
Ž .Pattern Recognition Letters 18 1997 1385–1390

Knowledge reuse in multiple classifier systems 1

Kurt Dewitt Bollacker ), Joydeep Ghosh
Department of Electrical and Computer Engineering, UniÕersity of Texas, Austin, TX 78712, USA

Abstract

We introduce a framework for the reuse of knowledge from previously trained classifiers to improve performance in a
current and possibly related classification task. The approach used is flexible in the type and relevance of reused classifiers
and is also scalable. Experiments on public domain data sets demonstrate the usefulness of this approach when one is faced
with very few training examples or very noisy training data. q 1997 Published by Elsevier Science B.V.
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1. Introduction

Artificial classifiers depend heavily on the set of
training samples to make classification decisions. If
the training set insufficiently represents the ‘‘es-
sence’’ of a classification task, then creation of a
well generalizing classifier for that task may not be
possible. In the construction of artificial classifiers,
the inclusion of previously learned knowledge em-
bodied in existing classifiers is a potential approach
to the problem of inadequate training data. However,
both a suitable representation of the knowledge to be
reused, and a mechanism for identification of perti-
nent knowledge and its incorporation using that rep-
resentation must be designed. We use attributes of
human knowledge reuse as a guide to this design.

One of the most impressive traits of human
knowledge reuse is the ability to draw simultane-
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ously from a large number of previous experiences
quickly and easily. Each bit of learned knowledge
may not help much, but as a whole, the knowledge
gained from experience can paint a very clear picture
of the problem domain. Analogously, a practical
artificial knowledge reuse system should be able to
have good performance scalability with the amount
of knowledge reused. Human flexibility in knowl-
edge reuse is also quite notable. Humans can use
knowledge learned from a variety of types of experi-
ences without considering how that knowledge was
gained. Also, humans are capable of quickly and
efficiently picking out learned knowledge that is
relevant to the current classification task from their
immense body of experience. A flexible knowledge
reuse system should be able to take advantage of a
diversity of knowledge sources for reuse and have a
means to judge the relevance of such knowledge.

1.1. PreÕious work

The most common approach to obtaining a decent
generalization given inadequate training sets is to
severely constrain the solution space using prior
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domain knowledge. For example, in Bayesian ap-
proaches to classification, such knowledge exists in
the form of prior distributions assumed for the model
parameters and the choice of prior class probabilities.
In the machine learning community, the design choice
is called ‘‘inductive bias’’ of the classifier. For
example, in a decision tree, the bias is indicated by

Žthe size of the tree and the variables or combina-
.tions thereof considered for making the branches. In

feed-forward neural networks, the type and number
of hidden units, amount and form of regularization
Ž .e.g. weight decay serve to constrain the solution. In
all of these approaches, knowledge reuse is indirect.
More importantly, they work well only if the induc-
tive bias is a good match to the current problem.
This is often difficult to attain in practice.

Some recent work in knowledge reuse has fo-
cused on the automated extraction and reuse of
knowledge from the data sets of other relevant clas-
sifiers, including reuse of the trained classifiers
themselves. Under the belief that related classifica-
tion tasks may benefit from common internal fea-

Ž .tures, Caruana 1995 has created a multilayer per-
Ž .ceptron MLP based multiple classifier system that

is trained simultaneously to perform several related
classification tasks. The first layer of the MLP is
common to all tasks and the second layer is specific
to individual tasks. The first layer is expected to
learn common features that are useful to all of the

Ž .related tasks. Baxter 1994 has developed a rigorous
analysis of a similar type of architecture, showing
that as the number of simultaneously trained tasks
increases, the number of examples needed per task

Ž .for good generalization decreases. Pratt 1994 has
explored a similar knowledge reuse method in which
some of the trained weights from one MLP network
are used to initialize weights in an MLP to be trained
for a later, related task. A different approach is taken

Ž .by Thrun and O’Sullivan 1996 , who proposed a
method to estimate classifier relevance by measuring
how much better a classifier performs with a reused
scaling vector for nearest neighbor classifiers. Tasks
with mutually helpful scaling vectors can be ‘‘clus-
tered’’ into related groups.

Recently, popular approaches such as committees,
ensembles, and mixture of experts also use multiple
classifiers. However, since all these classifiers try to

Žsolve the same task though they may specialize in

.different input regions , they are not germane to the
work presented here.

2. Methods

We describe here an architecture for knowledge
reuse from previously trained classifiers. Classifiers
trained for the current classification task are called
target classifiers while classifiers previously trained
to perform other classification tasks are termed sup-
port classifiers as indicated in Fig. 1. Our reuse
strategy is to apply the input values of each of the
training samples available for the target task to all
available releÕant classifiers. The output class labels
of the target and support classifiers are observed by a
second stage supra-classifier which makes the ulti-

Ž Ž . .mate classification c P in Fig. 1 . Since no inter-˜A

nal information is being used, the support classifiers
can be of any type.

2.1. A few definitions

Let the target classification task be A, and let A
have a discrete range SS and d-dimensional inputA

d � 4 ddomain space RR . Let x, y : xgRR , ygSS beA A

the set of training examples for task A. We assume
� 4that x, y is sampled from the true distribution forA

Ž .task A with associated random variable X ,Y gA A
Ž d .RR , SS . Our goal is to find the most likely valueA

<Ž .of the conditional marginal Y X sx and defineA A
Ž .this maximum likelihood function to be t x sA

Ž < . Ž . Ž .argmax P Y sy X sx . Thus, t P : t P gSSy A A A A A

Fig. 1. A supra-classifier reuse architecture.
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is the target function that we would like to approxi-
� 4 Ž .mate using the information in x, y . Let c P be aA A

function mapping RRd ¨SS which is designed toA

perform classification task A. Let BB be a set of
support classification tasks which have the same

d � Ž .4input domain space RR as task A. Let c P :B

BgBB be the corresponding set of classifiers where
d ˆŽ .each c P maps RR ¨SS : BgBB. Let X be theB B A

random variable associated with the input values of
� 4 Ž .training sample set x, y . Let T : T s t X beˆA A A A A

defined as the random variable associated with the
ˆ Ž .target function of X . Similarly, let C : C sc X ˆA A A A A
Ž .and C : C sc X be the random variables re-ˆB B B A

ˆsulting from the application of X to classifiersA
Ž . Ž .c P and c P , respectively.A B

) Ž .An ideal supra-classifier c x will alwaysA

choose the most likely class ygSS given the classA
Ž . � Ž .4labels c x and c x : BgBB. More specifically,A B

� 4for any given k : k gSS , k : k gSS : BgBBA A A B B B

we can define the maximum probability function
Ž . Ž � 4 . Žm P as m k , k : bgBB, A, BB sargmax P TA B y A

< � 4 .sy C sk , C sk : BgBB . We can then de-A A B B

fine an ideal classifier based on this maximum prob-
ability function as

c) x sm c x , c x :BgBB, A , BB , 1� 4Ž . Ž . Ž . Ž .Ž .A A B

) Ž . )where c P has an associated random variable C :A A
) ) ˆŽ .C sc X . In practice, if the number of supportA A A

Ž .classifiers is quite large, Eq. 1 becomes impractical
Ž .due to the curse of dimensionality Friedman, 1994 .

Therefore, we introduce two approximating ap-
Ž .proaches to Eq. 1 in Section 2.3.

2.2. Classifier releÕance measure

A measure of relevance of each support classifier
to the target classification task would be helpful in
the construction of a supra-classifier. We have cho-

Ž . Žsen to use mutual information I P;P a measure of
the amount of shared information between two ran-

.dom variables with the target distribution as a clas-
sifier’s relevance to that classification task. If
Ž . Ž .I T ;C ) I T ;C , then we say that c ‘‘knows’’A B A B B1 2 1

Ž . Ž .more about t P than does c P . We have empiri-A B2

cally demonstrated that mutual information can be
used effectively as a relevance measure in our

Žknowledge reuse framework Bollacker and Ghosh,
.1997 .

2.3. Practical supra-classifier methods

The problem of designing a practical supra-clas-
sifier can be thought of as designing a classifier for a
task with a large number of discrete features, many
or most of which may only be barely useful. We
introduce two supra-classifier approaches that are
designed to scale linearly in their computational
requirements with the number of reused support
classifiers in order to satisfy our design goal of
scalability.

2.3.1. Cascaded maximum posterior probabilities
� Ž .4Let us relabel the support classifiers c P :B
� Ž .4BgBB in an ordered fashion in the form c P :Bi

< < Ž .is0 . . . BB y1 and then revisit Eq. 1 considering
Ž . Ž .only c P and the first support classifier c P toA B0

1Ž . 1Ž . Ž Ž . Ž . .compute c x : c x sm c x ,c x ,a, B . Weˆ ˆA A A B 00

then progressively update our approximation of Eq.
Ž .1 by adding each of the remaining support classi-

nq1Ž .fiers in BB one at a time using the form c x sˆA
Ž nŽ . Ž . . Ž Ž . 0Ž .m c x ,c x ,a, B . We define c P sc P forˆ ˆA B n A An

.consistency. As n increases, classification perfor-
mance on the training example set is strictly non-de-

Ž .creasing a simple proof omitted for brevity . In a
variation to CMAP, we order the cascade of support
classifiers by decreasing relevance as a heuristic
based on the belief that it would be beneficial to
have the most relevant classifiers be earlier in the
cascade.

2.3.2. Hamming nearest neighbor
Ž .If d P is the indicator function, then the distance

measure between two samples x and xtrn tst
Ž .can be calculated as D x , x sHam m ing trn tst

Ž Ž . Ž ..S d c x /c x . For each testB : is0 . . . < BB <y1 B trn B tsti i i

Ž .example, the Hamming Nearest Neighbor HNN
supra-classifier will choose the class label of the
training example with the smallest Hamming dis-
tance from it. In a weighted variation of this supra-

Ž .classifier method WHNN , the distance contribution
Ž .of each support classifier 0 or 1 to the total Ham-

Žming distance is multiplied by its relevance mutual
.information .

3. Experiments

If there are too few training examples, or if the
examples are too noisy, then good generalization



( )K.D. Bollacker, J. GhoshrPattern Recognition Letters 18 1997 1385–13901388

may not be possible with the information from the
target problem’s training examples alone. It is these
two cases that we have investigated. In order to test
and compare the supra-classifier methods with un-
aided target classifiers, we took two public domain
data sets from the U.C Irvine Machine Learning
database and partitioned the examples into two dis-
joint and unequal sized subsets based on their class
labels. The subset with fewer classes became the
target task. The other subset was used to create
several two-class problems using all combinations of
two classes. First, a 20 000 example capital English

Ž .letter data set LR donated by David Slate was
divided into the target data set consisting of the five
classes ‘‘H’’, ‘‘L’’, ‘‘O’’, ‘‘R’’ and ‘‘S’’ and 210
support classifiers consisting of two-class classifiers
of the other 21 classes. Second, a spoken vowel data

Ž .set VOW contributed by Peter Turney consisted of
990 examples evenly distributed among 11 spoken
vowels. The two classes ‘‘hud’’ and ‘‘hed’’ were
chosen to form the target classifier task and exam-
ples from the remaining 9 classes were used to
construct 36 support classifiers.

3.1. Case of few examples

The LR data set of 20 000 training examples was
randomly partitioned into equal sized ‘‘base’’ train-
ing and test sets. Both target and support classifier
training and test sets were created by taking only
examples of the target or support classes respectively
from the base training and test sets. The target
training set was used to create MLP, single nearest

Ž .neighbor 1-NN , and C4.5 target classifiers for each
target problem. The 210 LR support classifiers were
trained MLPs. In order to consider the case of few
available target training examples, only a fraction of
the available training examples was actually used for
training of the target classifier and supra-classifiers.
Target training sets of sizes 5, 20, 40, 80, 160, 320
and 480 examples were applied to the MLP and
1-NN target classifiers and all of the support classi-
fiers. The outputs of these target and support classi-
fiers were then used as the input vector for each of
the supra-classifiers. Average results over 20 trials
can be seen in Fig. 2. The WHNN followed by the
unweighted HNN supra-classifiers showed better
classification performance than the unaided MLP,

Fig. 2. Classification performance of supra-classifiers and unaided
classifiers versus number of training examples on the LR data set.

1-NN and C4.5 classifiers, especially when the num-
ber of training examples was very low. The sorted
CMAP supra-classifier performed identically to the
unaided 1-NN and the unsorted CMAP performed
worse. This gives evidence that the information pro-
vided by the support classifiers can compensate
somewhat for a lack of sufficient training set size.

3.2. Noisy examples

A similar experimental setup to the above was
made but for the VOW data set in the case of noisy
examples. For the target classification problems,
Gaussian noise was added to each input vector of the

Žtarget training set. The noise covariance matrix was
2 .s I. An MLP target classifier and 36 1-NN support

classifiers were used in 100 experimental trials per-
Ž 2 .formed over a range s s 0 to 16 of noise

variances. Average results for the vowel problem are
shown in Fig. 3. The performance boost from knowl-
edge reuse in the HNN is quite prominent, but as

Fig. 3. Classification performance of supra-classifiers and unaided
classifiers versus Gaussian noise variance on the vowel data set.
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expected, the advantage disappears as the noise level
is lowered.

4. Conclusions

In both the case of high noise and of few training
examples, knowledge reuse from relevant classifiers
via an appropriate supra-classifier improved perfor-
mance while adhering to the flexibility and scalabil-
ity design constraints. This happened even though
the previously trained support classifiers had no
output classes in common with the target classifier.
Thus, we have evidence that the knowledge reuse
framework presented here can be a practical means
for the reuse of knowledge from classifiers that are
diverse in form and purpose. We also used a mutual
information based relevance measure to guide the
construction of some of the supra-classifier methods.
This had mixed results for both the CMAP and HNN
supra-classifiers, indicating that a relevance measure
may help if used carefully.

Although we have shown some encouraging em-
pirical results, there are several directions in which
this work can be extended. One of the most impor-
tant extensions to this work will be application to a
truly complex problem domain. We envision the
eventual construction of a powerful and broadly
applicable ‘‘warehouse’’ of previously constructed
reusable classifiers for a large domain of interest
Ž .e.g. image databases , where the set of support
classifiers will serve as an efficient representation of
the problem domain knowledge.

Discussion

Rhagavan: I was wondering what the relationship is
between the classifier that you’re trying to design
and the classifiers that you use as support?

Bollacker: I am simply using the probabilities, trying
to see if there is some correlation. In the letter
recognition dataset you have for instance the two
classes H and O. You might expect that a classifier
for N and Q might be used as a support classifier.
You might expect that the support classifier for N
and Q would be able to say something useful about
differentiating H and O, since the features for that
dataset were statistics on the shapes of the letters and
since N is similar to H and Q is similar in shape to

O. So, you would hope that there would be some
useful information that you could derive from that N,
Q classifier.

Van Dyck: I want to point out an analogy between
what you did and the infotree method which I pre-
sented. There we considered the pixel as the most
primitive classifier. We combined pixels using mu-
tual entropy, to get a higher level classifier. This is
repeated in a kind of tree fashion until the final
classifier gives the whole pattern.

Bollacker: When I first started looking at this, I
thought of something like that. The first domain I
considered was images. But I decided that there was
too much overhead building a set of classifiers for an
image domain. So we used these simpler datasets. In
the long term, towards building a ‘‘warehouse’’ of
classifiers, you would start to build classifiers that
say very simple things about the image domain.
Then using those, you might be able to build classi-
fiers that say slightly more complex things, and so
on, in some sort of hierarchy like you presented. But
that seems to be a much longer-term project than
what we have done so far.

Loew: When you showed the curves of performance,
it would have been helpful if we would have been
able to see some error bars on those points, so we
could have a feel for whether the differences be-
tween them were significant or not. But perhaps
more importantly, I am wondering about your near-
est neighbour classifier, which seems to be almost
the best or second in the two cases. I wonder whether,
if you had gone to some K-nearest neighbour classi-
fier, if the performance would have come very close.
Do you have any feel for that?

Bollacker: About the error bars: the reason that I did
not put these on is that the graphs are already
relatively cluttered. So I just made sure that I per-
formed a large enough number of trials to make sure
that the error bars would be small. Regarding the
other question: are you talking about a single nearest
neighbour supra-classifier?

Loew: No, I think at the lower level.

Bollacker: You are talking about the unaided single
nearest neighbour classifier. Actually, I gave these
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unaided classifiers the benefit of the doubt. And it
turned out in all the data sets that I used, that for all
K-nearest neighbour classifiers, the single nearest
neighbour classifier worked better than those with
larger K.

Loew: Do you have any feel for why that was so?

Bollacker: Well, in fact that was not true in all the
data sets that I used, but it was true for these two. So
I just decided that I would choose the best one and
use that for comparison.

Roli: I would like to have a clarification. Is it correct
to say that the concept of knowledge reuse can be
regarded as a problem of identifying in a library of
classification algorithms, the most independent ones,
that is the algorithms that make uncorrelated errors?
Because, of course, classifiers that make uncorre-
lated errors are the classifiers most promising to be
combined. In your opinion, is this true?

Bollacker: We haven’t done an analysis to look at
error correlation. And certainly what you are sug-

gesting might result in a better relevance measure.
So that is certainly something to look at. It could be
added to the list of future things to do.
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