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A modular and flexible approach to adaptive Kalman 
filtering has recently been introduced using the framework 
of a mixture-of-experts regulated by a gating network. Each 
expert is a Kalman filter modeled with a different realization 
of the unknown system parameters. The unknown or uncertain 
parameters can include elements of the state transition matrix, 
observation mapping matrix, process noise covariance matrix, 
and measurement noise covariance matrix. The gating network 
performs on-line adaptation of the weights given to individual 
filters based on performance. The mixture-of-experts approach 
is extended here to a hierarchical architecture which involves 
multiple levels of gating. The proposed architecture provides 
a multilevel hypothesis testing capability. The utility of the 
hierarchical architecture is illustrated via the problem of 
interplanetary navigation (Mars Pathfinder) using simulated 
radiometric data. I t  serves as a useful tool for assisting 
navigation teams in the process of selecting the parameters of 
the navigational filter aver various operating regimes. It is shown 
that the scheme has the capability of detecting changes in the 
system parameters and switching filters appropriately for optimal 
performance. Furtherniore, the expectation-maximization (EM) 
algorithm is shown to be applicable in the proposed framework. 
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For a Kalman filter to operate in an optimal 
fashion, all filter parameters should be known exactly 
[ 1, 21. Incorrect selection of these parameters will 
result in large estimation errors or divergence [3, 41. 
This has motivated the design of a bank of Kalman 
filters with each filter using different parameters. An 
example is the classic Magill filter bank wherein the 
most suitable filter is selected through a sequential 
maximum a posteriori estimation procedure [5]. 
We have recently shown that the mixture-of-experts 
framework provides a more flexible and powerful 
alternative to traditional filter bank approaches [6]. 
The proposed solution was motivated by modular 
networks [7-91 whose general structure is shown 
in Fig. 1. In the suggested scheme, each module or 
expert is a particular Kalman filter realization. That 
is, each Kalman filter is modeled with a different 
realization of the unknown or uncertain parameter 
vector. Typically, the parameter vector contains the 
elements of the process noise and the measurement 
noise covariance matrices. The parameter vector can 
also contain various unknown or uncertain elements 
of the state transition and measurement mapping 
matrices. A gating network is used to regulate the 
Kalman filter bank by adaptively assigning weights 
to the individual filters based on their performance. 
It has been shown that the modular architecture 
regulated by a gating network has the ability to 
1) select the best filter realization as measurements 
are processed, 2) rapidly change selection in case 
of a change in the operating regime, 3) adapt 
individual filters to better match incoming data, and 
4) avoid numerical instabilities (usually encountered 
with Magill’s scheme, for example). A complete 
description of the suggested approach, mathematical 
derivations, adaptation of the parameter vectors, and a 
number of illustrative examples can be found in [6]. 

In this work, the adaptive Kalman filtering 
architecture in [6] is extended to a hierarchical 
structure which involves multiple levels of gating 
[8, 101. The proposed hierarchy has the ability to 
detect parameter changes and allows the examination 
of parameter changes on an individual basis and 
in combination with other parameters. Also, the 
expectation-maximization (EM) algorithm [ 1 1, 121 
is shown to be applicable to the proposed hierarchy 
of adaptive Kalman filter banks, provided off-line 
solutions (i.e., batch) are acceptable. 

The mixture-of-experts hierarchical architecture 
provides a structured approach to conducting the 
necessary numerical experiments and to clarify the 
outcomes. The workings and power of the hierarchical 
adaptive Kalman filtering architecture are illustrated 
using the interplanetary orbit determination problem 
[ 131. The available measurements are simulated 
radiometric (Doppler) generated by Deep Space 
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Fig. 1. General architeci 

Network stations. The spacecraft trajectory is modeled 
after the Mars Pathfinder mission [14]. The results for 
this problem show that the proposed hierarchy can 
be used to 1) identify individual parameter changes 
by using an on-line algorithm, such as gradient 
ascent, 2) divide the data set into statistically coherent 
subsets, and 3 )  find an “optimal” set of weights 
utilizing the EM algorithm. It can be envisioned that 
the proposed approach might be used by navigation 
teams seeking to determine the various unknown 
or uncertain parameters of the navigational filter. 
Generally, these parameters are selected using ad-hoc 
filter tuning methods. 

II. KALMAN FILTER 

The general system model considered is 
represented by 

(1) 
x k + l  = @kxk 4- wk 

z k  = H k x k  f v k  

where x is the n-dimensional state vector, @k is 
the state transition matrix, z k  is the m-dimensional 
measurement vector, and Hk is the observation 
mapping matrix. The wk and v k  vectors are assumed 
to be zero-mean, white sequences with known 
covariance matrices. The covariance matrices for the 
w k  and vk vectors are given by 

E [ w k w r ]  = Q k 6 k i  and E [ V k V T ]  = 

where the Kronecker delta 6,; = 0 for k # i and 6,; = 1 
for k = i. We also assume that the two noises are 
uncorrelated as 

E [ w k V T ]  = 0, i , k .  

The estimate of the state can be obtained sequentially 
with the Kalman filter. The filter equations, depicted 
in Fig. 2, are divided into an update and propagate 
parts and represent the standard recursive Kalman 
filter. The update equations are used to incorporate 
the new measurement while the propagate equations 

:ure of modular network. 

are used in between measurements. The 
the estimated state, “+” denotes after measurement 
incorporation, and “-” prior to measurement 
incorporation. The optimal Kalman filter requires an 
accurate knowledge of the process noise covariance 
matrix Q k ,  the measurement noise covariance matrix 
Rk, and the parameters of Hk and ak. The unknown 
or uncertain elements of these matrices are included 
in a parameter vector a. That is, the vector a is used 
in the remainder of this work to denote the uncertain 
filter parameters. 

denotes 

Ill. HIERARCHICAL KALMAN FILTERING 
ARCHITECTURE 

We propose an adaptive hierarchical Kalman 
filtering architecture. The suggested setup is shown 
in Fig. 3 .  It is a generalization of the framework 
proposed in [6] and follows the development in [ 8 ] .  
The architecture consists of K adaptive Kalman filter 
banks, each of which contains L Kalman filters. At 
time step t k ,  the bank processes the measurement z k  

and each filter (or expert) provides its updated state 
estimate i$,k, where j = 1,2 ,..., L and i = 1,2 ,..., K .  
The state estimate of the ith bank is a weighted sum 
of the individual filter estimates in the bank with 
the gating network providing the weights gjli. The 
overall state estimate iiopt,k is a weighted sum of the 
filter bank estimates, with the top-level gating network 
providing the weights gi.  In our design, all gating 
networks consist of a single layer of computational 
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Fig. 3. Adaptive hierarchical Kalman filter banks. 

cells or “neurons”. The activation gi of the ith output 
cell of the top-level gating network is defined using 
“softmax” [ 15, 161 : 

where 

(3) T ui = Zkai 

is the weighted sum of the inputs applied to that cell 
and ai is the weight vector of cell i, representing the 
ith bank in the hierarchical architecture. A schematic 
of the top-level gating network is shown in Fig. 4. In 
a similar fashion, we define the activation of the jth 
output neuron in the ith Kalman filter bank as 

euJI‘ 
g . .  = xS;= , eunI1 

where 
ui l i  = zfaiii 

is the weighted sum of the inputs applied to this 
particular cell in the ith Kalman filter bank and ai 
is the weight vectcrr of cell j I i, representing the jth 

(4) 

(5)  

filter in the ith bank. The use of softmax in (2) and 
(4) is motivated by the need to use a differentiable 
operator which is a generalization of a “winner takes 
all” strategy. This means that within a bank the best 
performing filter will be given a weight close to unity 
by the gating network which regulates the bank. 
Similarly, at the top-level the best performing bank 
will be given a weight close to unity by the top-level 
gating network. 

By interpreting the gs as prior probabilities 
of the corresponding gated components [17] (Le., 
probability given expert is chosen before using filter 
performance), the probability distribution of the next 
measurement, as estimated by the current hierarchical 
architecture can be written as 

K L  

i = l  j = 1  

where f ( Z k  I ajl i )  is the probability distribution 
indicated by the jth filter in the ith Kalman filter 
bank. As in [8], we let each component distribution be 
normal. The Gaussian distribution of the j I ith filter 
has mean Hkkj,k and covariance Wji,k.  In other words, 
the distribution of the measurement vector zk of the 
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Fig. 4. Top-level gating network. 

j I ith filter is given by 

Learning consists of updating the state estimates 
Si,, and the gating weights gis and gjlis every time 
a measurement zk is observed. 

Equation (6) can be viewed as a likelihood 
function, It is better to work with the natural 
logarithm of f ( z k )  rather than f ( z k )  itself. We define 
the log-likelihood function as 

K L  

i = l  j = I  

To formulate the learning algorithm, it is first 
convenient to define hi, the a posteriori probability 
associated with the ith Kalman filter bank, as 

and hjli,  the a posteriori probability associated with 
the jth Kalman filter in the ith bank, as 

To derive the update equations for the top-level gating 
network and the gating networks within the banks, 
we follow the same procedure described in [6]. Using 
ai to denote the weight vector of the ith output cell 
of the top-level gating network and ajli to denote the 
weight of the jth output cell of the gating network in 
the ith bank, we find 

and ai ai d u -  - - - -9 = hi(hjl, -g j l i ) z k .  (12) dajli duj l i  dajli 

The modifications to the weight vectors ai and ajli are 
then defined as 

d l  Aai = 7- 8 ai = v(hi - gi)zk 

Using (13) and (14), the update equations for the 
weight vectors are given by 

ai c ai + q(hi - gi)zk 

ajli + ajli + vh,(hjli - g j / i ) Z k  

(15) 

(16) 

where 7 is a learning-rate parameter. This parameter 
need not be the same for all gating networks, if 
desired. Note that the update equations are effectively 
instantaneous gradient ascent procedures which 
seek to maximize (8). In other words, the weight 
vectors ai and ajli are updated every time a new 
measurement vector z, is processed. The learning 
rules given by (15) and (16) can be used for real-time 
and post-processed data type applications. The 
weight vectors can be initialized either randomly (Le,, 
different) or with the same small values (i.e., so as not 
to overly favor any filter or bank initially). 

A hierarchical structure with a small number of 
filters per bank can be exploited to study the effect 
of one particular parameter at a time. For example, 
in a hierarchy composed of two filter banks, we can 
make one bank nominal in process noise covariance 
matrix and the other one nominal in measurement 
noise covariance matrix. That is, all Kalman filters 
in the first bank operate with the same process noise 
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while having differmt measurement noise and vice 
versa for the second bank. This allows the study of 
the effects of each parameter in isolation as well as 
in combination with other parameters. The proposed 
hierarchy provides a multilevel hypothesis testing 
capability. 

Other well-known multiple model estimation 
approaches are the Magill filter bank [5] and the 
interacting multiple model (IMM) algorithm [ 18-23]. 
IMM provides an improvement over Magill’s 
scheme. The IMM algorithm assumes that 1) the 
unknown parametex’ vector takes a finite number 
of values, 2) accordling to a known transition 
probability matrix, and 3) requires a filter for the 
unknown parameter vector. Also, IMM is more 
computationally deinanding than Magill’s scheme but 
is numerically stable. Unlike the Magill scheme, the 
mixture-of-experts Framework does not assume that 
the optimal filter is included in the bank. Moreover, it 
does not require the assumptions of IMM mentioned 
above, and is computationally faster but needs a 
tuning of the learniing-rate parameter. 

IV. APPLYING EM TO HIERARCHICAL KALMAN 
FI LTERl NG ARCHITECTURE 

The EM algorithm [ 1 1, 121 is an iterative 
maximum-likelihood estimation technique, where 
each iteration consists of 1) an estimation (E) step 
and 2) a maximization (M) step. The batch iterative 
nature of EM makes the algorithm suitable only for 
post-processed data type applications. 

The use of EM in the hierarchical filtering 
structure follows the approach and nomenclature 
of [8] where EM was used in a hierarchical 
mixture-of-experts setup. For the hierarchical Kalman 
filtering architectum, the parameter vector 0 is 
composed of the gating network parameters ai and ajli 
defined in the previous section. We assume that the 
observable data set 0 is of size N .  The log-likelihood 
function of the data set is obtained by taking the 
log of the product of N densities of the form of (8), 
which yields the following log-likelihood: 

N K  L 

where k indexes measurement collected at equal time 
intervals and (3 refers to the observable data which is 
termed as the “incomplete data” for obvious reasons 
as shown later in this section. Hence, (17) is called the 
incomplete likelihoDd function. Also, it is useful to 
define the joint posterior probability hij as the product 
of hi and hjii defined in (9) and (lo), respectively. 
This is given by 

~ 
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The complete data likelihood, Zc(@;C), is obtained by 
taking the logarithm of the previous equation, yielding 

N K I,  

N K L  

where C denotes the “complete data” (composed of 0 
and M ) .  

The E step of the EM algorithm is obtained by 
taking the expectation of the complete data likelihood 
and making use of the following facts: 

The expectation of Z,(O;C) is a deterministic function, 
D(@,@,), given by 

N K L  

The density functions, f(zk I ajli), are indicative of the 
Kalman filters performance. In general, f(zk 1 ajli)  is 
consistently larger for the best filter realization. 

To develop an EM algorithm for the hierarchical 
architecture, we must identify the “missing variables” 
so as to simplify the likelihood function I(@; 0). As 
in [8], we postulate the indicator variables di and 
d j l i  such that for each input data point, a unique d, 
is equal to one, a unique d,ili is equal to one, and 
all other dis, djlis are zeros. The unknown indicator 
variables, denoted M ,  labels the decisions in the 
probability model (Le., Kalman filter bank). The 
indicator variable dij  = didjj i  specifies the expert 
in the probability model (i.e., Kalman filter) that is 
performing best. Since dij,k is an indicator variable, we 
can specify a probability model that links the missing 
variables to the observable data. The model is written 
as 

K L  



where 0, is the value of the parameters at iteration 
P. 

The M step maximizes D(0, 0,) with respect to 
the gating network parameters. Equation (2 1) indicates 
that the gating network parameters effect D only 
through the terms hij,,.1ngi,, and h;;:k lngjli,,, which 
simplifies the M step into two maximization problems, 

-L 

k = l  1=1 

and 
N K  L 

The maximization in (22) can be solved efficiently 
by using iteratively reweighted least-squares (IRLS) 
[24]. The same is true for (23) which is a weighted 
maximum likelihood problem. 

During an EM iteration, the effect of choosing a 
parameter value which increases the value of D is an 
increase in the incomplete likelihood [l 11: 

In other words, the likelihood 1 increases 
monotonically along the sequence of parameter 
estimates generated by an EM algorithm, implying 
convergence to a local maximum [ 1 11. 

Note that the iterative process ends when no 
significant change is observed in the parameter values. 
In other words, the EM algorithm stops if the absolute 
difference (i.e., L,  norm) between two consecutive 
iterations yields a set of parameters that differs by a 
prespecified convergence tolerance E .  

Algorithm Summary: 
1) Using the current values of the gating 

networks parameters (i.e., ais and ajlis), process 
the measurement set and compute the posterior 
probabilities hi,, and hjji,,. 

2) Solve an IRLS problem given the observations 
{ (z,, /qk)}:= for the top-level gating network. 

3) Solve a weighted IRLS problem given the 
observations { (z,, h,ll,k)}kN, and observation weights 
{h,,,}:=l for each low-level gating network. 

4) Iterate using the updated parameter values of 
the gating networks (Le., ais and ajlis>. 

V. APPLICATION 

Interplanetary Orbit Determination 

We consider the interplanetary spacecraft 
tracking problem [13]. The system state vector 
for this problem has 33 components including the 
spacecraft (perturbed) position and velocity from 
the heliocentric conic and various error sources 

which are perturbations relative to a nominal value. 
In this application, the processed measurements are 
radiometric (Doppler) collected from Deep Space 
Stations (DSSs) 15 (Goldstone, California), 45 
(Canberra, Australia), and 65 (Madrid, Spain). The 
error sources include solar pressure, nongravitational 
accelerations (such as a thruster misfiring or gas 
leaks), atmosphere (formed by dry troposphere, day 
and night time ionosphere for each station), stations 
positions (for each station), and Earth platform. In 
other words, the 33rd-order system state vector is 
defined as 

x = (xsc ‘se x s r p  Xnga xutm Xsta ~ e o i - ) ~  (24) 

where x,, and xsc are the spacecraft perturbed position 
and velocity from the heliocentric conic. The error 
sources form the remainder of the state vector: xSrp 
(solar radiation pressure) and xnga (nongravitational 
accelerations) are error sources which directly affect 
the spacecraft; and xUt, (atmosphere formed by dry 
troposphere, day and night time ionosphere), xsta 
(stations locations), and x,,, (Earth platform) are 
errors which corrupt the measurements. As in [14], 
the wet troposphere was not included because 90% 
of the total refractivity is due to the dry component 
of the troposphere in the first 7 km. Also, beyond 
this altitude the wet component diminishes and the 
dry component becomes the total refractivity. The 
inclusion of various filter parameters in the state 
vector follows the approach used in [29] where it 
was shown that improved navigation accuracy can be 
achieved when using this formulation (known as the 
“enhanced filter”) rather than the standard filter which 
accounts for filter parameters as consider parameters 
but does not estimate them. A complete derivation 
of the problem, a description of Q,, Rk, a,, H,, and 
initial values used to initialize the filter equations can 
be found in [13, 141. 

Station location errors are modeled as random 
biases while the remaining error sources are modeled 
as exponentially correlated random variables ECRVs 
[25]. An ECRV can be described by 

where x represents the random process, At is the time 
interval from time k to k + 1, T is the time constant of 
the process, and wk is a Gaussian white noise process 
with covariance 

where (T is the steady-state deviation of the 
Gauss-Markov process x .  

day seven, DSS 45 on day ten, and DSS 65 on 
Measurement collections start with DSS 15 on 
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day twelve. At a particular site, a measurement is 
collected every 10 rnin if the elevation angle is above 
a certain minimum. This scheme is continued until a 
specified final time. This tracking scenario is devised 
to match the Mars Pathfinder mission requirements 
[14]. In effect, this will allow the simulation of a 
single 4 hours pass per week at each station. The 
Doppler formulation used here is known as two-way 
differenced-range. A measurement is simply twice the 
one-way measurement which is obtained by taking 
the difference of two range measurements divided by 
the time between them. A complete description of the 
processing of differenced-range Doppler data for the 
Mars Pathfinder miission can be found in [26]. 

Error budget calculations can be used to determine 
the contribution of various error sources to the overall 
state estimation uncertainties [25]. For the Mars 
Pathfinder mission interplanetary orbit determination 
problem, the major contributing error source (when 
processing differenced-range Doppler measurements) 
is found to be nongravitational accelerations [27, 281. 
Other major contritlutors are measurement noise and 
solar pressure. Hence, it is desirable to accurately find 
the parameters of these error sources. In this study, we 
concentrate on the adaptation of the nongravitational 
accelerations and measurement noise parameters. 
This will be accomplished utilizing the hierarchy of 
adaptive Kalman filter banks described earlier. The 
proposed hierarchy is shown to be a useful tool in 
accurately finding the parameters of the major error 
sources. The adaptive Kalman filter bank hierarchy 
is used to study the selections made by the gating 
networks as measurements are processed. In particular, 
we examine the effect on the selections made by the 
gating networks at different levels of hierarchy when 
the nongravitational accelerations level is changed 
half-way through the interplanetary trajectory. The 
components of the nongravitational accelerations 
perturbations vector are assumed independent. Each of 
the nongravitational accelerations perturbations vector 
components is modeled as an ECRV. The vector is 
composed of three ECRVs with a time constant of 
rnga and steady-state deviations onga,r (radial), and 
gnga,x,  Onga,y (transverse). The steady-state deviations 
are assumed to be equal. That is, 

Filter 
bank 

1 

2 

3 

4 

onga = unga,r = 0nga.n = unga,y .  

The nominal nongravitational acceleration steady-state 
deviation is uiga1 = 0.7 x km/s2 for the first part 
of the trajectory anld oiga2 = 7.0 x 
the second part of the trajectory. The time constant, 
7iga = 7.0 days, is nominal for the entire interplanetary 
trajectory. Also, the: nominal measurement noise is 
u,* = 0.01 mm/s for the entire interplanetary trajectory. 
The abrupt change in the steady-state deviation of 
the nominal nongravitational acceleration is a test 
condition to show the power of the proposed method. 

km/s2 for 

u,,, on Filter T~~~ 
number (days) (xlO-'* km/sec2) (mm/sec) 

111 1.0 0.07 0.01 
211 7.0 0.07 0.01 
311 30.0 0.07 0.01 
112 1.0 0.7 0.01 
212 7.0 0.7 0.01 
312 30.0 0.7 0.01 
113 1.0 7.0 0.01 
213 7.0 7.0 0.01 
313 30.0 7.0 0.01 
114 7.0 0.7 0.001 

314 7.0 0.7 0.10 
214 7.0 0.7 0.05 

TABLE I 
Values of Unknown Parameter Vector in Filter Models 

In reality, we hope that such a large change doesn't 
actually occur. 

Table I indicates that a hierarchical architecture 
consisting of four Kalman filter banks is used. Before 
discussing the hypothesized parameter vectors, it is 
important to point out that the optimal Kalman filter 
realization for the entire interplanetary cruise is a 
single filter which uses the nominal parameters of the 
first half of the trajectory and then the second set of 
nominal parameters corresponding to the last part of 
the trajectory. Hence, none of the filters are optimal 
for the entire interplanetary trajectory. However, we 
note that the KF 2 I 2 is the optimal Kalman filter 
for the first part of the trajectory. Also, KF 2 I 3 is 
the best Kalman filter realization for the second part 
of the trajectory since its parameters correspond to 
the second part of the trajectory. In the first bank of 
the hierarchy, all filters are modeled with the same 
onga and an. The filters differ in the selected values 
for the time constant rnSa. A similar variation in the 
filter parameters was done in the second and third 
filter banks. The filters in the fourth bank of &e 
hierarchy are modeled with the same parameters for 
the nongravitational accelerations, rnga and onga, while 
differing in the measurement noise deviation, an. 
Finally, it is assumed that the implemented (single) 
filter realization by the navigation team is KF 2 I 2. 
In other words, following current practices, only one 
filter parameter set is used for the entire trajectory, 
and in our case that filter is KF 2 I 2. 

hypothesis testing capability of the hierarchy and the 
advantages of implementing a hierarchical parallel 
architecture of Kalman filters instead of a single filter. 
Furthermore, an assessment of the performance of 
various learning rules is presented. 
Experiment: 

of the gating network when using an instantaneous 
gradient ascent learning algorithm. All gating 

The following experiment illustrates the multi-level 

In this experiment, we first investigate the behavior 
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Fig. 5. Gating weight history using gradient ascent (Kalman filteI 
bank I), where (b) illustrates correspondence between time and 
measurement number. Same translation scale can be applied to 
Figs. 6-18 to convert time into measurement number on x-axis. 

networks in the hierarchical architecture use a unity 
learning-rate parameter (i.e., q = 1.0). Also, all weight 
vectors a,ili were initialized to the same value so as not 
to favor any filter over another (initially). Similarly, 
all weight vectors ai were initialized to the same 
value filter bank initially. The gating weight histories, 
which indicate the various selections made in the 
hierarchical structure, are depicted in a plot versus 
time. The horizontal lines will be used to indicate 
a constant weight between tracking passes when 
no measurements are available. Also, vertical lines 
will be used to specify the beginning and end of the 
tracking passes when weights are computed. Tracking 
passes are so short that they appear as vertical lines. 
A total of 1230 observations are collected over the 
interplanetary trajectory. 

Fig. 5(a) reveals that in the first Kalman filter 
bank, no filter is preferred over the others. The fact 
that anga is an order of magnitude smaller than the 
optimal a& dominates. Fig. 5(b) is used to plot the 

Fig. 6. Gating weight history using gradient ascent (Kalman filter 
bank 2). 
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gating weights versus the measurement number so as 
to clarify the translation from time to measurement. 

The gating weight history of the second filter 
bank is illustrated in Fig. 6. It indicates that initially 
KF 2 12 was selected by the gating network, since 
g212 is close to unity. This was expected since KF 
2 I 2 is the optimal filter realization for the first part 
of the trajectory. This selection was later modified 
when the nongravitational accelerations steady-state 
deviation was increased. The increase may reflect a 
thruster misfiring or gas leak, for example. In fact, the 
gating weight of KF 1 12, is close to unity through 
the second half of the trajectory. This indicates a 
parameter change. This need not be a change in 
the time constant T , ~ ~ .  Rather, it is just a change 
in a parameter for which the gating network is 
attempting to find another best filter realization. In 
our case, since all filters in the second Kalman filter 
bank are modeled with the same a,,, and Q,, the 
gating network selects the filter with the best time 
constant T~~~ for the second part of the trajectory, 
i.e, the time constant that will result in the smallest 
measurement residual. The selection is justified by 
the fact that since all filters have the same crnga and 
a,, the gating network selects KF 1 I 2 which has a 
smaller rnga. The effect of this selection is to increase 
the noise as shown by (26), which indicates that 
for a constant steady-state deviation, measurement 
noise increases as the time constant decreases. This 
has the same effect of increasing the measurement 
noise by fixing the time constant and increasing the 
steady-state deviation. In fact, that was the happening 
when gnga was increased over the second half of the 
trajectory. Note that simulation results indicate that 
the explanation applicable here is not applicable to the 
first filter bank because its anga is much smaller than 
that of the second filter bank. 

phenomena in the third Kalman filter bank. Initially, 
Examining Fig. 7 reveals a similar switch 
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Fig. 7. Gating weight history using gradient ascent (Kalman filter 
bank 3). 

Time (days) 

Fig. 8. Gating weight history using gradient ascent (Kalman filter 
bank 4). 

the gating network regulating the third Kalman filter 
bank favors KF 3 I 3 slightly over the other filters. 
In fact, none of the filters is optimal for the first 
part of the trajectory. On the other hand, when the 
abrupt change in the nongravitational accelerations 
steady-state deviation occurs, the gating network 
rapidly selects the best available realization KF 2 I 3. 

The gating weight history plot of the fourth bank 
is shown in Fig. 8. It indicates that the gating network 
favors KF 1 14 and KF 2 I 4. In this bank none of 
the filters are optimal for any part of the trajectory. 
The gating network is favoring those filters whose 
measurements residuals are smaller. 

At the top-level the gating network selects the 
second Kalman filtcr bank over the first part of the 
interplanetary trajec:tory as indicated by Fig. 9. This 
is expected since KF 2 12 is indeed optimal over this 
first regime and is located in the second filter bank. 
The top-level gating network modifies its selection to 
the third Kalman filter bank since KF 2 I 3 is best over 

~ 
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Fig. 9. Gating weight history using gradient ascent (top-level). 

the second regime and is located in the third filter 
bank. 

The selections made in the filter banks when 
combined with the top-level selection can shed light 
on what has really occurred. The fact that the top-level 
gating network switched from the second to the third 
Kalman filter bank indicates that KF 2 I 3 is preferred 
over both KFs 2 I 2 and 1 I 2 in the second half of 
the trajectory. A comparison of the parameters of 
KFs 2 12, 1 I 2, and 2 I 3 ,  indicates that a change in 
the steady-state deviation gn,, has occurred and not 
rnga. Note that such conclusions are not so readily 
obtained when regulating the filters with a single 
gating network. 

In a realistic setup, the truth is unknown and 
hence this technique will yield the most suitable 
filter realization (which is not necessarily optimal). 
However, this approach will help identify the 
changing parameters. To adapt the parameters which 
most contribute to the estimation error, a number of 
techniques (described in [6]) can be used to accurately 
find an ‘‘optimal)’ realization of these parameters. 

We now examine the estimation errors of the 
position components of the spacecraft when using 
the nominal filter estimate (i.e., the realization KF 
2 I 2 implemented by the navigation team) and the 
hierarchical structure estimate. As shown in Fig. 3 ,  the 
optimal estimate provided by the hierarchy is given by 

K I  

The estimation errors plots are shown in 
Figs. 10-12. Each of these figures is composed of 
two plots. These are plots of the estimation errors 
(before and after the state estimate update) versus time 
and measurement number, respectively. The dotted 
lines are the plots of the state estimate error of the 
spacecraft when using the nominal filter KF 2 12. The 
state estimate error of the spacecraft obtained when 
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utilizing the hierarchy is plotted using the dashed 
lines. It is the estimation error that occurs when using 
a weighted sum of the various filters and filter banks. 
The state estimation error plots indicate the error 
before and after measurement incorporation. The solid 
lines on the plots represent the plot of (+ and -) the 
square root of the corresponding diagonal elements of 
the covariance matrix (before and after the update). 
The covariance matrices are those of KF 2 1 2 (since 
it is the optimal) for the first part of the trajectory 
and KF 2 13 (since it is the best available) for the 
second part of the trajectory. Figs. 10-12 reveal that 
the estimation error of the hierarchy is very close 
to the optimal estimation error over the first half of 
the trajectory. In fact, a small difference is noted in 
the first part of the trajectory. This slight difference 
appears in the early part of the first trajectory as the 
gating networks have not yet selected (the optimal) 
KF 2 12, as shown in Figs. 6 and 9. However, once 
the selection is made, there is no difference between 
the optimal estimate error given by KF 2 I 2 and 
that of the hierarchy (since the selection is the same 
KF 2 12). In contrast, when the switch happens the 
estimation errors of the spacecraft provided by the 
nominal filter KF 2 12 clearly increase as shown 
by Figs. 10-12. However, since the hierarchical 
structure contains a diversity of models, a switch to 
an appropriate filter can be made and thus a better 
estimation error can still be attained. In this example, 
the switch within the hierarchy now favors KF 2 13 
as shown earlier in the gating weights histories of 
Figs. 6 and 9. The combined estimation error for 
the on-line estimates (i.e., hierarchy’s estimates) is 
illustrated in Fig. 13 which indicates a satisfactory and 
stable position error even after the abrupt change in 
nongravitational accelerations. 

We conclude this experiment by illustrating how 
by using both learning techniques (Le., gradient 
ascent and EM) we can better assess the performance 

Fig. 11.  Spacecraft position estimate error (y component) for 
hierarchy (dashed) and nominal filter (dotted). 

Fig. 12. Spacecraft position estimate error (z component) for 
hierarchy (dashed) and nominal filter (dotted). 

l a  
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Fig. 13. Spacecraft combined position estimate error for 
hierarchy 

of the various Kalman filters by obtaining an 
“optimal” set of weights. This is done by processing 
the measurement set once using gradient ascent. 
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Fig. 14. Gating weight history using EM for first measurement 
sequence (Kalman filter bank 1). 

The results, shown :in Figs. 6, 7, and 9, reveal the 
occurrence of a switch in both the second and third 
Kalman filter banks and at the top-level of the 
hierarchy. Using this finding, the data is divided into 
two subsets consisting of the measurements processed 
before and after the measurements processed after 
the switching point, respectively. Now, EM which 
is a batch mode app-oach is used to solve for the 
gating network parameters corresponding to each 
set of measurements. That is, EM is solving the 
maximum likelihood problems posed by (22) and 
(23), and finding thl: “optimal” ais and ajlis for each 
measurement subset. The obtained ais and a j p  yield 
an “optimal” set of weights gis  and gjlis. 

Unlike the gradilmt ascent algorithm which can be 
used in real-time and post-processed data applications, 
the iterative nature of EM makes the algorithm only 
suitable for post-precessed data applications. The EM 
algorithm is not cocnputationally intensive in terms 
of using the Kalman filters composing the hierarchy. 
In fact, the weighted measurements residuals, saved 
when using the gradient ascent algorithm, are the 
only needed infomiation by the EM algorithm when 
solving for the gating network parameters. That is, the 
Kalman filters composing the hierarchy process the 
measurement set only once. 

The returned solution for the first measurement 
set is shown in Figs. 14-18. This result was attained 
after 500 iterations. The gating weight plots in 
Figs. 14-18 show a similarity with the attained 
weights using gradient ascent and shown in Figs. 5-9. 
The justifications behind these results were discussed 
earlier in this experiment when examining the gating 
weight histories of Figs. 5-9. Hence, it is apparent 
that the gradient ascent algorithm is capable of 
yielding a good result in a single pass. However, 
gradient ascent goes through an initial learning phase 
as shown in Fig. 6 for example, where the algorithm 
is undecided in the very early stage on whether KF 

Fig. 15. Gating weight history using EM for first measurement 
sequence (Kalman filter bank 2) .  

. . . . . . . . .  
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Fig. 16. Gating weight history using EM for first measurement 
sequence (Kalman filter bank 3). 

2 I 2 is the optimal realization or not. To address that 
relatively brief initial stage, the EM algorithm may 
be used to clearly identify whether KF 2 I 2 is to 
be selected initially. This is indeed true as shown in 
Fig. 15, i.e., KF 2 12 is the realization to be used. It is 
important to note that the gating network parameters 
obtained with EM and plotted in Figs. 14-18 are not 
necessarily the global maximum of the maximization 
problems posed by (22) and (23). Rather, EM only 
guarantees that the returned ais (gis) and ajlis (gjlis) 
form a local maximum [ 1 11. Hence, it is sufficient 
to use EM to clarify initial learning ambiguities by 
iterating until no significant change in the weight 
histories is observed. Finally, a similar approach can 
be used to find the best set of weights for the second 
measurement sequence. 

VI. CONCLUSIONS 

The proposed hierarchy of adaptive Kalman 
filter banks can be used as a multi-level hypothesis 
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Fig. 17. Gating weight history using EM for first measurement 
sequence (Kalman filter bank 4). 
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Fig. 18. Gating weight history using EM for first measurement 
sequence (top-level). 

testing device. It allows the examination of a 
parameter change on an individual basis as well as 
in combination with other parameters. This is achieved 
by using a gradient ascent learning rule which has the 
ability of detecting abrupt changes due to a different 
operating regime. The use of EM allows us to reach 
a better solution for the gating weights since the 
returned solution seeks the best gating parameters 
by considering an entire sequence of measurements. 
Also, the solution returned by the EM algorithm 
is a local maximum [l 11. However, since EM is a 
batch algorithm, its results are only meaningful if the 
underlying statistics do not vary much. In a real life 
problem such as interplanetary orbit determination, 
there may be occasional abrupt changes due to a 
different regime. Such a change can be detected by 
an on-line algorithm, which can thus partition the 
measurements into relatively homogeneous segments 
each of which can be addressed by applying EM. EM 
gives a clearer assessment of the initial learning phase 
experienced using gradient ascent. 

The obtained results in the interplanetary orbit 
determination problem indicate that the proposed 
scheme can be used as an assistant tool in the process 
of selecting the parameters of the navigational 
filter. This is achieved by modeling each bank of 
the hierarchy with a different set of values of a 
particular parameter. Therefore, the gating network in 
a given bank indicates which filter is performing best 
when considering variations of a single parameter. 
Similarly, the top-level gating network indicates which 
bank is performing best. The presented simulation 
results show the ability of the scheme to identify 
parameter changes and hence modify its filter and 
bank selections. This information (i.e., the change in 
parameter) can be used to appropriately modify the 
navigational filter parameters and attain a better match 
to the actual parameters. 

The proposed hierarchical architecture can be used 
with extended Kalman filters as the individual experts 
and may be applicable in the data fusion framework. 
Furthermore, recent results show that using a localized 
model for the gating network provides a methodical 
approach to the model selection problem, often 
leading to further performance improvements [30]. 
The application of such localized models to the 
interplanetary orbit determination problem is worth 
investigating further. 
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