This avoids write inter- 
leaving in the local memories and guarantees an atomic 
operation for production firing within a processor. 

The main steps in the machine operation are presented 
below in an algorithmic form. The steps of the algorithm 
are performed by different structures of the processing 
element. 

PRODUCTION-FIRING 
1. execute all outstanding tokens in BNB 

2. select a fireable instantiation I k  in FIM 
3. if Ik is global 
4. then Request BIN ownership 
5. 
6. 
7. 
8. 
9. 
10. release BIN 
11. else end PRODUCTION-FIRING 
12. else if I k  is DNT 
13. 

first-serve basis 

while BIN ownership is not granted 

if  Ik is still fireable 
execute tokens broadcast in BIN captured by SD 

then broadcast actions that change shared WMEs 
execute actions that change shared WMEs 

then while BIN ownership does not change 
execute tokens broadcast in BIN captured by SD 

if is still fireable and Ii, 
16. then disable local exec 
17. execute local actions 
18. enable local execution of incoming tokens 

Note that no production is fired while there are out- 
standing tokens in BNB. The selection of a fireable instan- 
tiation in step 2 of PRODUCTION-FIRING is done accord- 
ing to the ”pseudorecency” criterion: The most recent in- 
stantiation in FIM is selected This is not a true recency cri- 
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terion because ME may still be processing a previous token, 
and thus the instantiations 

that it will produce are not in FIM yet. 
The test in step 7 is necessary because between the time 

the BIN was requested and the time its ownership is ac- 
quired, incoming tokens might have changed the status of 
the production selected to fire. If this occurs, the firing of 
the selected production is aborted. Steps 12-14 are executed 
for productions that are dependent on network transac- 
tions, as defined in Section 3.1. If such productions were to 
start firing while a remote processor is in the middle of a 
production execution, the intermingling of actions could 
result in inonserializable behavior. Notice that the BIN is 
released in step 10, before changes to local memory take 
place. To guarantee that no token is processed before the 
local changes are executed, buffering of tokens in BNB in 
step 15 is activated immediately upon releasing the BIN. 

The architectural model presented in this section bears 
some similarity to the systems proposed by Schmolze and 
Goel 1381 and Ishida et al. [22]. In all three systems, each 
production is uniquely assigned to one processor and all 
WMEs tested by the production are stored locally. Contrary 
to the architecture presented in this paper, the systems 
proposed in 1221 and 1381 use a taxing synchronization 
mechanism and require each processor to keep a list of all 
dependencies that each production has with other proces- 
sors. The bus-based architecture with snoopy mechanism 
presented in this paper substantially simplifies synchroni- 
zation and avoids the potential for incorrect behavior or 
deadlock. Similar synchronization mechanisms are nowa- 
days employed for cache coherency in several commercial 
medium-scale multiprocessor systems [19]. 

3.2.1 Detailed Processor Model 
The processor architecture is detailed in Fig. 2. The Instan- 
tiation Firing Engine (IFE) implements the outgoing interface 
with the Broadcasting Interconnection Network (BIN) and 
synchronizes internal activities. The IFE selects an instantia- 
tion to be fired among the ones stored in the Fireable Instan- 
tiation Memory (FIM). If the production selected to fire is 
global, the IFE places a request for ownership of the BIN. 
Upon receiving BIN ownership, IFE waits until all out- 
standing tokens stored in BNB are processed. If the selected 
instantiation becomes unfireable due to such processing, IFE 
has to abandon it and select a new instantiation. Otherwise 
IFE broadcasts tokens with changes to the shared WMEs, 
releases the BIN, and executes the local actions. 

The Snooping Directory (SD), along with the Broadcasting 
Network 13uffer (BNB), implements the incoming network 
interface. The Snooping Directory is an associative memory 
that contains all WME types that belong to the antecedent 
sets of the productions assigned to the processing element. 
BNB is used to store tokens broadcast on BIN and captured 
by SD during the local firing of a production, or during the 
execution of local actions of a global production. The tokens 
stored in BNB are processed as soon as the firing of the cur- 
rent production finishes. In the rare situation in which BNB 
is full, a halt signal is issued to freeze the activity on BIN. 
When the halt signal is reset, the activity in the bus resumes: 
The same processor that had BIN ownership continues to 

Wreable 
Instantiation 

Memory 

Antecedents of 
Fireable Inst 

Mem0t-v 

I 

Fireable 

Control 

- 
Instantlation - - 

Fig. 2. Processing element model. 

broadcast tokens as if nothing had happened. 
Whether a WME change is originated locally or captured 

from BIN, it needs to be forwarded to the Rete network and 
to the Fireable Instantiation Control (FIC). Like the original 
Rete network, the one used in this architecture has a- and 
pmemories. To avoid the high cost of waiting for the re- 
moval of a WME, which was pointed out by Miranker [321, 
negated antecedents are stored in both pmemories and in 
the fireable instantiations produced for the conflict set. The 
presence of the negated conditions in this representation 
allows the quick removal of nonfireable instantiation when 
a new token is processed. There is a possibility that a WME 
change previously processed by FIC and not yet processed 
by Rete disables an instantiation freshly generated by Rete. 
To avoid a possibly nonserializable behavior, before adding 
a new instantiations to FIM, FIC checks it against the 
Pending Matching Memory (PMM), which stores all tokens 
still to be processed by Rete. The deletion of an instantia- 
tion from FIM is also performed by FIC. The operation of 
FIM, AFIM, PMM, and FIC are explained in greater detail 
in Section 3.2.2. 

3.2.2 Conflict Set Management 
The Fireable Instantiation Control (FIC) uses the Antece- 
dents of Fireable Instantiation Memory (AFIM) to maintain 
a list of all enabled instantiations in the Fireable Instantia- 
tion Memory (FIM). AFIM and FIM are fully associative 
memories with capability to store don't cares in some of 
their cells. The fields in each line of FIM and ARM are 
shown in Fig. 3. FIC maintains an internal timer that is used 
to time stamp each instantiation added to FIM. Each line of 
AFIM stores either a WME that is the antecedent of a fire- 
able instantiation, or an a-test that specifies an instantiation 
negated antecedent. Its fields are: 

Presence-indicates whether the AFIM line is occupied. It 

Negated-indicates whether this line stores a WME or a 

Type-stores the WME type. 
Bindings-contains the values stored in each attrib- 

ute-value pair of the WME. Notice that the name of the 
attribute does not need to be stored. Symbolic names are 
translated into integer values at compile time. 

is used to manage the space in the memory. 

negated antecedent. 
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Fig. 3. (a) Antecedents of fireable instantiations memory; (b) fireable 
instantiations memory. 

Notice that because AFIM stores antecedents of fireable 
instantiations, most of the variables are bound, therefore 
the bindings field stores mostly constants. For an easy han- 
dling of unbound variables, which match any value, the 
bindings field of AFIM is a ternary memory. Besides the 
values 0 and 1, it can also store a ”don’t care” value X. Such 
a memory might be implemented using two bits per cell, or 
using actual ternary logic in VLSI. One example of the lat- 
ter is the Trit Memory developed by Wade [44]. One alter- 
native to implement a nonbound value is to add a tag bit to 
bzndzngs that indicates whether the value is bound or not. 
The advantage of this representation is that there is only 
one extra bit per word. Each line in FIM stores one fireable 
instantiation, with the following fields: 
Presence-indicates whether the line is occupied; 
Fireable-indicates whether the instantiation stored in the 

line is still fireable.’ 
PM-Address-contains a pointer to the Production Mem- 

ory indicating where the production actions are stored. 
Time-Tag-record the time in which the instantiation be- 

came fireable. It is used to implement a p 
terion to select an instantiation to be fired 
The third piece of memory managed by FIC is a fully as- 

sociative memory called Pending Matching Memory 
(PMM). When a token is placed in the input nodes of the 

1. An instantiation is only removed from FIM after an incremental gar- 
bage collector removes the corresponding antecedents from AFIM 

Rete network, it is also stored in PMM. The token is re- 
moved from PMM when the Rete network produces a sig- 
nal indicating that all changes to the conflict set originated 
by that token have being processed. Upon receiving a new 
fireable instantiation from Rete, FIC associatively searches 
PMM. FIC has to perform an independent search for each 
antecedent of the new instantiation. If any line of PMM 
indicates the deletion (addition) of a WME that matches a 
nonnegated (negated) condition of the instantiation, the 
new instantiation is ignored. If no such line is found in 
PMM, FIC records the new instantiation in one line in FIM 
and stores each one of its antecedents in a separate line in 
AFIM. Fig. 4 shows the organization of PMM with four 
fields: 

Presence-indicates whether there is a WME stored in the 

Sign-indicates whether this WME has been added to or 

Type-stores the type of WME. 
Bindings-records the bindings of the WME. 

2 

line. 

deleted from the worlung memory. 

Presence Sign Type Bindings 
I I 

Fig. 4. Pending matching memory. 

During the execution of a token, FIC performs three ac- 
tions in parallel: Send the token to the Rete network input; 
add the token to PMM; and update FIM and AFIM. To up- 
date AFIM and FIM, first FIC executes an associative search 
in AFIM for entries with the same WME present in the to- 
ken, but with opposite sign. For each matching entry in 
AFIM, FTC marks the corresponding instantiation in FIM as 
unfireable. Finally FIC resets the presence bit for these en- 
tries in AFIM. This process leaves ”garbage” in FIM and 
AFIM, consisting of all the nonfireable instantiations still 
present in FIM plus the antecedents of these instantiations 
in AFIM. 

FIC has an Incremental Garbage Collector that searches 
FIM for an instantiation I/< that is nonfireable. FIC performs 
an associative search in AFIM and remove all antecedents 
of Ik ,  and then eliminates Ik from FIM. To guarantee the 
consistency of FIM and AFIM, the garbage 
ways performed as an atomic operation. F 
position in FIM in which the last garba 
executed is kept internally in FIC, and is used as the start- 
ing point of the next search. If and AFIM are not full, 
garbage collection is performe least once between two 
instantiation additions. Whenever FIM or 
extra garbage collection is executed to free 
lution trades memory space for speed: A WME that is 
tested by antecedents of many instantia 

2 This instantiation must be ignored because the entry found in PMM m- 
dicates that a token received after the one that enabled the instantiation, 
which is not yet fully processed in Rete, will disable it 
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3.2.3 Broadcasting Interconnection Network Arbitration 
Access arbitration in a broadcasting network is a well 
studied problem. In this machine, we adopt the scheme 
used in the first prototype of the Alpha architecture by 
DEC [431. During startup each processor is assigned an ar- 
bitrary priority number from 0 to N. N is the highest prior- 
ity and 0 is the lowest. When a processor requests the net- 
work, it uses its priority. The requester with highest prior- 
ity is the winner and is granted access to the network. The 
winner has possession of the network as long as it needs to 
write all consequents of one production. After releasing the 
network, the winner sets its own priority to zero. All proc- 
essors that had a priority number less than the winner in- 
crement their priority number by one, regardless of 
whether {hey made a request. 

This scheme works as a round robin arbitration if all 
processors are requesting the network at the same time. If 
fewer processors are requesting the network, this mecha- 
nism creates the illusion that only these active processors 
are present in the machine. 

In Section 3.2, we establish that broadcast writes need to 
be kept in a buffer while a processor is firing local produc- 
tions. When this buffer overflows, a halt signal is issued by 
the processor. This signal stalls all network broadcasting 
activities, giving time for the overloaded processor to con- 
sume its tokens and alleviate its buffer load. When the stall 
signal is removed, the network continues its activity with- 
out any change in the ownership. To avoid a great impact 
in the speed of the machine, the buffer must be sufficiently 
large to avoid frequent stalling of the network. 

3.3 Correctness of the Processing Model 
This section investigates whether the machine proposed in 
Section 3 correctly executes a production system. The cor- 
rectness criterion used is serializability 1371 and the condi- 
tion of ownership is stated in axiom 1. 
AXIOM 1. A WME Wk is stored in the local memoy of a proces- 

sor P, iff W, D A(R,) and R, E P,. 
THEOREM 1. Giving the parallel machine model presented in this 

document, the definition of local DNT, local I N T ,  and global 
productions, Axiom 1 is a necessa y and sufftcient condition 
of ownership to guarantee correct execution of a production 
systpm under the serializability criterion of correctness. 

PROOF. First we prove that Axiom 1 is necessary. For the 
sake of contradiction, suppose that the ownership 
condition stated in Axiom 1 is not satisfied. Assume 
that there is a production R, E P, and a WME W,, 
such that Wk D A(R,) and Wk is not stored in the local 
mernory of P,. Because reading operations are not al- 
lowed in the broadcasting network, P, cannot perform 
the matching of R,. Therefore, a production system 
cannot be executed in such a machine. Thus, Axiom 1 
is necessary. 

To prove that Axiom 1 is sufficient, we must show 
that, in every possible circumstance, the results pro- 
duced by this model could be obtained by a sequen- 
tial execution of the productions. Therefore, we must 
analyze all situations in which parallel execution 
might occur and show that each one of them results 

in a serializable outcome. Because there is no parallel 
production firing within a processor, the following 
analysis is restricted to concurrent firing of produc- 
tions allocated to distinct processors. Inter-processor 
parallelism occurs in two situations: among produc- 
tions firing locally in distinct processors and between 
a production being broadcast over the BIN and one 
(or more) firing locally. All situations described below 
involve two productions allocated to distinct proces- 
sors being fired concurrently. 

SITUATION 1. Productions that have only local WMEs in its an- 
tecedents and consequents. 

The fact that all antecedents and consequents are 
local indicates that the productions being fired in 
parallel are completely independent of productions 
allocated to other processors, therefore the same re- 
sults produced by the parallel firing could be ob- 
tained by any sequential firing of the same produc- 
tions. 

SITUATION 2. A production R, E PI enables a production R, E P,; 
R, and R, might have nonconf7icting shared outputs; R, 
does not disable R,; R, fires locally. 

Since R, fires locally, all WMEs that are changed by 
both R, and R, are pseudo-local for P, and shared for 
Pi. Because those are nonconflicting outputs and R, 
enables R,, parallelism occurs when R, starts firing af- 
ter being enabled by an action of R, and before R, fin- 
ishes broadcasting changes to the network. The firing 
of R, prevents the changes broadcast by R, from being 
processed locally until R, finishes. As long as the ac- 
tions broadcast by R, are queued and processed after 
R, finishes, the result is the same as if R, would have 
been fired after R, finished. Thus, it is serializable. 

SITUATION 3. A production R, E PI disables a production R, E 
P, ; there is no enabling dependencies between R, and R,; 
R, and R, might have nonconflicting shared outputs; R, 
fires locally. 

The only possibility for the parallel firing of R, 
and R, is for P, to start firing R, before PI had broad- 
cast any action that disables R,. Even if PI had broad- 
cast some of the shared nonconflicting outputs when 
R, starts firing, the effect is the same as firing R, be- 
fore R,. Therefore, the result is serializable. 

SITUATION 4. A production R, E P, changes a pseudolocal WME 
Wk and a production R, E P, modifies W,. R, fires locally. 

Because R, modifies W,, R, is a global production. 
It is necessary to analyze three different cases: 

CASE 1. wk is the only shared output between R, and R,. 
Notice that the (possibly) conflicting WME W, is 

exclusively stored in P,. Therefore, if P, disables the 
BIN before PI broadcast changes to W,, the result is 
the same of firing R, before R,. If P, disables BIN after 
changes to W, are broadcast, the result is equivalent 
to firing R, after X,. In both cases, it is serializable. 

CASE 2. R, and R, have more than one shared output, but 
no more than one of them is conflicting. 

The concern with multiple shared outputs is that the 
actions of the local and the global production might be 
intermingled. This would happen if P, would inhibit 
actions from the network after PI broadcast some but 
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not all actions of R,. Since R, has only one action con- 
flicting with R,, the interruption of the remote firing 
will either take place before or after this conflicting ac- 
tion is broadcast. If the interruption occur before the 
conflicting action is executed in PI, the result is equiva- 
lent to R, firing before R,. If it occurs after, the result is 
equivalent to R, firing after R,. In either case, this 
situation results in a serializable behavior. 

CASE 3. R, and R, have inore than one conflicting action. 
In this case, if intermingled execution would be 

allowed, nonserializable behavior would result. 
However, according with condition 2 of Definition 13, 
R, is DNT and therefore cannot start firing until the 
network changes ownership, indicating that the 
global production either has finished or has not 
started. This ensures the necessary synchronization 
and results in serializable behavior. 

SITUATION 5. A production R, E PI is enabled and disabled by  a 
production R, E P,; R, fires locally. 

In this situation, there would be a nonserializable 
behavior if production R, would be allowed to fire 

cast the action that enables X, and 
that disables R, is broadcast. This 

situation does not occur because, according to condi- 
tion 1 of Definition 13, R, is DNT: It only starts firing 
when the network changes ownership. 

SITUATION 6. A production R, E PI is enabled by  a production 
R, E PI; R, has one output conflict with R,; R, and R, 
m a y  or m a y  not have shared nonconjlictzng outputs; and 
R, fires locally. 

Parallelism occurs if R, starts firing in P, after the 
action that enables R, have been broadcast by PI and 
before PI finishes broadcasting R, actions. If at that 
point the conflicting action has been already broad- 
cast, the result will be equivalent to firing R, before 
R,. If the conflicting action has not been broadcast, 
the result is equivalent to R, firing before X,. Either 
way, the result is serializable. 

SITUATION 7. A production R, E P, is disabled by  a production 
R, E P,; R, has one output conflict with R,; R, and R, 
may OY may not  have shared nonconflicting writes; R, fires 
locally. 

This situation could result in nonserializable be- 
havior if R, were to start firing after PI broadcasts the 
conflicting action of R,, and before the action that 
disables R, is broadcast. However, this cannot occur 
because, according to condition 3 of Definition 13, R, 
is DNT. 

Situations 1 through 7 deal with possible depend- 
encies involving two productions R, and R, allocated 
to distinct processors. The local firing of R, in all 
situations indicates that its consequents change only 
local or pseudolocal WMEs. Table 1 helps to verify 
that every possible combination of dependencies 
among two productions in this situation have being 
analyzed. In this table a "-" indicates no dependen- 
cies, "1" indicates one dependency, "1 +" indicates 
one or more dependencies, "2+" indicates two or 
more dependencies, and " X  indicates z 
number of dependencies. Table 1 has fiv 

"Enabling" column indicates the number of actions in 
C(R,) that enable R,; "Disabling" indicates the num- 
ber of actions in C(R,) that disable R,; 
"Nonconflicting Write" indicate the number of non- 
conflicting shared actions between X, and R,; 
"Nonconflicting Write" indicate the number of non- 
conflicting shared actions between R, and R,; and 
"htuation" indicates which of the situations analyzed 
in this proof covers each case. Every possible combi- 
nation of dependencies between tw 
covered in Table 1. 

There is still the possibility that 
volving more than two productions create a situa- 
tion in which the parallel model yields a nonseri- 
alizable behavior. The only situation in which this 
might occur are in cycles of disablings, analyzed in 
Situation 8. 

SITUATION 8. There is a cycle of dzsablings among producfzons 
allocated to distinct processors. 

First, we analyze the special case in which the cycle is 
formed by two productions R, E PI and & E PI. Accord- 
ing to Definition 11, if there is a cycle of disabhg be- 
tween R, and R,, there exist two WMEs W, and W, such 
that sc(R,n)[wkl * ~ A ( R n ) W  SC(Rn)[w,1 * S A ( R , ) [ W  ' 

Therefore, W, is a shared WME for PI, Wl is a shared 
WME for P,, and neither R, or R, can fire locally. The 
acquisition of the broadcasting network works as a 
synchronizing element preventing R, and R, from 
firing in parallel. The same reasoning can be extended 
to disabling cycles with any number of productions. 

This concludes the proof. Since the results are seri- 
alizable for any possible conflicting sit 
clude that Axiom 1 is a sufficient CO 
ship and that the results produced b 
posed are serializable. 

The problem of partitioning 
joint production sets which are then mapped onto distinct 
processors has been studied by a number of researchers. 
Most partitioning algorithms are designed with the goal of 
reducing enabling, disabling and output dependencies 
among productions allocated to different processors 1381. 
Oflazer formulates partitioning as a minimization problem 
and concludes that the best suited architecture for Produc- 
tion Systems has a small number of powerful processors [36]. 
Oflazer also indicates that a limited amount of imp 
in the PS speed can be obtained by an adequate a 
of productions to processors. Moldovan presents a detailed 
description of production dependencies and expresses the 
potential parallelism in a "parallelism matrix" and the cost of 
communication among productions in a "communication 
matrix" 1331. Xu and Hwang use a similar scheme with ma- 
trices of cost to construct a simulated annealing optimization 
of the production partition problem [45] 

Although certain basic principles are maintained in all 
partitioning schemes, partition algorithms are tailored to 
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Nonconflic- Conflicting 
ting Write Write 
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Situation 

1 

TABLE 1 
POSSIBLE DEPENDENCIES BETWEEN R, AND R, 

1+ 

I+  4, case 1 
X 1 4, case 2 
X 2+ 4, case 3 
X X 5 
X 1 6 
X 1 7 

.. I - 
V i  I+ I X I I 2 

specific architectures. We are concerned with two kinds of 
relationships among productions: productions that share 
antecedents, and productions that have conflicting ac- 
tions. Ass p i n g  productions with common antecedents 
to the same processor reduces memory duplication, while 
assigning productions with conflicting actions to the same 
processor prevents traffic in the bus. Previous partition 
algorithms were greatly influenced by enabling and disa- 
bling dependencies among productions [331, [361, 1451. 
Our expeirience with production systems shows that 
grouping productions with common antecedents is much 
more effective to reduce the communication cost. Moreo- 
ver, in the production system programs that we exam- 
ined, a production seldom creates a WME that was not 
tested on its antecedents. Therefore, productions that 
have a greater number of common antecedents are also 
most likely to have a greater number of enabling and 
disabling dependencies among them. Thus, our partition 
algorithm does not include these dependencies, but only 
shared antecedents and conflicting outputs. 

We analyzed and experimented with several partition- 
ing algorithms and found the following algorithm to be the 
most effective 141, [5]. The optimal partitioning of produc- 
tions into disjoint sets is modeled as a minimum cut prob- 
lem, which is NP-complete 1131. The polynomial time ap- 
proximate solution presented in this section has three goals: 
minimizing the duplication of working memory elements; 
reducing traffic in the bus; and balancing the amount of 
processing in each processor. In the architecture presented 
in Section 3, these goals translate to: minimizing the num- 
ber of global productions and reducing the number of local 
DNT production. As a consequence, the number of local 
INT productions is increased. 

To represent the relationships among productions, we 
define an undirected, fully connected graph PRG = (P, E )  
called Production Relationship Graph. Each vertex in P repre- 
sents one of the productions in the system, and each 
weighted edge in E is a combined measure of the produc- 
tion relationships. PRG has a weight function w: E + Z’, 
defined by (1). 

where n and m are the number of antecedents and p and q 
are the number of consequents in productions R, and RI, 
respectively, 4 is 1 if i = j and 0 otherwise, and 

1 if antecedents AI of R, and A, of R, are of the same type 
wLz,kJ = 0 otherwise c 

1 if consequent W, of R, conflicts with W, of RI 

Empirical studies with a parallel architecture simulator 
show that the main factor limiting further reduction is the 
time spent in the matching phase in the Rete network. 
Consequently, the load balancing must concentrate on the 
processing performed in the Rete network. Furthermore, 
most of the time in the Rete network is spent in Pnode 
activities. Thus, the number of Ptests performed in the 
antecedents of a production is used as a measure of the 
workload associated with this production. To address the 
constraint of balancing the amount of processing amon 
processors, we define the function B : Po, ..., P,, -+ Z , 
which computes the number of beta tests that are ex- 
pected to be performed by processor P,. 

8 

where p(R , )  is the number of beta tests performed for 
production RI, and qzl is 1 if RI is assigned to P,, and 0 
otherwise. N is the total number of productions in the 
system. 

Let S, denote the set of productions assigned to proces- 
sor P,. When the algorithm starts, all subsets s, are empty 
and all productions are in the set S. The fitness of placing 
production R, in set S k  is measured by the value of the 
function F(R,,S,). 

3 

N-l 

(3)  

2 if RI E S, 

-1 if RI E S, # S,, 
q l k  = 1 ifR, E s I 

The value of the fitness function indicates how the pro- 
duction represented by the vertex R, fits in the subset Sk 
F(R,,Sk) computes a weighted sum of the connections be- 
tween vertex R, and all other vertices in PRG. A strong 
connection with a vertex that has been assigned to a set 
other than Sk reduces the fitness of R, to S,, while a strong 
connection with a vertex already in Sk increases the fitness. 
A strong connection with a vertex that has not been as- 
signed to any subset has an intermediate value because S k  

may be able to attract both vertices. 
The strategy used in this partitioning algorithm consists 

of selecting the processor with the least number of esti- 
mated beta tests, and then finding the production best fit- 
ted to this processor. The productions strongly related to 
other productions in PRG are the first ones to be assigned 
to processors. The algorithm ends when there are no more 
productions in S. 

3. p(R$ is an estimate of the number of beta tests performed because of 
the presence of production RI. It is measured in previous runs of the same 
production system. 
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PARTITION ( S ,  E ,  w, N, B, F) 
1 while S # 0 
2 do Sk t Sk U (RJR ,  E S and 

vary the number of productions by creating continents with 
different number of countries. The size of the 
termined by the number of countries and the 
of cities per country. Table 2 shows the relation between the 
number of countries in each benchmark C, the average number 
of cities in each country ,LL~ and important parameters in the 
benchmarks generated by the CTSP facility, which is available 
through anonymous ftp to: pine. ece. utexas . edu in 

CE EVALUATION /a/pine/home/pine/ftp/pub/parprosys. Further details 
about this benchmark and its flexible properties can be 

B(Pk)  = mink B(Pk) and 
FG!,, S k )  = max, F(X,, SJI 

performance evaluation can be accomplished through 
lation, and analytic modeling [24]. found in 181. 
s of observing actual values for speci- 

fied parameters in an existing system. Simulation consists 
in creating a model for the behavior of a system, writing a 
computer program that reproduces this behavior, feeding 
the simulator with an appropriate sample of the workload 
of the actual system, and computing selected parameters of 
interest. In analytic modeling, a mathematical model of the 
system is created and its solution provides the performance 
evaluation P-41. In a related work, we used an analytical 
model to investigate the effect of using multiple functional 
units to update the Rete network within each processor [7]. 

In this research, we use an event driven simulator to 

input of the simulator consists of production system pro- 
grams written in OPS5 syntax. For syntax and lexical analy- 
sis, the tools yyacc and yylex were used. 

5.1 Benchmarking 
A known weakness Of production system machine 
research is the lack of a comprehensive and broadly used 

process of searching for benchmarks to evaluate this novel 
architecture, we contacted many researchers with the same 
problem: a new idea to be evaluated in need of a suitable 
set of benchmark programs. Most of the benchmarks ob- 
tained were toy programs with a small number of produc- 
tions in which the researcher can only change the size of 
the database. A benchmark in which the number of pro- 

changed would allow researchers to study various aspects 

called Contemporaneous Traveling Salesperson Problem (CTSP) 
[81, that has such characteristics. Another benchmark that 
we wrote is a solution to the "Confusion of Patents Prob- 
lem." The following sections briefly describe these two as 
well as some other benchmarks used to test the architec- 
ture. 

TABLE 2 
STATIC MEASURES FOR THE CTSP BENCHMARK 

AS FUNCTIONS OF c AND 

In the measurements presented in Section 6, instances of 
the CSTP appear as south, south2, moun, and moun2, In 
mOun and 
optimization in all country borders, in south2 and 

timization of each country border. 

5.1.2 Confusion of Patents Problem 
We constructed a solution for the formu Confu- 
sion of Patents Problem presented in [ll] roblem 
presents five patents, five inventors, five cities, and 10 con- 
straints. Using these constraints we must decide who in- 

combinations and constraints are present in the initial 
database; 67 productions use the constraints to eliminate 
combinations that are not possible; 19 productions select 
the 

a single set of prod 

the speedup Of the architecture proposed. The moun2, a specialized set of productions i s  used for the op- 

4 

set Of benchmarks for Of performance' In the vented what and where. In Our solution, all 125 possible 

combinations and 

ns &her change or test the Same 
kinds of As a consequence, productions have strong 

suited for clustering. Even in a machine with a moderate 

cast on the network. The main source of parallelism is the 
concurrent execution of different portions of the Rete net- 
work, Performance to this solution of the confusion 
of patents problem are reported under the name 

5.1.3 The Hotel Operation Problem 

and the database size can be interdependency, resulting in a production system poorly 

Of new architectures. We have a new benchmark number of processors, most of the actions need to be broad- 

5.1. I A Contemporaneous TSP 
In this modified version of the TSP, the cities are grouped into 
"countries." The tour has to be constructed such that the sales- 
person enters each country only once. The location and bor- 
ders of the countries must allow the construction of a tour ob- 
serving this restriction. Our solution to CTSP has seventeen 
local productions per 
country boundary. This organization allows the researcher to 

untry and twelve produc 

Originally written by Steve Kuo at the University of South- 
ern California, hotel is a production system that models 
the operation of a hotel. It is a relatively large and varied 
production system (80 productions, 65 
nonexclusive contexts. Because each pr 
related with the activities that actually take place in a hotel, 
the amount of speedup obtained depends on the balance of 
work among each one of these activities. For example, if a 
hotel is saecified with a laree number of tables in the res- " 
taurant and very few rooms, the productions that take care 
of the restaurant tables will have a much larger load than 
the productions that cleanup the rooms. This work unbal- 

4. The front-end conversion of the OPS5 syntax into internal data struc- 
ture was built by Anurag Acharya at Carnegie Mellon University for PPL 
[31, [21 
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ance is transferred to parallel architectures that partition 
the program at the production level. 

5.1.4 The Game of Life 
This is an implementation for Conway's game of life, as 
constructed by Anurag Acharya. After our modifications, 
life has 40 productions. Twenty-five of these productions 
are in the context that computes the value of each cell for 
the next generation and potentially can be fired in parallel. 
The other 15 productions are used for sequencing and 
printing and can be only slightly accelerated by Rete net- 
work parallelism. 

5.1.5 The Line Labeling Problem 
Different versions of the line labeling problem (Waltz and 
Toru-Waltz) have being used for performance evaluation 
1281, 1291, 1351, 1381. Our version was originally written by 
Toru Ishida (Columbia University), and successively modi- 
fied by Dan Neiman (University of Massachusetts), Anurag 
Acharya (Carnegie-Mellon University), and JosP Amaral 
(University of Texas). The current version has two 
nonoverlapping stages of execution, each one with four 
productions. Because the system is partitioned at the pro- 
duction level, the amount of parallelism is limited to four 
fold. Such a low limit in speedup occurs because this is a 
simple "toy" problem with only 10 productions, not ade- 
quate for the architecture proposed. The line labeling 
problem is identified as wal t 22 in our set of benchmark. 

Table 3 shows static measures-number of productions, 
number of distinct WME types, average number of antece- 
dents per production, average number of consequents per 
productions-for the benchmarks used to estimate per- 
formance in the multiple functional unit Rete network. 
south andl south2 are CTSPs with four countries and 10 
cities per country; moun and moun2 are CTSPs with 10 coun- 
tries and 15 cities per country; life, patents, waltz2, and 
hotel are the benchmarks discussed in Sections 5.1.2 to 
5.1.5. 
6 PERFORMANCE MEASUREMENTS 
The benchmarks described in Section 5.1 were used to 
evaluate the performance of the proposed architecture. First, 
we measure the amount of speedup over an architecture 
with global synchronization and without overlapping be- 
tween mal ching and selecting-acting within a processor. 
Then we investigate the effectiveness of the use of associa- 
tive memories. Finally, we obtain estimates for the size of 
associative memories needed for each one of the bench- 
marks and for the level of activity in the bus. 

Notice that this section measures performance im- 
provement obtained from two distinct ideas: Section 6.1 
measures the improvement solely due to elimination of 
over-synchronization and Section 6.2 measures the im- 
provement solely due to use of associative memories. 
However, because there is some interaction between these 
improvements, their product is only a rough estimate of the 
combined benefit of these ideas. 

6.1 Parallel Firing Speedup 
To measur e the advantages of parallel production firing 
and of the internal parallelism in each processor, we define 

TABLE 3 

I Bench I # Prod I Ant./prod I Cons./prod I # WME I 
STATIC MEASURES FOR BENCHMARKS USED 

a globally synchronized architecture that is very similar to 
the one proposed in this paper, except that it performs 
global conflict set resolution to implement the OPS5 re- 
cency strategy. This synchronized architecture is also very 
similar to the one suggested by Gupta, Forgy, and Newel1 
[ 161. In this architecture, each processor reports the best 
local instantiation to be fired to the bus controller. The bus 
controller selects the instantiation whose time tag indicates 
it to be the latest one to become fireable. This added deci- 
sion capability in the bus controller implements the recency 
strategy to solve the conflict set. The processor selected to 
fire a production broadcasts all changes in the bus. A proc- 
essor only selects a new candidate to fire when the match- 
ing in the Rete network is complete. The bus controller 
waits until all processors report a new candidate to fire. 
This mechanism reproduces the global synchronization and 
conflict set generation/resolution present in many of the 
previously proposed architectures. In order to have a fair 
comparison, we considered that the synchronized archi- 
tecture uses an associative memory to store and solve the 
local conflict sets, and that the bus controller chooses the 
"winner" in one time step. 

Since the synchronized architecture also uses associative 
memory to store and search the local conflict sets, the com- 
parisons of Figs. 5 and 6 do not reflect the advantages of 
using such memories in our architecture. We delay this 
analysis until Section 6.2. 

Fig.5 shows the speedup curves for the benchmarks 
life, hotel, patents, and waltz2. In this and the next 
section, we will observe a significant difference in perform- 
ance and memory requirements between this group of 
benchmarks and the ones based on CTSP (south, south2, 
moun, and moun2). This is due to a gap in complexity be- 
tween the two groups of benchmarks: The CTSP programs 
have higher data locality, larger number of productions, 
and larger data sets. Due to these characteristics, CTSP 
programs reflect more closely the characteristics encoun- 
tered in production system applications in industry. The 
curve names starting with "s" indicate measures in the 
synchronized architecture; the curve names starting with 
"a" indicate measures in the architecture proposed in this 
paper. All speedups are measured against a single proces- 
sor synchronized architecture. For the benchmarks pre- 
sented in Fig. 5, there is not much distinction between the 
two architectures when they have a single processor. This 
indicates that the parallelism between the matching phase 
and the selecting/execution phase does not result in much 
speed improvement for these benchmarks. Yet, even with 
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n of the global synchronization provides sig- 

0 
# of Processors 

nt measures comparing “a” curves repre- 
ng the new architecture that eliminates oversynchronization with 

the “s” curves of an idealized synchronous architecture that solves 
conflict set in one time step Both systems use associative memories. 

Fig. 6 shows the comparative performance for the CTSP 
benchmarks. Here, significant speedup is observed over the 
synchronized architecture even for the single processor 
configuration. This measures the amount of speed that is 
gained due to the parallelism between matching and se- 
lecting/firing. The apparent superlinear speedup in the 
curves of Fig. 6 reflects the fact that these curves are show- 
ing the combined speedup due to two different factors: 
intra and interprocessor parallelism. To obtain the speedup 
due exclusively to parallel production firing, the reader 
should divide the values in the ”a” curves by the values in 
the same curve for a single processor machine. These re- 
sults confirm our initial conjecture that the elimination of 
the global synchronization in a production system allows 
the construction of machines with significant speedup. 

40 

asouth --- 

._ ._  - - - - 

# of Processors 

Fig. 6. Speed improvement measures comparing “a” curves repre- 
senting the new architecture that eliminates oversynchronization with 
the ”s” curves of an idealized synchronous architecture that solves 
conflict set in one time step. Both systems use associ 

Another way to compare the two architectures is to 
measure how much speedup the proposed architecture has 
over the synchronized one with the same n 
essors. Measurements were made for ma 
through twenty processors. Table 4 show 
the variance for the speedups obtained wi 
ration. It also shows the maximum and mi 
obtained with any number of 

generating a global conflict set, 
production execution might caus 
synchronized architecture (see the minimum spe 
patents). The gap in performance bet 
the other benchmarks in Table 4 indicat 
architecture is very effective on extracting parallelism of PS 
programs that possess data locality. 

cessors. Because our ar- 
cture implements ”eager” production firing without 

re cases, some extra 
be slower than the 

TABLE 4 

USING THE SAME NUMBER OF PROCESSORS 
SPEEDUP OVER SYNCHRONIZED 

fdectiveness of Associative Memories 
n associative memory or content addressable m ” y  (CAM) is 

a storage device that retrieves data upon receiving a partial 
specification of its contents. We adopt Wade’s terminology 
and call a traditional memory accessed by addresses a refer- 
ence addressable memory (RAM) [44]. CAMs are most benefi- 
cial for systems in which storage devices are often searched 
for a cell with a given pattern. The most well known appli- 
cations of the CAM mechanism are the tag matching in a 
cache memory and the data checking in a snooping cache 
or directory. When a CAM receives a request for a piece of 
data, it searches all positions of the memory and reports the 
contents of the records that match the specified pattern. 
Obvious advantages of a CAM over a RA 
bility of parallel matching when enough hardware is avail- 
able to implement it, the liberation of the processor during 
memory searches, and reduced traffic between processor 
and memory [421. 

In Section 3, we stated th 
is based on the premise tha 
improves the processing speed. In this section we address 
suestions that come to the mind of an inau 
architect when analyzing the architecture 
machine configuration in which all me 
are CAM: What would be the impact of replacing one of 
these CAMs for a RAM? Second, consider a machine in 
which all memories are RAM: How much speedup would 
be gained if one of these memory components were to be 
replaced for a CAM? 

we implemented options in the simulator that allow us to 
specify whether each one of the individual memory com- 

To evaluate the speedup obtained by t 
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ponents-AFIM, FIM, and PMM-is a CAM or a RAM. If a 
component is specified as a RAM, the simulator counts the 
number of accesses performed until the searched data item 
is found. This number is multiplied by the RAM access 
time to find the time for that particular access. If a compo- 
nent is specified as a CAM, every access takes the same 
amount of time. 

The effectiveness of a CAM in the architecture depends 
on the amount of data stored in the memory, the frequency 
of access, and whether its accesses are in the critical path of 
execution. Thus, the amount of speedup obtained by a 
given combination of CAM/RAM memories depends on 
the production system program that the machine is exe- 
cuting. For a production system program that maintains a 
large number of productions in the conflict set, the use of 
CAM for AFIM and FIM might result in a considerable 
speed improvement. If the conflict set is small, the use of 
CAM for these memories only improves the speed slightly. 

To set up experiments to measure these speedups, we 
defined two quantities: Speedup(M, B )  and Slowdown(M, B) .  
Speedup(M, B )  is the amount of speedup that results when 
the memory component M is replaced for a CAM in a ma- 
chine that was originally formed only by RAMs. M desig- 
nates one of the memory components-PMM, AFIM, or 
FIM-and B is a benchmark program. While Speedup(M, B )  
in this section measures the amount of speed gained because 
of the use of CAMs, the speedup measured in Section 6.1 
was relating the asynchronous firing of production with a 
machine that fires productions synchronously but also uses 
CAMs. Because the base machine to compute the speedup 
in this section and in Section 6.1 are different, these two set 
of measurements are not to be compared. Equation (4) 
shows how the speedup of PMM is measured. 

Time( PMM, , FIM, , ATIM, , B )  
Tzme(PMMc, FIM, , AFIM, , B )  ' 

Speedup(PMM, B )  = . (4) 

where M ,  indicates that the memory component M is RAM 
and Mc indicates that the memory component M is CAM. 
Time(PMM, F I M ,  AFIM,  B )  is the amount of time taken to 
execute the benchmark B with the architecture configura- 
tion specified. 

Considering a machine that uses only CAMs, Slow- 
down(M, B )  measures the reduction in speed that would 
occur if the memory component M were to be replaced for 
a RAM. Equation (5) shows the measurement of the slow- 
down that results from the transformation of PMM from a 
CAM to a RAM. 

Time(PMM, , FIM, , AFIM, , B )  
Time( PMMc, FIMc, AFIMc, B )  ' 

Slowdown(PMM, B )  = (5) 

For a given benchmark program the amount of speedup 
obtained by using CAM memories varies with the number 
of processors used in the architecture. Table 5 presents the 
average speedup for machines with one up to twenty proc- 
essors. In practical designs, CAMs might be slower than 
RAMs: either because they are constructed with older tech- 
nology, or because they need to use more silicon area for 
the comparator circuits. To account for these factors we 
introduce a technology factor T that indicate how much 
slower a basic operation such as the reading or writing of a 

single data element was considered in this comparison. 
Table 5 shows measures for a machine with CAMs with the 
same speed as the RAMS (T = 1) and for a machine with 
CAMS that are four times slower (T = 4) thdn the RAMs. 
Observe that there is no significant difference in speedup 
between the two measures, indicating the advantage of the 
use of CAMs, even if they are slower than RAMs. 

Tablc 5 shows the speedup and the slowdown due to 
each piece of associative memory for each one of the 
benchmarks presented in Sectlon 5.1. The last column 
shows the speedup that compares a configuration with all 
three memories associative against one in which all three 
memories are RAM. Table 5 shows that replacement of just 
one memory for a CAM results in quite low speedup. Thia 
limited speedup is result of the slow operation of the RAMs 
in the machine. Only when all three memories are made 
CAMs, the processing speed shows considerable improve- 
ment. The numbers in the slowdown columns show that 
the use of RAM in PMM or AFIM alone might cause sig- 
nificant reduction in speed. Both experiments show that the 
use of CAM for FIM is not very important. Overall, these 
results confirm our initial conjecture that the use of CAMs 
can provide considerable speedup in production system 
architectures. 

6.3 Associative Memory Size 
The next question that the inquisitive computer architect 
must ask is: How large do these associative memories need 
to be? The simulator has an option to report the "crest" of 
each memory component in any given run. Table 6 shows 
the maximum and the average crest over machines with up 
to twenty processors. The average crest is the average of the 
largest memory needed for each machine configuration. 
The maximum crest indicates the minimum memory size 
needed to run that specific benchmark. Observe that for 
some memory/benchmark the average crest is several 
times smaller than the maximum crest (see AFIM in moun2 
and PMM in wal t z 2 ) .  If memory size becomes a concern in 
the construction of the machine, a RAM can be used to 
contain overflow. The absence of a direct correlation be- 
tween the size of the memory crest and the speedup and 
slowdown shown in Table 5 reflects the fact that the proc- 
essing speed is not solely dependent on the amount of data 
stored in each memory: It also depends on the frequency 
and time of access of these memories. 

The speed comparison with the synchronized architecture 
presented in Section 6.1 considered that both architectures 
used associative memory to store and search the conflict set. 
The average and the maximum crests of the associative 
memories for the synchronized architecture are presented in 
the rightmost columns of Table 6. Observe that for most of 
the significant benchmarks, the synchronized architecture 
needs a much larger memory. For the CSTPs benchmarks 
(moun2 and south2) the maximum crest in the synchronized 
architecture was 10 times larger than in the architecture pro- 
posed in this paper. This evidences that the "eager firing'' 
mechanism also reduces the demand for memory. 

5 

5. The crest of a memory component is the maxlmum amount of data 
stored in that memory component in any processor of the machine for a 
given benchmark and a specified number of processors. 
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TABLE 6 
MAXIMUM AND AVERAGE “CREST” FOR MEMORY SIZE (BYTES) 

6.4 Use of Bus 
oncern dbout any bus-based parallel archi- 
mitation of a bus as a broadcasting network. 

In sections 2 and 3 we conjectured that bus bandwidth is 
not a limitation in the architecture proposed. Table 7 pres- 
ents the measurements for the percentage of time that the 
bus is busy for machines with four, eight, and 16 proces- 
sors, assuming that bus bandwidth is the same as that of 
local memory. These measures include the arbitration time 
and the token broadcasting time Observe that technologi- 
cal limitations would have to render the bus much slower 
than the memories before the bus speed becomes a concern 
in this architecture. 

TABLE 7 
PERCENTAGE OF TIME THAT THE BUS IS BUSY 

7 LUDING REMARKS 
We proposed a new architecture fo duction systems that 
eliminates global synchronization the generation of a 
global conflict set. The increased importance of associative 
search for maintaining fireable instantiation tables in this 
setting is underscored by the big performance gains obtained 
by using modest amounts of associative memory. Note that a 
single physical CAM can be logically partit 

n average of 20 values, obtamed 
through 20 processors 

FIM, and AFIM, and the ”cre 
expected to occur in the sam r and at the same 
time. Thus, only a few lulobytes of associative memory is 
sufficient for most of the benchmarks considered 

A number of issues remain for future research in th 
area. With the improved speed in production selection and 
firing due to the CAMS, the matching in the Rete network is 
again a bottleneck. We have developed an analytical model 
to investigate the utilization of multipl 
the Rete network of each processor. 
cate that a small number of functional U 

cant improvement in the Rete network 
now study the system-level effect of 
for the architecture proposed in this paper. 

Acharya and Tambe have showed the usefulness of 
handling collections of WMEs instead of single WMEs 
during the match phase [l]. The manipulation of collections 
in the architecture presented in this paper would further 
reduce the amount of traffic in the bus. However, more 
theoretical studies are necessary before collection oriented 
production systems are built. For exa 
self-disabling productions in collection 
needs to be studied with care. 

This research assum he use of serializa 
rectness criterion. Our erience with PS benchmarks in- 
dicates that programmers often rely on knowledge about 
conflict set resolution strategies when writing PS programs. 
This is mostly evidenced by the omission of important an- 
tecedents in producti that are enabled but never se- 
lected to fire by a spec 
writing a serializable correct PS was fairly 
Now that our study has indicated that seri 
offer great speed improvements, it 

ming aid tools to help in th 
f a  wider range of serializa 

fication and veri- 
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