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Abstract Combining or integrating the outputs of several pattern classifiers has led to improved perform- 
ance in a multitude of applications. This paper provides an analytical framework to quantify the improve- 
ments in classification results due to combining. We show that combining networks linearly in output space 
reduces the variance of the actual decision region boundaries around the optimum boundary. This result is 
valid under the assumption that the a posteriori probability distributions for each class are locally monotonic 
around the Bayes optimum boundary. In the absence of classifier bias, the error is shown to be proportional 
to the boundary variance, resulting in a simple expression for error rate improvements. In the presence of 
bias, the error reduction, expressed in terms of a bias reduction factor, is shown to be less than or equal to the 
reduction obtained in the absence of bias. The analysis presented here facilitates the understanding of the 
relationships among error rates, classifier boundary distributions and combining in output space. 

Combining Decision boundary Neural networks 
Hybrid networks Variance reduction. 

Pattern classification 

1. I N T R O D U C T I O N  

Training a parametric classifier involves the use of 
a training set of data with known classification to 
estimate or "learn" the parameters of the chosen 
model. A test set, consisting of patterns previously 
unseen by the classifier, is then used to determine the 
classification performance. This ability to meaning- 
fully respond to novel patterns, or generalize, is an 
important  aspect of a classifier system and in essence, 
the true gauge of performanceJ L2) Given infinite train- 
ing data, consistent classifiers approximate the 
Bayesian decision boundaries to arbitrary precision, 
therefore providing similar generalizations, ca) How- 
ever, often only a limited port ion of the pattern space is 
available or observable. (*'5) Given a finite and noisy 
data set, different classifiers typically provide different 
generalizations (or different decision boundaries)/6) 
For  example, when classification is performed using 
a multilayered, feed-forward artificial neural network, 
different weight initialization or different architectures 
(number of hidden units, hidden layers, node activa- 
tion functions, etc.) result in differences in perform- 
ance. It is therefore necessary to train a multi tude of 
networks when approaching a classification problem 
to ensure that a good model /parameter  set is found. 
However,  selecting such a classifier i.s not necessarily 
the ideal choice, since potentially valuable information 
may be wasted by discarding the results of less-success- 
ful classifiers/v) 

t Author to whom correspondence should be addressed. 

In order to avoid the potential loss of information 
through selecting only one classifier, the outputs of all 
the available classifiers can be pooled before a decision 
is made. This approach is particularly useful for diffi- 
cult problems, such as those that involve a large 
amount  of noise, limited number of training data  or 
unusually high dimensional patterns. The overall 
architeccture of a combiner is shown in Fig. 1. The 
output  of an individual classifier using a single feature 
set is given by f ind Multiple classifiers, possibly 
trained on different feature sets, provide the combined 
output  fcomb. 

There are several methods of combining that have 
proved effective in improving the classifier perform- 
ance. Simple averaging of the outputs of individual 
classifiers has been suggested by different researchers 
as an alternative to selecting the best network. ~s-l°) 
Methods that select the class with the highest activa- 
tion value, use the geometric mean or entropy based 
criteria, or perform a majority vote have been ana- 
lysed.f11-13) Methods based on confidence factors ob- 
tained through the theory evidence have also been 
studied/14/ Weighted averaging has been proposed, 
along with different methods of computing the proper  
classifier weights. Is'9) A survey of leading combining 
techniques, along with experimental results is given in 
references (11, 12). 

Combining techniques such as majority voting can 
generally be applied to any type of classifier, while 
others rely on specific outputs, or specific interpreta- 
tions of the output. For  example, the confidence fac- 
tors method relies on the interpretation of the outputs 
as the belief that the patterns belong to a given 
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Fig. 1. Combining strategy. The solid lines leading to f~d represent the decision of a specific classifier, while 
the dashed lines lead to f~omb, the output of the combiner. 

classJ 1°'1s) Averaging, on the other hand, uses the 
result that the outputs of parametric classifiers that are 
trained to minimize a cross-entropy or mean square 
error (MSE) function, given "one-of-n" desired out- 
puts, approximate the a posteriori probability densities 
of each class./16) In particular, the MSE is shown to be 
equivalent to: 

MSE =/~1 + Y~ S D~(x)(p(C~lx)-L(x/) 2 dx, 
i x 

where K 1 and D~(x) depend on the class distribution 
only, f~(x) is the output  of the node representing class 
i given an output  x, p(C~lx) denotes the posterior 
probabili ty and the summation is over all classes. 
Thus, minimizing the (expected) MSE corresponds to 
a weighted least squares fit of the network outputs to 
the posterior probabilities. (16.17) 

For regression (or function approximation) prob- 
lems, recent work analysing the effect of linear combin- 
ing is available. (~8'~9) However, despite the increasing 
body of experimental results showing classification 
improvements due to combining, there has been no 
analytical study that can quantify the achievable gains. 
In this paper we analytically study the effect of combin- 
ing in output  space with a focus on the relationship 
between decision boundary  distributions and error 
rates. Our  objective is to provide an analysis encap- 
sulating the most commonly used combining strategy, 
namely, averaging in output  space. The analysis fo- 
cuses on boundary  distribution and how the par- 
ameters of that distribution influence the error rates. 
Ultimately, our goal is to both quantify and predict the 
error reductions due to combining. 

2. CLASS BOUNDARY ANALYSIS IN ABSENCE OF BIAS 

As mentioned above, the outputs of certain classi- 
fiers are expected to approximate the corresponding 
a posteriori class probabilities if they are reasonably 
well trained. Thus, the decision boundaries obtained 
by such classifiers are expected to be close to Bayesian 
decision boundaries. Moreover, these boundaries will 
occur in regions where the number  of training samples 
belonging to the two most locally dominant  classes are 
comparable. 

We wi l l  focus our analysis to network performance 
around the decision boundaries. Consider the bound-  
ary between class i and j. First, let us express the output  
response of the ith unit ofa  one-of-n classifier network 
to a given input  x as:t  

f i (x)  = Pi(X) + ei(x ), (1) 

where p~(x) is the a posteriori probability distribution 
of the ith class given input x, and e~(x) is the error 
associated with the ith output.:~ The following analysis 
is for scalar x, for simplicity. However, the analysis can 
be readily extended for multi-dimensional inputs. 

For  the Bayes opt imum decision, a vector x is 
assigned to class i if pi(x ) > pk(x), Vk ~ i, so the Bayes 
optimal boundary  is the loci of all points x* :p~(x*)= 
pj(x*) for a two-class problem. Since our classifier 

~'If two or more classifiers need to be distinguished, 
a superscript is added to fi(x) and ei(x ) to indicate the 
classifier number. 

:~ Here, pi(x) is used for simplicity to denote p(Cilx ). 
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Fig. 2. Error regions associated with approximating the a posteriori probabilities. 

provides fi( ')  instead of Pi('), the decision boundary 
obtained, x b, may vary from the ideal boundary (see 
Fig. 2). Let b denote the amount  by which the bound- 
ary of the classifier differs from the ideal boundary 
(b = x b - x*). We have: 

f i ( x *  + b) = f j ( x*  + b), 

by definition of the boundary. This implies: 

pi(x* + b) + ei(Xb) = p j (x*  + b) + ej(Xb). (2) 

Now, let us assume that the posteriors are locally 
monotonic  functions around the decision boundaries. 
This hypothesis is well founded since typically the 
boundaries are located in transition regions where the 
posteriors are not  in a local extrema. Then a linear 
approximation of Pk(X) around x* provides: 

pk(x* + b) ~- Pk(X*) + bp'k(X*) Vk ,  

where p~,(') denotes the derivative of Pk(')" With this 
substitution, equation (2) becomes: 

Pi(X*) + bp'i(x*) + ei(x b) = p j (x*)  + bp'j(x*) + ej(Xb). 
(3) 

Now, since p~(x*) = pj(x*) ,  we obtain: 

b(p' i(x* ) - p'~(x*)) = ei(xb) - ej(xb). 

Finally we obtain: 

b - ei(xb) --  ~:J(Xb), (4) 
S 

where: 
S = p) (x*)  --  p'i(X*). (5) 

Equation (4) can be used to obtain the distribution of 
b. Let the error ei(xb) be broken into a bias and a zero- 
mean noise term (ei(Xb) = fl~ + th(Xb)). For  the time being, 

the bias is assumed to be zero (i.e. fig = 0 Vk), and the 
error is entirely due to noise. The case with non-zero bias 
will be discussed in the next section. Let the noise tlk(X ) be 
independent Vk and have Gaussian distributions with 

2 variance.? Then, b is a Gaussian zero-mean and an~ 
random variable with zero-mean and variance a2 where: 

2 +0-2j 
0-~/i 

0-2 __ $ 2  

Figure 2 shows the a pos ter ior i  probabilities ob- 
tained by a non-ideal classifier, and the added error 
region associated with it. The lightly shaded area 
provides the Bayesian error region. The darkly shaded 
area is the added error region associated with selecting 
a decision boundary that is offset by b, since patterns 
corresponding to the darkly shaded region are erro- 
neously assigned to class i by the classifier, al though 
ideally they should be assigned to class j. 

Let us now divert our attention to the effects of 
combining multiple classifiers. In what follows, the 
combiner denoted by ave performs an arithmetic aver- 
age in output  space. If N classifiers are available, by 
using the ave combiner, we obtain an approximation 
to pi(x) given by: 

1 N 
f~Ve(x)  = -~ m~= l f '~(X) ,  

which can be written as: 

f~Ve(x) = pi(x)  + rh(x), 

t Each output of each network does approximate a smooth 
function, and therefore the noise for two nearby patterns on 
the same class [-i.e. qk(x) and tlk(X + Ax)] is correlated. The 
independence assumption applies to inter-class noise [-i.e. 
th(x) and qs(x)], not intra-class noise. 
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where: 

1 N 

~,(x) = ~ ~__1 ~7'(x). 

If the errors of different classifiers are independent, the 
variance of 0~ is given by: 

2 1 N 

The boundary x a~° then has an offset b "~e, where: 

f~W(x* + b ave) = f ~ ( x *  + bave), 

and the variance a~vo can be computed in a manner  
similar to a 2, resulting in: 

2 2 

O'gave = $2 

In particular, if a~? = a2~, Vm, l, we obtain: 

z 1 2 
ao, = ~ a. , .  (6) 

which leads to: 

o r  

2 + 2  

a~a,o - N s  z , 

a~"~ = 2ao. (7) 
N 

This reduction in variance can be readily translated 
into a reduction in error rates, since a narrower bound- 
ary distribution means the likelihood that a boundary 
will be near the ideal one is increased. In fact, using the 
evidence of more than one classifier reduces the vari- 
ance of the class boundary from the ideal one, ther6by 
providing a "tighter" error-prone area. In order to 
establish the exact improvements in the classification 
rate, the expected added error region will be computed,  
and the relationship between classifier boundary vari- 
ance and error rates will be explored further in Section 
4.1. 

3. CLASS B O U N D A R Y  ANALYSIS  I N  T H E  P R E S E N C E  

O F  BIAS 

In general, the estimate of the posterior probabilities 
obtained by a network will be biased, i.e. fig ¢ 0. AS 
discussed in the previous section, the error is expressed 
as the sum of bias and noise, resulting in: 

L ( x )  = p~(x) + fl~ + ~(x) .  

Here, fl~ is the bias introduced by the classifier? and 
rh(X ) is the zero-mean noise term of Section 2. 

t The bias is expected to be different for distinct classes: If 
the bias term is a simple additive constant, independent of the 
class (that is fli = flj), then in the difference f i ( x ) - - f i ( x )  the 
biases cancel out, reducing the decision boundary to the one 
of the previous section. 

Proceeding in a manner similar to that of Section 2, 
one readily obtains: 

b th(xb) -- t/j(Xb) + r ,  (8) 
S 

where s is as in equation (5) and: 

S 

Again taking the noise to be independent between 
classes and Gaussian with zero-mean and variance az,, 
we conclude that b is a Gaussian random variable with 
mean fi and variance a~, which is given by equation (6). 

Combining multiple classifiers through ave provides: 

f~w(x) = Pi(x) + fii + rh(X), 

where 
- 1 N 

m = l  

and 
1 N 

O,(x) : ~ ~--1 C(x). 

The variance of 0i(x) is given in Section 2. The bound- 
ary x ~*e has an offset b ave given by: 

b~Ve = fh(X) - Oj(x) + ft. 
S 

The distribution of b aw can be obtained from those of 
O~(x) and @j(x), and yields a Gaussian distribution with 
mean fl and variance ~r~avo. 

The effect of combining is less clear in this case, since 
the average bias (fl) is not  necessarily less than each of 
the individual biases. The effect of the bias on the error 
regions will be studied in detail in Section 4.2. How- 
ever, from an inspection of the distribution of b av~ 
certain observations can be made. If the bias is ex- 
tremely small and the error is mainly due to the 
variance, combining can be an effective tool. If, how- 
ever, errors are mainly due to high bias, this type of 
combining becomes effective only if the biases are not  
highly correlated. 

These limiting cases for the error (mostly bias or 
mostly variance) also show a new approach to tackling 
the well known bias/variance problem/3) By keeping 
the bias very small for each classifier, achieved by using 
larger networks than necessary, combining reduces the 
errors, mainly due to variance, significantly. These results 
highlight the basic strengths of combining, which not 
only provides improved error rates, but is also a method 
of controlling the bias and variance components of the 
error separately. The selection of network size and train- 
ing regime can then directly reflect this result. 

4. A D D E D  ERROR R E G I O N  ANALYSIS  

4.1. A d d e d  errors  in the  a b s e n c e  o f  b ias  

In the previous section, we showed that combining is 
an effective way of reducing the variance of the deci- 
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sion boundaries. The question of how this result trans- 
lates into improved classification results is discussed in 
this section. 

The added error region associated with a classifier, 
denoted by A(b), is given by: 

x * + b  

A(b)= ~ (pj(x)-p,(x))dx, 
x* 

which is the darkly shaded region in Fig. 2. Based on 
this area, the expected added error, E,aa, is given by: 

Eada= ~ A(b)fb(b)db, (9) 
- oc 

where fb is the density function for b, as discussed in 
Section 2. The expected error becomes: 

x* + b  

E,a a = ~ ~ (pi(x)-- pi(x))fb(b) dx db. 
-- co x* 

Now, recall that the boundary is located in the 
region where the posteriors are locally monotonic. 
This allows the linear approximation discussed in 
Section 2, making the region A(b) triangular in shape 
(see Fig. 3). The accuracy of this approximation de- 
pends on the proximity of the boundary to the ideal 
boundary. However, since the boundary density de- 
creases exponentially with increasing distance from 
the ideal boundary, we can expect the triangular region 
to reasonably represent the added error area for most 
likely (i.e. small) values of b. The base, h(b), of the 
triangular region is simply bp)(x*) - bp'i(x*). Thus, we 
obtain: 

A(b) = ½b(bp)(x*) - bp;(x*)) 

= ½b2s, (10) 

where s is given by equation (5). Furthermore, due to 
the symmetry of the problem, the integration of equa- 

tion (9) can be performed only for b > 0, and multiplied 
by two. 

By using the value given by equation (10) for A(b), 
and performing the integration for b _> 0, the expected 
error becomes: 

( ~  s 1 ~2 
Eada=2 f - b 2 ~ e - ~ d b ~ ,  (11) 

o 2 x/2na2 J 

leading to: 

S ~ b2 
E~dd = ~ 0 b2e - ~  db. 

Integrating by parts we obtain: 

s G / [-  b~ ]~o ~[ e-~dbb~ ) E ~ a d = ~ i ] - b e  7 |  + 
~/2rc \ k  Jo ; 

O 

/ 

The first term gives a value of 0 at both limits, and the 

second term gives (~/2). The expected error then 
yields: 

s~rg 
E a d  d = ~ - - .  (12) 

The importance of equation (12) is that it provides 
a direct relationship between the expected added error 
region and the variance of b, the amount by which the 
selected boundary differs from the ideal boundary. 
Any reduction in the variance of b is directly translated 
into a reduction in expected error rates. Let the error 
region associated with classifier ave be denoted by E ~  

sGG s~ G~ 
El5,} (13) 

2 2N N 

Equation (13) quantifies the improvements due to 
combining N classifiers. Under the assumptions of 
Section 2, combining in output space reduces added 
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Fig. 3. Linear added error region analysis. 
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error regions by a factor of N. Of course, the total 
error, which is the sum of Bayes error and the added 
error, will be reduced by a smaller amount, since 
Bayesian error will be non-zero for problems with 
overlapping classes. 

The value provided by equation (12) will generally 
tend to be a conservative bound on the added error. 
The total height h(b) is bounded by 1, since it is the 
difference of two a posteriori probability distributions. 
A more accurate method for computing A(b) is to use 
the following height equations: 

{blS if O < b < ~  h(b) = 
otherwise. 

Using this height in computing the added error area 
leads equation (9) to: 

E'oad = 2 ~ A(b)fb(b ) d b +  A(b)fb(b )db , 
0 lis 

which leads to: 

1/s bes ~ 
_ 2 ~ - - e - ~ 4  db 

E'ae ~ o 2 

+ 1 I s = . . .  - 7 ) ] e - ~ d b )  ' 

or 
1is 

s ! b2e_~d  b 

2(X1  1)i 
+ \ k s /  s /  _ 

e ~4 db 
x/2rr¢2 *is 

2 7 ~ - -  b e  ~ d b .  ( 1 4 )  
+ ~ l/~ 

Equation (14) provides a more accurate added error 
term than equation (12). However, due to its consider- 
able complexity, it is generally not preferable to com- 
pute the added error in this form. If equation (14) needs 
to be explicitly computed, the following procedure can 
be followed: the first term can be computed using 
integration by parts, the second term can be expressed 
in terms of Gaussian distribution functions (F(')), 
and the third term can be integrated. However, 
it is important to note that in a majority of cases, 
equation (12) will be sufficient. Only when the bound- 
ary provided by classifier m falls in the region where the 
a posteriori probabilities are at their limiting values is 
a more accurate expression needed. A classifier that 
repeatedly puts.the boundary in such a region is of 
little use in general. Therefore, it is reasonable to 
expect that most classifiers will provide boundaries 
that fall in the region where the linear approximation is 
adequate. 

4.2. Added errors in the presence of  bias 

In this section we compute the expected error in the 
presence of a bias ft. The actual error area as computed 

in the previous section is not affected by the bias. 
However, the distribution of b is affected and the 
expected value takes a different form. Equation (9) 
leads to: 

E ,aa(fl) = ~b  ~ e - 2 4  db, (15) 

which is similar to equation (11), but for the shift in the 
center of the distribution of b. A change of variable is 
needed to enable us to compute this expression. Let 
y = b - fi (y has the same variance as b, but has zero 
mean). With this change of variable we obtain: 

~o 

E,ad(fl) 2 ~ -  (Y+fi)2e-~dY'  

which leads to: 
S 

y2e-i4 dy 

Sfl2 7 2 
- -  e - ~  dy 

+ 2  2 ~  -~  

sfi 7 '~ + ~ _ ~  ye :;~dy. 

Simplifying each component in terms of first and 
second moments provides: 

S 2 S 2 
Eo~(/~) = ~EFy ] + ~/~ + ~/~E[y] 

o r :  

Eadd(fl ) = 2({72 _{_ f12). (16)  

Equation (16) reduces to equation (12) if the bias is set 
to zero. 

The effect of combining is not as obvious as it 
previously was. Let us study the error associated with 

ave -- .  

ave -- S 2 G~(/D = ~ ( ~  + (/7) ~) 

which is: 

ave -- S f O  "2 j~2~  E.ad(fl)=~t~+~), (17) 

where i f=  fi/z and z > 1. Now let us limit the study to 

the case where z _< ~ .  Then:+ 

E ~ ( f i )  < 
2 \ z 2 / 

leading to: 

ave -- ~2  E~d~(t~)--< Eo~(/D.. (18) 

Equation (18) quantifies the error reduction in the 
presence of network bias. The improvements are more 

Ifz > ~ ,  then the reduction of the variance becomes the t 
limiting factor and the reductions established in the previous 
section hold. 
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modest than those of the previous section, since both 
the bias and the variance of the noise need to be 
reduced. The actual reduction is given by min(z 2, N), 
demonstrating that the smaller reduction is the limit- 
ing factor. This result underlines why methods aimed 
at reducing only the variance or only the bias generally 
do not lead to significant improvements in overall 
classification performance. 

5. DISCUSSION 

Combining classifiers in output space has led to 
improved performance in many applications. ~12'13'2°) 
This paper concentrates on explaining the reasons for 
expecting such improvements and to quantify the 
gains achieved. Under the assumption that the a pos- 
teriori probability distributions for each class are 
locally monotonic functions about the decision 
boundaries, we showed that combining networks in 
output space reduces the variance in boundary loca- 
tions. Furthermore, the error regions are directly com- 
puted and given in terms of the boundary distribution 
parameters. In the absence of network bias, the reduc- 
tion in the error is directly proportional to the reduc- 
tion in the variance. Moreover, if the network errors 
are zero-mean i.i.d. Gaussian, then the reduction in 
variance boundary location is by a factor of N, the 
number of classifiers that are combined. In the pres- 
ence of network bias, the reductions are less than or 
equal to N, depending on the correlation among the 
network biases. 

Although our analysis focused on only two classes, it 
is readily applicable to a multi-class problem. Since the 
largest network output determines class membership, 
only a handful of classes are likely at any given point in 
input space. Therefore, even in a multi-class problem, 
one only needs to consider the two classes with the 
highest activation values in a given localized region. 

The distribution of the boundary is shown to be 
Gaussian through its relationship with the noise terms. 
If the noise proves to have a distribution other than 
Gaussian, the analysis can be modified to accommo- 
date the new distribution. The expected error given in 
equation (9) is in general form, and any density func- 
tion can be used from there on to reflect changes in the 
distribution function. For problems with higher di- 
mensionality, the analysis becomes significantly more 
complicated, but retains the same conceptual struc- 
ture. The added error area of Fig. 3 becomes a volume 
for two-dimensional signals and in general is an 
(n + 1)-dimensional hypervolume for n-dimensional 
problems. In the most general case we have: 

E(m) = ~ ~ h(xl ,  x 2 . . . . .  x , ) d x l d x 2 . . ,  dX, fB(B ) dB. 
~ "  A 

where h(.) delineates a multi-dimensional difference 
between a posteriori probabilities defined over an n- 
dimensional region A, and f s (B)  is the multi-dimen- 
sional density function of the n-dimensional boundary 
B defined over ~". 

Another important feature of combining that arose 
from this study relates to the classic bias/variance 
dilemma. Combining provides a method for decoup- 
ling the two components of the error to a degree, 
allowing a reduction in the overall error. Bias in the 
individual networks can be reduced by using larger 
networks than required and the increased variance due 
to the larger networks can be reduced during the 
combining stage. Studying the effects of this coupling 
between different errors and distinguishing situations 
that lead to the highest error reduction rates are the 
driving motivations behind this work. That goal is 
attained by clarifying the relationship between output 
space combining and classification performance. The 
analysis presented here provides an understanding of 
the interactions between the error rates and classifier 
boundary distributions, and ultimately between error 
rates and output space combining. 

Several practical issues that relate to this analysis 
can now be addressed. First, let us note that since in 
general each individual network will have some 
amount of bias, the actual improvements will be less 
radical than those obtained in Section 4.1. It is there- 
fore important to determine how the biases of individ- 
ual networks can be kept uncorrelated (or have only 
minimal correlation). One method is to use networks 
with architectures based on different principles. For 
example, using multi-layered perceptrons and radial 
basis function networks provides both global and local 
information processing, ensuring that the biases are 
not highly correlated. Another method is to train 
similar networks on different features extracted from 
the same underlying data. Although the same network 
type is used, the biases will be less correlated, since they 
are a function of the training data as well as the 
network. Experimental results obtained by us on an 
oceanic data set with four distinct classes support the 
above conclusions/21) 

One final note that needs to be considered is the 
behavior of combiners for a large number of classifiers 
(N). Clearly, the errors cannot be arbitrarily reduced 
by increasing N indefinitely. This observation how- 
ever, does smt contradict the results presented in this 
analysis. For large N, the assumption that the errors 
were i.i.d, breaks down, reducing the improvements 
due to each extra classifier. The number of classifiers 
that yield the best results depends on a number of 
factors, including the number of feature sets extracted 
from the data, their dimensionality, and the selection 
of the network architectures. 

The focus of this paper is on combining in output 
space through averaging. Although the simplicity of 
averaging provides a pleasing framework, it is not 
the only method that yields encouraging results. As 
mentioned previously, there are many other possibili- 
ties in combining networks that require closer investi- 
gation. The use of order statistics, for example, promises 
to provide improvements that can be analytically 
studied, and we are currently pursuing that line of 
research. 
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