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Abstract—This paper introduces a general structure that is ca-
pable of approximating input–output maps of nonlinear discrete-
time systems. The structure is comprised of two stages, a dy-
namical stage followed by a memoryless nonlinear stage. A
theorem is presented which gives a simple necessary and sufficient
condition for a large set of structures of this form to be capable
of modeling a wide class of nonlinear discrete-time systems. In
particular, we introduce the concept of a “complete memory.”
A structure with a complete memory dynamical stage and a
sufficiently powerful memoryless stage is shown to be capable
of approximating arbitrarily well a wide class of continuous,
causal, time-invariant, approximately-finite-memory mappings
between discrete-time signal spaces. Furthermore we show that
any bounded-input bounded-output, time-invariant, causal mem-
ory structure has such an approximation capability if and only
if it is a complete memory. Several examples of linear and
nonlinear complete memories are presented. The proposed com-
plete memory structure provides a template for designing a wide
variety of artificial neural networks for nonlinear spatiotemporal
processing.

Index Terms—Approximation theory, discrete-time systems,
functional analysis, modeling, multidimensional systems, neural
networks, nonlinear systems, universal approximators.

I. INTRODUCTION

A LARGE volume of theoretical work has been performed
regarding the properties and capabilities ofmemoryless

approximators. Many feedforward networks have been shown
to be universal approximators of static maps in the sense
of being able to approximate arbitrarily well any continuous
real-valued function on a bounded subset of [1]–[3].
Other specific functional forms, for example those based on
Bernstein polynomials [4] which can be used to produce
a constructive proof of the Weierstrass theorem [5], or on
the Kolmogorov formulation [6], [7] have also been studied.
Powerful convergence rate results for sigmoidal networks have
been obtained [8]. All these results pertain tostatic maps,
where the value of the desired output at any particular point
is determined solely by the current input at that point. This
is in contrast withdynamicsystems where the desired output
also depends on the past history and hence some notion of
memory must be invoked.

Until recently, most of the work in approximating dynamic
systems has been empirical in nature [9]–[12]. A notable
exception is a series of studies, starting from the work of Mc-
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Culloch and Pitts [13], showing that certain recurrent networks
could simulate various finite state machines or push-down
automata. For example, both fully recurrent networks and
NARX models areat least as powerful as Turing machines,
and in this sense serve as universal computation devices
[14], [15]. Turing computable discrete-time systems form an
important class. However, they are restricted in that both the
inputs and outputs are formed from (discrete) symbols taken
from a finite alphabet.

In this paper we are concerned with approximating in-
put–output maps of nonlinear discrete-time systems in which
both inputs and outputs can be continuous valued.In this
context certain two-stage structures have recently been shown
to be capable of approximating arbitrarily well a wide class of
continuous, causal, time-invariant approximately finite mem-
ory mappings between discrete-time signals [16]–[18].1 These
networks consist of a temporal encoding stage followed by a
nonlinear memoryless stage. The memoryless stage consists
of a neural network that is a universal approximator of static
maps, such as a multilayer perceptron (MLP) [1], radial basis
function network [2], or ridge polynomial network [3]. A
general block diagram of such a two-stage structure is shown
in Fig. 1.

Two-stage networks are interesting models for dynamic
systems because they are typically much easier to train than
recurrent networks, and are less sensitive to initial conditions.
Also, recurrent networks are susceptible to the long-term
dependency problem when a gradient descent based training
algorithm is used [21], though we note that certain recent
results somewhat alleviate this problem [22], [23]. The ap-
proximation results on two-stage networks are important,
because when attempting to model an unknown system, often
only a general knowledge of the system’s characteristics
(causal, time-invariant, etc.) is available. Based upon these
characteristics, one must choose a structure that is capable
of modeling the system. General approximation results such
as [16]–[18], and the results in this paper are necessary to
determine which structures have this capability. Until now,
the specific structures for which this approximation ability
have been established have contained linear temporal encoding
stages. The main theorem in [16] does not restrict itself to
linear temporal encoding stages, but the examples of specific
structures to which this theorem has been applied are linear.

In this paper we determine necessary and sufficient prop-
erties of the temporal encoding stage (See Fig. 1) needed
for such approximation capabilities. The resulting structures

1See [19] and [20] for other results concerning the approximation of
functionals.
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Fig. 1. Diagram of a generic two-stage structure for modeling discrete-time systems.

include examples of networks with nonlinear temporal en-
coding stages. Nonlinear temporal encoding schemes allow a
richer variety of designs including several that are biologically
plausible [24] and/or more efficient for certain applications
[25]. In fact networks with linear temporal encoding stages are
inappropriate for some problems because of a forced tradeoff
between memory depth and memory resolution [26]. Certain
nonlinear temporal encoders can avoid this problem, and this
paper sets the framework for their design [27].

The next section summarizes the known results on proper-
ties of networks describable by Fig. 1. In Section III, we dis-
cuss structures in which the temporal encoding stage consists
of functions which are elements of what we call acomplete
memory, and we demonstrate that such structures are capable
of approximating arbitrarily well a wide class of continuous,
causal, time-invariant, approximately-finite memory discrete-
time systems. Additionally we exhibit a necessary condition
such structures must satisfy in order to have this universal
approximation capability. In Section IV we describe examples
of sets of linear and nonlinear functions which are complete
memories. One of these examples is the set ofhabituation
functions which was used to generate the empirical results
in [25]. Another example is the set of pattern search memory
units which was used to generate the results in [27]. Section V
discusses the contributions of this paper.

II. TWO-STAGE DYNAMIC NETWORKS

In order to understand the history behind the proposed
approach it is useful to examine previous work on two-stage
networks involving linear temporal encoding mechanisms. A
large of amount of theory in this area is given in [16]–[18].

These works include a proof of the universal approximation
ability for time delay neural networks (TDNN’s). TDNN’s
are simple two-stage architectures that use a tapped delay
line to encode temporal information and an MLP as a feed-
forward stage. Under the weak assumption that the input
set is uniformly bounded, it was shown that TDNN’s can
approximate arbitrarily well any continuous, causal, time-
invariant, approximately finite memory mapping from one
discrete-time sequence space to another [17]. In [16] a more
general result of this kind is obtained by utilizing the concept
of a fundamental set. Such a set is a family of mappings

associated with a given dynamic mapping
that satisfies certain properties with respect to. In [16]
it is shown that one can use such a fundamental set as a
temporal encoding mechanism in order to approximate. In
the same paper, a structure is exhibited which can approximate
arbitrarily well any which is a continuous causal time-
invariant, approximately finite memory mapping from one
discrete-time sequence space to another. It was shown that
such a can be approximated arbitrarily well by a function

of the form

(1)

Here and are functions of time, , , and are real
constants, * denotes convolution, andis a sigmoid function.
The overall approximation structure is an MLP feedforward
stage, with linear operators used as a temporal encoding
mechanism. It was proven that such ancan approximate
arbitrarily well by showing that a certain set of affine operators
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is a fundamental set for . Similar results for continuous time
systems have also been obtained [16].

Subsequently it was shown that several different specific
forms for the temporal encoding stage are sufficiently general
in order to have the same approximation power [18]. One
example of such a temporal encoding stage is similar to the
gamma memory structure first studied by de Vries and Principe
[10].

The various results mentioned above are “existence” results,
and do not prescribe the complexity of the temporal encoding
stage or feedforward network required (e.g. for TDNN’s, the
number of delays, and number of hidden units in the MLP) for
a certain degree of approximation or a method for determining
the network parameters.

In [25], a particular structure with a nonlinear temporal
encoding stage, when compared with TDNN’s, generated
less complex classifiers with improved performance on sev-
eral signal classification problems involving artificial Banzhaf
sonograms. This empirical evidence along with the expectation
that considering a more general family of structures may lead
to improved performance on some problems, motivated us to
develop structures with nonlinear temporal encoding stages.
Later other nonlinear memory structures were shown to have
theoretical advantages over linear memory structures as well
[26], and showed superior performance in several experiments
[27]. All these studies motivate this present paper which 1)
precisely characterizes the desirable properties of the temporal
encoding stage and 2) provides a guide to the design of
nonlinear memory units.

III. COMPLETE MEMORY STRUCTURE THEOREMS

Let be the set of all mappings from the set of
nonnegative integers, to the setof real numbers. (Typically
elements of are used to reference discrete-time steps.) Let

be the subset of for which implies
for all .

Similarly with any positive integer let be the set of
mappings from to , and let be the subset of
for which implies for all . The delay
operator from to is defined by

if
otherwise

with the zero element in . When dealing with operators
such as which operate on sequences, we adopt the notation

which should be read as operating on at time
. Moreover, if then denotes the element of such

that for all is equal to th component of .
Now we define what is precisely meant by the terms,causal,

time-invariant,andcontinuous. A mapping from to
is time-invariant if for each nonnegative integer and each

if
otherwise.

For each nonnegative integer, let the truncation operator
from to be defined by

if
otherwise.

Let denote the intersection of the sets and . A
mapping from to is causalif the statement

implies for all
. For a causal , the value of the sequence at

any instant is independent of the future values of.
A mapping from to is continuousif for each

positive and any there exists a positive such that
and for all implies

for all . (Here denotes the Euclidean
norm on .)

Theorems are presented below concerning the ability of a
general family of structures to approximate arbitrarily well
any continuous, causal, time-invariant mappingfrom to

. The structures can also be slightly modified in order to
approximate functions on more general input domains. To see
this, let and be any real numbers such that . Let
be the subset of for which implies
for all . Let be the element of with all its components
equal to one, and be the function from to defined by

(2)

For any function from to , there is a unique from
to such that

(3)

for all and . Clearly, if is continuous, causal, and time-
invariant so is . If a function exists that approximates
with tolerance at time in the sense that

(4)

for all then similarly approximates
so that

(5)

for all .
Approximations of functions from to can thus be

easily used to generate approximations of functions from
to . Therefore, for the sake of conciseness and simplicity
of notation we focus attention on . We show that certain
structures can approximate arbitrarily well any continuous,
causal, time-invariant function from to .

The key to the proof is to show that the memory struc-
ture realized by the temporal encoding stage is acomplete
memory. Then, provided the feedforward stage is capable of
approximating continuous functions from compact subsets of

to , the overall network will be capable of approximating
. Theorem 1 states that a two-layer neural network with an

exponential activation function and a particular structure for
processing the inputs can approximatearbitrarily well.

Before presenting the theorem we define the concept of a
complete memory.

Definition 1: Let be a set ofcontinuousmappings from
to is a complete memoryif it has the following four
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Fig. 2. Approximation structure in Theorem 1.

properties. First, there exist real numbersand such that
for all and . Second,

for any and any such that , the following
is true. If and are elements of and , then
there exists some such that .
Third, if then
for all , all and any such that .
Fourth, every is causal.

The following theorem shows the approximation ability
of a structure comprised of a complete memory dynamical
stage followed by a summation of exponential functions. This
structure is shown to be capable of approximating anywithin
any given tolerance for any (arbitrarily long) period . Later
in the paper, a corollary is given which allows a more general
form for the memoryless stage. An additional corollary shows
that for approximately finite memory, an approximation can
be developed which is accurate for all time. The details of the
structure to which Theorem 1 applies are illustrated in Fig. 2.

Theorem 1: Let be a continuous, causal, time-invariant
function from to If is a complete memory, then
given any and any positive integer there exist real
numbers and elements of , and positive integers

and such that

(6)

for all and all such that .
The proof of this theorem is given in the Appendix.

It is important to notice that the input processing functions
in Theorem 1 depend on. This means that different

hidden units in the feedforward network may have different
input values. This dependency is not necessary. One can
show that for any approximation sum of the form described
in Theorem 1, there is an equivalent network without this
dependency. Such a network is illustrated in Fig. 3.

Corollary 1: Let be an approximation sum of the form
. Then there

is an of the form

(7)

with real numbers (weights to the hidden units), a positive
integer , and elements of , such that for
all .

Proof: The key to the proof is to relabel the collection
as and use zero weights where necessary. Let

. For each value of and let
and let . Observe that each is uniquely defined
in this manner. Set similarly. For each value of and

let and let . This time
some terms will remain undefined. Set those terms to
zero. Since varies between one and , there are only
nonzero values for each pair. Those values are
the values in the definition of . By our choice of
and we have

(8)

Clearly, and the proof is complete.



STILES et al.: COMPLETE MEMORY STRUCTURES 1401

Fig. 3. Approximation structure in corollary 1. The outputs from a single set of temporal encoding functions are presented simultaneously to all the
hidden units in the feedforward stage.

Until now we have considered a very specific memoryless
stage, a summation of exponential functions. Corollary 2
allows the feedforward stage to be generalized to any structure
capable of uniformly approximating real-valued continuous
functions defined on compact (closed and bounded) subsets
of real finite-dimensional vectors. Examples of such feedfor-
ward structures include MLP’s, RBF’s, and polynomials. This
generalized structure is illustrated in Fig. 4.

Before presenting the corollary, it is necessary to explain
some of the notation to be used. Let be a set of mappings
from to for each integer and each integer

. Let denote the set of real matrix-
valued functions defined on . Let from to
be defined by

(9)

For each positive integer let be the set of all mappings
from to , and let be a subset of that satisfies
the following universal approximation condition. For any
continuous function from to , any , and any
compact , there exists such that

for all . Let be the union of sets for all
positive integers . Similarly let be the union of all sets .

For any set of functions from to for integers
and let denote the function from

to defined by

for .

Corollary 2: Let . Let be an approximation function
of the form

(10)

Given any such there exists such that

(11)

for all and all .
Proof: Let . Let be a function from to

defined by

(12)

Observe that is continuous and that .
Recall that from the first property of a complete memory, there
exist real numbers and such that for
all and . Therefore .
Since is continuous and is a compact set, there
exists such that

(13)

for all . Since

(14)

for all and . This completes the proof.
We have now shown that any feedforward stage structure

which satisfies the universal approximation condition placed
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Fig. 4. General approximation structure in Corollary 2.

upon can be used in obtaining an approximation result simi-
lar to Theorem 1. There are a number of structures which have
been shown to satisfy this universal approximation condition.
One of the most commonly used is an MLP with a single
hidden layer [1]. Additional candidates include multivariable
polynomials, lattice functions, and RBF networks [28], [2].

So far, we have considered approximations which are valid
for some finite but arbitrarily long period of time . If we
make the assumption that the functionto be approximated
has approximately finite memory, then we can show that
can be approximated arbitrarily well for all . First we
will define what is meant by approximately finite memory.

Let be the mapping from to defined by

if or
otherwise.

(15)

We say that a function from to has approximately
finite memory on if for each there exists a positive
integer such that

(16)

for all and all [16].
Corollary 3: Let . Let be a continuous, causal, time-

invariant function from to that has approximately finite
memory on . Let be a complete memory. Given these
conditions there exist positive integersand , and
elements of for all integers and ,
such that

(17)

for all and .

The proof of this corollary is given in the Appendix.
We have now shown that a two-stage network which in-

cludes a temporal encoding stage is sufficient for approximat-
ing a wide range of discrete-time systems. At this point, it is
advantageous to consider which properties of a complete mem-
ory arenecessaryto achieve an arbitrarily good approximation.
In the following two corollaries we show that the second prop-
erty of a complete memory is necessarily a property of the tem-
poral encoding stage of any two-stage network which has the
approximation power of the structure in Theorem 1 or Corol-
lary 3. A related result is can be found in Theorem 4 of [18].

Corollary 4: Let be a set of functions from to . Let
be a set of functions from to of the form

(18)

in which , and . The set must
satisfy the second property of a complete memory ifhas the
following property. For any continuous causal time-invariant
mapping from to , any , and any positive
there exists such that
for all , and .

Proof: By way of contradiction, assume thatdoes not
satisfy the second property of a complete memory. This means
that we can choose and in and and in such
that and for all

. Let be greater than. Let be positive and less than
Let the function be defined by

if
otherwise.

(19)

The function is causal because . It is also clearly
continuous and time-invariant. Letand be elements of
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such that and and are the zero function
for all . By the hypothesis of the corollary, we have

(20)

(21)

for some and such that
.

However by our choice of and
for all , and therefore for

all . Since ,
the assumption that does not satisfy the second property of a
complete memory contradicts the hypothesis of the corollary.
Therefore must satisfy the second property of a complete
memory and the proof is complete.

Now we have shown that a temporal encoding stage which
satisfies the second property of a complete memory is neces-
sary in any two-stage network with the approximation capabil-
ity of the structure in Theorem 1. Similarly we can show that
this property is necessary for any two-stage network which
has the approximation capability of the structure described in
Corollary 3.

Corollary 5: Let be a set of functions from to . Let
be a set of functions from to of the form

(22)

in which is a positive integer, , and .
The set must satisfy the second property of a complete

memory if has the following property. For any continuous
causal time-invariant approximately finite memory mapping

from to , and any positive there exists and
positive integer such that
for all and .

The proof of this corollary is in the Appendix.
To summarize, Theorem 1 shows that a particular structure

which consists of elements of a complete memory followed by
a feedforward network with exponential activation functions
is capable of approximating arbitrarily well for an arbitrarily
long period of time any continuous, causal, time-invariant
mapping from to . Corollary 1 shows that a structure
in which the same inputs are presented to each of the hidden
nodes in the feedforward network is sufficient to achieve
the approximation result. Corollary 2, establishes that the
structure of the feedforward stage required for the result can
be generalized to any set of functionsfrom real vectors to

which is a universal approximator. For example, an MLP,
RBF, lattice function, or polynomial feedforward stage would
be sufficient. In Corollary 3, we show that a mappingcan
be approximated arbitrarily well over all time if in addition to
the previous requirements it has approximately finite memory
on . The structure used to perform this approximation is
identical to the general structure discussed in Corollary 3 with
the exception that a windowing function is applied to the
inputs. Finally in Corollaries 4 and 5, we show that any two-
stage network which has the approximation capability of the
structures in Theorem 1 or Corollary 3 must have a temporal
encoding stage that satisfies the second property of a complete
memory.

IV. EXAMPLES OF COMPLETE MEMORY STRUCTURES

In this section, examples of complete memories are pre-
sented. These complete memories can be used to implement
a temporal encoding stage for the structures presented in the
previous section.

A. Linear Examples

First we will discuss linear temporal encoding stages that
are complete memories. In [18],2 the concept of a basic set is
described. A subset of is a basic set on if given any
positive integer and there is an in the set
of finite linear combinations of elements of such that

(23)

for . For a basic set let denote the set
of convolutions with each element of of the form

(24)

where .
It is clear that the elements of satisfy the third and

fourth properties of a complete memory and are continuous.
It is a specific case of Corollary 1 in [18], that a particular
two-stage network which uses any such as a temporal
encoding stage satisfies the hypothesis of Corollary 5. This
implies that such an satisfies the second property of a
complete memory. Therefore any generated by a basic set

is a complete memory if it satisfies the first property of a
complete memory that there exist real numbersand such
that for all and .

Using this relationship between basic sets and complete
memories, one can show that some commonly used linear
temporal encoding stages are in fact complete memories. Let

be the element of for which and
for all . Let for each . As a
specific case of Example 3 in [18], the set
is a basic set. One sufficient condition for which a basic set

gives rise to a complete memory is as follows. For all
, and all ,

(25)

for some real number. Clearly the generated by a basic
set which satisfies this inequality must satisfy the first
property of a complete memory, and therefore such an
must be a complete memory. Since each satisfies (25)
for is a complete memory. The two-stage network
structure which uses as a temporal encoding stage and an
MLP as a feedforward stage is the familiar time-delay neural
network. Similarly, the temporal encoding stage of a focused
gamma network [10] has been shown to be the resultant
for some basic set [18]. The set of functions in the temporal
encoding stage of a focused gamma network,, is defined

2In [18] the input spaceX is defined differently (the range of the input
values are allowed to be negative) but is still uniformly bounded. This
is a minor point because (as discussed in Section III) there is a simple
invertible transformation (scaling and adding an offset) between the input
space discussed in [18] andX as defined in this paper.
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as follows for a particular real number. For all and
.

(26)

For and . For and

(27)

(28)

Since there is a basic set, which generates , in
order to show that is a complete memory, it is sufficient to
demonstrate that for all ,
and . This fact is readily shown by mathematical
induction for all . So the gamma memory is a
complete memory for .3 For the case when ,
the gamma memory degenerates to the temporal encoding
stage of a TDNN.

B. Nonlinear Examples

We now present two examples of nonlinear temporal encod-
ing stages that are complete memories. For other such exam-
ples see [25] and [27]. The first example is a set of functions
based on the biologically observed habituation mechanism.
This mechanism has been suggested to be one method used
by biological neural systems, such as the molluskAplysia, to
encode temporal information [30], [31]. In [25], the biological
motivation behind this structure is discussed and empirical
results on the classification of spatio-temporal signals are
presented.

Theorem 2: Let . A habituation function is
defined recursively by

(29)

and

(30)

in which and are such that and
. Let be the set of all such functions. is a

complete memory.
The proof of this theorem is given in the Appendix.
The set of habituation functions is a complete memory and

therefore by Theorem 1 and Corollary 2, a structure such
as that illustrated in Fig. 4 with habituation functions ,
can approximate arbitrarily well any continuous, causal, time-
invariant, approximately finite memory mapping from to

.
Another example of a nonlinear complete memory is the set

of pattern search memory units,. The -tapped delay line
is a mapping from to defined by

if
otherwise.

3A very closely related result concerning gamma networks is given in [29].

consists of functions from to of the form

if

otherwise

for all positive positive integers positive
and such that Notation of the form

is used to mean the subset of for which the parameters
and have some given constant value. Letbe an element
of Whenever an -length pattern in the input is seen
that closely matches the template, a Gaussian response is
produced which is maximal if an exact match
is made. At each instant the current response is compared to
a decayed (with decay rate) version of a previous response.
The output is chosen to be the maximum of the two. This
output then decays over time and is compared with future
responses. In this manner,remembers an old template match
until it decays to the point where a newer match supersedes it.
The set is useful for modeling systems in which a particular
short-time pattern in the input must be remembered for a
long period of time [27]. Examples of such systems include
speech recognition and classification of marine biologics [32].
Such systems are often difficult for linear memory structures
to model [26]. It is proved in [27] that for any acceptable
constant values and is a complete memory
and therefore by Theorem 1 and Corollary 2, a structure
such as that illustrated in Fig. 4 with PSM units, , can
approximate arbitrarily well any continuous, causal, time-
invariant, approximately finite memory mapping from to
even when the parameters and are assigned arbitrarily.

V. DISCUSSION

In this paper, we described a general family of structures
based upon the concept of a complete memory. Furthermore
we have shown these structures to be quite powerful for
approximating a wide class of nonlinear discrete-time systems.
In particular, we have discussed two complete memory struc-
tures, the habituation based network and the pattern search
memory network, which have nonlinear temporal encoding
stages. Variants of the habituation based network have been
used in a number of studies to classify sets of spatio-temporal
signals, [25], [33]. The empirical results found in these studies
suggest that habituation based networks compare favorably
with TDNN’s and focused gamma networks in terms of
complexity and classification performance. Similar studies
have been performed with pattern search memory networks
which have been found to have both general theoretical
advantages over linear memory structures [26], and empirical
advantages when compared with TDNN’s and focused gamma
networks on spatiotemporal classification problems [27].

In addition to providing a proof of the approximation power
of habituation based networks and pattern search memory
networks, the complete memory concept also provides a useful
tool for proving the approximation capability of other two
stage networks. Since linear memory structures have been
shown to be inefficient models for some systems [25], there
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is sufficient motivation to study additional nonlinear memory
two-stage structures. Such studies are aided by the results in
this paper. The theorems presented here are all straightforward
and can be applied without any special knowledge of func-
tional analysis or other higher mathematics. (This is perhaps
not true for the proofs of these theorems.) Whereas such tool
theorems already exist for the case in which temporal encoding
is performed by linear functionals [18], the theorems presented
in this paper can also be used when the temporal encoding
stages considered are nonlinear. In fact, several other nonlinear
memory structures have already been found to be complete
memories, and thus have the associated approximation power.
Among these are cascaded habituation networks [25] and
ordered pattern search networks [27]. Both of these structures
have been applied to spatio-temporal classification problems
in which they compared favorably to other commonly used
approximators.

The method used in this paper to prove the approximation
capability of two-stage networks is straightforward, as it
is sufficient to show that the temporal encoding stage in
question satisfies four simple properties. The second of these
properties is necessary to yield the approximation results. The
other three properties hold for each element of the complete
memory. Obviously these three properties are not necessary.
Consider the set of functions consisting of the union of
a complete memory and an additional function which does
not satisfy the first, third, and fourth properties. Such a
when used as a temporal encoding stage would clearly produce
the desired approximation results. However, the first property
makes implementation of the resulting two-stage network on a
digital computer feasible. Without this property, intermediate
values within the network would generate overflow or under-
flow conditions. The fourth property of a complete memory,
causality, is necessary for any physical implementation to be
possible. The third property, a mild form of time-invariance,
greatly simplifies the mathematical analysis of the networks.
Additionally, since the functions which we are trying to
approximate are all time-invariant, it seems somewhat quixotic
to consider approximating them using time-varying functions.
In conclusion, the complete memory temporal encoding stage
is sufficient to achieve very powerful approximation results,
and is general enough to include most practical two-stage
structures that can perform such approximations. Therefore,
complete memory theorems can be used as a tool by other
researchers to determine the approximation power of novel
two-stage network designs.

Much further research is possible in this area. One avenue of
research is in the area of finding an approximation of a given
function to a particular tolerance. To solve specific problems,
it is not enough to state that such an approximation exists; one
must also exhibit an algorithm to find it. This problem is dif-
ficult and has not even been solved in the general case for the
commonly usedmemorylessstructures (i.e., MLP, RBF, etc).
In the event that it proves intractable, further research in useful
heuristics for finding such approximations is also worthwhile.
Such heuristics (gradient descent, etc.) have been commonly
used previously in both static and dynamic structures [34].
Gradient descent, however, has been found to be problematic

for dynamic systems with long term dependencies [21]. For
two-stage networks in particular the coupling of the training
of the feedforward and temporal encoding stages can lead to
problems [25]. A heuristic that separates the training of the
memoryless and memory stages has been used effectively for
training pattern search networks in [27]. Finally, the difficult
problem of analyzing the interaction between the complexity
of the feedforward stage versus the temporal encoding stage
for specific applications could also be investigated.

APPENDIX

Proof of Theorem 1:In order to prove the theorem we
first prove the following Lemma.

Lemma 1: Let be a positive integer. Then under the
assumptions of Theorem 1 there exist positive integersand

real numbers and , and elements of such that

(31)

for all .
Proof: We first define the set of mappings . For

each positive integer let be the mapping from
to defined by

if
otherwise.

(32)

Further we also define a set of mappings from to
. For each integer is defined by

(33)

Observe that if the the components of are given by

then

This observation is important later in the proof. Letbe a
mapping from to defined by

(34)

Observe that is a continuous function on a compact metric
space. (It is continuous becauseis continuous.) Similarly,
we define to be the set of all functions from to

of the form for each .
Each is continuous because the corresponding
is continuous.

Let be the set of all functions from to of
the form

(35)
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with and . Since is a
continuous real-valued function on a compact metric space and
the elements of are continuous, by the Stone–Weierstrass
Theorem [5] we have the following. If is an algebra,
separates the points of , and does not vanish on

, then there exists an such that
for all . We now show that has the three
required properties. First, clearly does not vanish because

is nonzero for any real value . Second, it can be
readily shown that if and are elements of then the
pointwise product , and for
any . Therefore is an algebra. All that remains to
complete the requirements of the Stone–Weierstrass Theorem
is that separates the points of . Let and be
elements of such that separates the points
of if for any such and , there exists some
such that . The fact that is not equal to implies
that there exists some integersand such that
and . Therefore by the second
property of a complete memory, there exists some such
that .
Therefore by the definition of there exists a such
that . Since the exponential function is
strictly monotonic, . Since
the function belongs to separates
the points of . By the Stone–Weierstrass Theorem,
there exist real numbers and , natural numbers and

, and elements of such that

(36)

for all . We now make a couple of final obser-
vations to complete the proof. First recall that

and
. Finally observe that because of the causality ofand

, for each there is an such
that and

. This
completes the proof of the lemma.

From Lemma 1 and the fact that for all
positive values of

(37)

for all and for all . Due to the time invariance
of
for . By the third property of a complete memory,

for . From these two observations it is apparent that for

all such that and for all

(38)

Now, let , and observe that the proof of the
theorem is complete.

Proof of Corollary 3: Let . By the assumption that
has approximately finite memory on , choose an integer
such that

(39)

for all and . Let . By Theorem 1,
we choose a of a certain form so that

for all and . Using Corollary 1 we
choose an of the form

(40)

so that . By Corollary 2, choose , an element of ,
such that

(41)

By the triangle inequality,
for all and . Since

(42)

for the same values of and . Let be an arbitrary integer
greater than . Let . Let be the
advance operator defined by

(43)

Observe that by the definitions of and and by
our choice of

(44)

By the third property of a complete memory

(45)

Similarly, by the time-invariance property of

(46)
Since , by a special case of (42)

(47)
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Substituting (45) and (46) into this inequality yields

(48)

Since is arbitrary and greater than , (42) is true not
only for , but for all . By the triangle inequality
and (39), we have

(49)

for all and . This completes the proof.
Proof of Corollary 5: As in the proof of Corollary 4, we

give a proof by contradiction: Assuming thatdoes not satisfy
the second property of a complete memory, by Corollary 4
we know there must exist a continuous, time-invariant, causal
function from to , positive , and such that
for each

(50)

for some positive integer and some .
Let be an approximately finite memory function defined

by

(51)

Clearly is also continuous, causal, and time-invariant. For
the case in which , for all .
Therefore for , and

. By (50), for each
and all there exists some positive integer and
some such that .
So, for the hypothesis of the corollary to be true, there must
be some and some such that

(52)

for all and all and any . Let be the
zero element of . Let be the element of such that

and for . By the definition
of . However,
since for all

. Because implies is a function,

(53)

for all . Therefore application of the triangle inequality
leads to a contradiction of (52). So, the assumption thatdoes
not have the second property of a complete memory leads to a
contradiction with the hypothesis of the corollary. Therefore,

must have the second property of a complete memory and
the proof is complete.

Proof of Theorem 2:In order to show that the set of all
habituation functions is a complete memory, it is necessary to
show that it meets the four required properties. (The elements
of are clearly continuous.) First we will establish the
first property, that there exists real numbersand such
that for all and

. It is sufficient to show that .
This is proven as follows by using mathematical induction
and recalling the range of values and can take. Since

. Because and are
elements of . All that remains to be
shown is that implies .
Because of the range of and values

(54)

and

(55)

Since

(56)

So satisfies the first property of a complete memory.
Next we show that satisfies the second property: for any

and any such that the following is true.
If and and , then there exists
such that .

We first prove the following lemma.
Lemma 2: If is a habituation function with habitua-

tion parameters and as defined in Theorem 2, an equivalent
definition for is the following:

(57)

This is readily proven using mathematical induction.
Let and be elements of such that for

some . This implies that there exists a natural number
with the following three properties. First, . Second,
there exists a such that . Third
implies . The number represents the latest time
prior to at which and differ. Now we use to define a
value . If is defined by

(58)

If , then . Observe because .
Using Lemma 2 and some algebraic manipulation we derive
the following:

(59)
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Since we have restricted and to have positive values
such that we can make an important observation
that

(60)

for all and .
Consider the special case in which . In this case

(61)

Since and therefore
. Now consider the case in which . From (59)

and (60), we derive a lower bound on
in terms of and

(62)

Because and the following set
of inequalities hold.

Let . Let

(63)

(64)

(65)

(66)

Since and are positive values, it is sufficient to show
that the quantity can be made arbitrarily close to zero
by selecting appropriate values forand . The upper bound
on the range of is given by the inequality . For
any such that the following is an acceptable
value for :

(67)

Since can take values arbitrarily close to zero, we can
complete the proof of the second property by demonstrating
that we can choose appropriate valuesand so that
Let . For any we can choose and

(68)

If we plug in our assigned values for and we get

(69)

Taking the limit as approaches zero we get

(70)

Since choosing any arbitrarily smallyields values of and
in the proper range, there must be acceptable values ofand

for which . Thus satisfies the second property
of a complete memory.

Next we show that the third property holds. If then
for all , all

and any such that . By using mathematical
induction it can be readily shown that
for all . Using this fact, it is then easy to show that by
the recursive definition of habituation given in Theorem 2 the
third property is satisfied. Once again we use mathematical
induction: Because and

and since
for all , it follows directly that

the assumption, implies
for any .

Therefore satisfies the third property of a complete memory.
The fourth requirement for to be a complete memory is that
the elements of are causal. Causality is readily apparent
from the definition of given in Theorem 2. Thus, is a
complete memory and the proof of Theorem 2 is complete.
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