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Abstract

We explore the use of the supra-classi®er framework in the construction of a classi®er knowledge base. Previously, we

introduced this framework within which labels produced by old classi®ers are used to improve the generalization

performance of a new classi®er for a di�erent but related classi®cation task (Bollacker and Ghosh, 1998). We showed

empirically that a simple Hamming nearest neighbor is superior to other techniques (e.g., multilayer perception (MLP),

decision trees, Naive Bayes, Combiners) as a supra-classi®er. Here, we describe theoretically how the probability that

the Hamming nearest neighbor supra-classi®er will predict the true target class approaches certainty at an exponential

rate as more classi®ers are reused. The scalability of the Hamming nearest neighbor with large numbers of previously

created classi®ers makes it a good choice as a supra-classi®er in the application of building a repository of domain

knowledge organized as a classi®er knowledge base. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Knowledge reuse via supra-classi®ers

Knowledge reuse is the process of applying
knowledge embodied in previously learned tasks to
help solve a new, related task.

We recently introduced the supra-classi®er
knowledge reuse framework (Bollacker and
Ghosh, 1997), which can apply the results of ex-
isting classi®ers to help solve a new classi®cation
task. A schematic of this framework can be seen in
Fig. 1. The supra-classi®er knowledge reuse pro-
cess is to present the training samples for a new,
current target classi®cation task to all available

previously trained classi®ers and then use the re-
sulting output vector of classi®cation labels as the
input for a second stage supra-classi®er. Only label
information is used from support classi®ers, thus
allowing the reuse of any type of classi®er archi-
tecture. The supra-classi®er then makes the ®nal
classi®cation decision for the current target clas-
si®cation task s. Previously trained classi®ers,
termed support classi®ers, are generally (but not
always) designed for tasks other than the current
target classi®cation task of interest.

1.2. Supra-classi®er design

Supra-classi®ers make classi®cation decisions
on a vector of categorical (support class label)
input values. Just like any ordinary classi®er, they
use the training samples for the target classi®ca-
tion task (and perhaps a priori information) to
make a decision. For an ordinary classi®er, the
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feature set is static, and so to improve classi®ca-
tion performance, more and/or better training
samples are needed. In contrast to this, the premise
of the supra-classi®er framework is that know-
ledge can also be added by increasing the number
of relevant support classi®ers (input features).
Designing a good supra-classi®er is simply de-
signing a classi®er for a large number of discrete
valued features that works well even with very few
training samples. Although several architectures
are possible, the Hamming nearest neighbor
(HNN) classi®er has been shown empirically to
outperform decision trees, multilayer perceptron
neural networks, Naive Bayes and other types of
classi®ers in the supra-classi®er role. Furthermore,
we have theoretically demonstrated HNN supra-
classi®er scalability to large numbers of support
classi®ers (Bollacker, 1998). We brie¯y reiterate
here.

Consider a space X � Rd �S where S is a set
of all possible discrete labels. Let Xs � Rd �Ss be
a space de®ned for a classi®cation task s where
Ss �S and jSsj is ®nite. Rd is the input space
where values to be classi®ed exist, and Ss is the set
of possible labels for that data for task s. Let
Xs : Xs 2 Rd and Ys : Ys 2Ss be the random vari-
ables for the prior distribution on Xs associated
with task s. It is assumed that 8�x; y�
2 �Rd ;Ss�; P �yjx� is de®ned. The most likely
value of a class label y, given an input value x is
de®ned as the maximum posterior probability
function ts�x� � arg maxy P�Ys � y j Xs � x�.
Thus, ts��� : Rd !Ss is the target function to be
approximated by a target classi®er. Let B be a set

of support classi®cation tasks which have the same
input domain space Rd as task s. For each classi-
®cation task b 2 B, there is an associated set Sb

and classi®er cb��� : Rd !Sb. 1 Let the function
~c��� � �cb����b2B. For all b, let Cb : Cb � cb�Xs� be
the random variables resulting from the applica-
tion of Xs to support classi®er b and let ~C �~c�Xs�.
Let Ts : Ts � ts�Xs� be de®ned as the random
variable associated with the target function on Xs.
Assumed in this context is a support classi®er set
B, which has n members; i.e. n � jBj and for
convenience it is assumed that B � f1; . . . ; ng to
allow b to index entries of B.

Using these de®nitions, the HNN can be de-
®ned as a simple classi®er for discrete input fea-
tures (e.g., support classi®er labels) similar to
traditional nearest neighbor classi®ers, which op-
erate in a Euclidean space. If 1��� is the indicator
function, then the Hamming distance between two
sample input values xr and xs can be calculated as

Dn�xr; xs� �
Xn

b�1

1�cb�xr� 6� cb�xs��;

where cb��� is the labelling bth support. For each
test sample s, the HNN supra-classi®er will choose
the class label of the training sample with the
smallest Hamming distance from it. If the pre-
vious classi®ers are conditionally independent
given the current classi®cation task but are not
independent of that current task, then the HNN
approaches a perfect classi®cation test rate with an
exponential lower bound for an increasing number
of previous classi®ers. This is more precisely stated
in Theorem 1.

Theorem 1. If the random variables Cb : b 2 B are
independent of each other conditionally on the target
class Ys, l1P 0, the ln are equal for all values of n,
making ln a constant, the training samples a, b and
test sample c are value pairs that are randomly and
independently drawn trials from the random variable
pairs (Xa,Ya), (Xb, Yb) and (Xc, Yc), respectively, Xa,

Fig. 1. A Supra-classi®er based knowledge reuse framework.

1 Although some of the support classi®ers may have been

trained for task s directly, in general b 6� s and Ss 6�Sb, as the

tasks are di�erent.
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Xb, Xc and Xs are IID, Ya, Yb, Yc and Ys are IID,
samples a and b and test sample c, and
8j; k 2Ss; pj � pk, then

P �Dn�Xb;Xc� > Dn�Xa;Xc� j Ya � Yc; Yb 6� Yc�
P 1ÿ �1ÿ l2

n�n=2
: �1�

Note that the only information this bound uses
is the mean of the E�Zb� values and the bounded-
ness of Zb. As discussed in (Hofri, 1995), a better
bound may be achieved by considering higher
moments, but in general it is often di�cult to do
so. Since the Zb random variables can only take the
values fÿ1; 0; 1g, they are completely described by
their ®rst and second moments, potentially making
this more tractable.

Theorem 1 states that as the number of condi-
tionally independent and (at least barely useful)
support classi®ers increases, the probability that
the (weighted) HNN classi®er will predict the true
target class approaches certainty bounded by an
exponential rate. It should be noted that Theorem
1 holds even if there is only one training sample of
each target class. This result leads to the obser-
vation that under certain conditions, a wealth of
features may substitute for a dearth of samples. This
is counter to the conventional wisdom that classi-
®ers require more training samples when more
features are present (Jimenez and Landgrebe,
1998). The trick is in avoiding a Euclidean feature
space and the resulting typical curse of dimen-
sionality problems.

2. A classi®er knowledge base

A classi®er knowledge base is a set of classi®ers
for a domain of interest. For a sample in this do-
main, each classi®er can provide a label. The re-
sulting set of labels is a description of the sample,
and if (at least some of) the classi®ers ``say some-
thing useful'' about the sample, the labels can be
used to aid in new characterizations of that sam-
ple. The new labels that become available when a
new classi®er is built can be contributed back to
the classi®er knowledge base. In this manner, each
new classi®er both takes existing knowledge from
the knowledge base and gives some new know-

ledge back. As the number of classi®ers grows, the
knowledge base learns its domain better, and can
thus provide increasing knowledge to help build
new classi®ers.

2.1. Experiments in prediction of personal
preference

In order to investigate the supra-classi®er
framework as applied to a classi®er knowledge
base, an experimental knowledge base on a small,
®xed set of images was created. This experimental
knowledge base was used to predict whether a user
would ``like'' an image or not, based on previous
classi®cations made by that user about those im-
ages. Although this target class is similar to those
used in collaborative recommender systems (e.g.,
Balabanovi�c, 1997; Menczer, 1997), the di�erence
is that in many collaborative ®ltering systems, only
like/dislike classi®cations are allowed, while in a
classi®er knowledge base, the previous classi®ca-
tions may be output for any set of labels. Like
most collaborative ®ltering systems, our setup uses
humans as support classi®ers, making generaliza-
tion to new images di�cult. However, in this ex-
periment we are primarily considering the
situation where the data set is important and slow
to change. We are trying to predict the user's be-
havior, not simply an image classi®cation.

A dataset was created consisting of 30 photo-
graphic images, mostly acquired from the author's
personal collection and a commercial CD-ROM.
Some of these images can be seen in Fig. 2. Sev-
enty-three classi®cations were designed for this set
of images. Most of class labels sets were high level,
such as ``big versus small'', ``clean versus dir-
ty'', ``busy versus calm'' and ``solid versus liquid
versus gas''. A Web site was created to present the
30 images to six human users (graduate students),
who were asked to classify the images in each of 72
ways. These 72 manual (support) classi®cations
can be thought of as a ``personal pro®le'' of
knowledge about the images for each user. For the
73rd classi®cation, users were asked to decide
whether they ``liked'' each image more than aver-
age. This ``like/dislike'' label was used as the target
classi®cation for experiments in supra-classi®er
testing. One hundred experimental trials each of
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several combinations of training set and support
classi®er sizes were performed for each user and
the results were averaged over all the trials and
users. For each trial, the 30 images were randomly
split into training and test sets, where the training
sets ranged in size from 3 to 27. The order of in-
clusion of the 72 support classi®ers was also ran-
dom for each trial.

2.1.1. Comparative results
Although it is useful for a supra-classi®er to

perform better when there are more training
samples, the most important role of a classi®er
knowledge base is to be able to perform well when
there are only few training samples available for a
new task but a large number of previously created
classi®ers. We compared the HNN supra-classi®er
with other architectures, including a Naive Bayes
(NBAY) classi®er, a C4.5 decision tree, a multi-
layer perceptron neural network (MLP), and a
combiner based classi®er (VOTE) where each
component was a Naive Bayes classi®er that saw
only one of each of the 72 previous classi®cations.
A most common class (MCC) classi®er always
chose the most frequent target class in the training
set, and was given as a baseline. The test rate of
using each type of supra-classi®er versus the
number of support classi®ers in the case of six

training samples is given in Fig. 3. The combiner
(VOTE) supra-classi®er has the best performance
when the number of support classi®ers was very
small, but as the number of support classi®ers in-
creased, its performance was reduced. Many of the
supra-classi®ers had increasing performance with
more support classi®ers up to about 32, but only
the HNN continued to have increased perfor-
mance up to the full set of 72 support classi®ers.

Fig. 2. Nine of the 30 images in the image dataset.

Fig. 3. Average classi®cation test rate versus number of sup-

port classi®ers for several supra-classi®ers for the image dataset.
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2.1.2. Results in a knowledge space
In order to understand the e�ect of knowledge

reuse, consider a 2D knowledge space in which
classi®er performance is measured for a speci®c
number of training samples and support classi®ers.
The average target classi®cation test rate for the
HNN supra-classi®er given a range of number of
training samples and support classi®ers can be
seen in the knowledge space represented in Fig. 4.
To achieve a given classi®cation test rate, the
HNN supra-classi®er needed fewer training sam-
ples as the number of support classi®ers grew. This
is evidence that in a knowledge base, the HNN
would perform better as the knowledge base
grows. Contrast this to the poor performance of a
Naive Bayes classi®er as a supra-classi®er in Fig. 5.
Here, the Naive Bayes classi®er does not take ad-
vantage of support classi®ers as they are added,
probably because of increasing disparity with the
required independence assumption.

3. Conclusions and future work

The supra-classi®er framework (and the HNN
in particular) is discussed as an approach to the
creation of a classi®er knowledge base and em-
pirical evidence indicates its e�ectiveness. A pro-
totype classi®er knowledge base has been created

and is available on the World Wide Web for
testing and public use at http://www.lans.ece.
utexas.edu/cgi-bin/cgiwrap/kdb/knowledgebase.

The most important direction for future devel-
opment in the application of a practical classi®er
knowledge base is to create a knowledge base that
provides some utility to a large number of users. If
created with an easily accessible interface like the
prototype shown here, a large classi®er knowledge
base could be built, and further investigations
could be performed in the context of a truly
practical system. Possible examples of such a sys-
tem would be an example-queried Web page rec-
ommender or a predictor of legislative votes that
uses post voting records as a knowledge base. 2

Discussion

Kanal: I remember from when I was doing these
kind of things, that there was an area of decision
theory called compound decision theory. The idea
of that is to make use of past decisions on similar
or dissimilar problems, to come up with an im-
proved decision. You may want to look into that:
Compound Decision Theory. In a book that I

Fig. 4. Classi®cation test rate contours in the knowledge space

for the HNN supra-classi®er on a classi®er knowledge base for

the image dataset.

Fig. 5. Classi®cation test rate contours in the knowledge space

for the Naive Bayes supra-classi®er on experimental knowledge

base.

2 Databases of such records are readily available on the Web

at such sites as http://thomas.loc.gov
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edited in 1966, which was published in 1968, there
is a chapter by a student of mine, which introduces
this subject brie¯y. (Note of the editors: Abend, K.,
1968. Compound decision procedures for unknown
distributions and for dependent states of nature. In:
L.N. Kanal (Ed.), 1968. Pattern Recognition.
Thompson Book Company, Washington DC,
pp. 207±249). There is a whole literature and sta-
tistical area on compound decision theory. It
makes various assumptions on the distributions,
but it is still the only theory I know, about how to
use past decisions on any problem, improving your
decision making on the next problem.

Ghosh: Thanks for the pointer. We actually
searched the decision fusion literature, as well as
the Web, using certain keywords, to look for a
similar concept, but apparently we did not use the
right keywords. But I think, what is interesting is
that now, because of the Web and faster comput-
ers, there are a lot of problems and data sets
available where such a theory can be applied.

Raghavan: I just wanted to make a brief sug-
gestion just like Kanal did. You talked about these
students who were trying to do all these classi®-
cations. We have also, in some work that we did,
tried to describe images by interviewing people,
using an approach based on a clinical psycholo-
gist's work. His name is George Kelly and he in-
troduced a method called ``personal construct
theory''. If you are interested, I can give you the
reference. (Note of the editors: Kelly, G.A., 1995.
The Psychology of Personal Constructs. Norton,
New York.) It is an idea that could be useful to
extract the kind of class information that you are
trying to get.

Ghosh: That would be very helpful. We have
actually performed another experiment, where we
looked at classi®cations of words, based on user
feedback to help people who are taking GRE.
What we found out is that if you just place this
feedback facility on the Web and announce it, you
do not get a random sample of people who try
these methods; you get only those who are very
interested and I am not sure how unbiased that
distribution is. But I would certainly like to know
about Kelly's method.

Duin: The idea of weak classi®ers, is that similar
to this, are you familiar with that?

Ghosh: Yes, the idea of weak classi®ers is similar,
yet di�erent. In weak classi®ers, you just need to do
better than 50% for a given problem and, hope-
fully, if you have several of such classi®ers, then
you can combine, using boosting for good perfor-
mance. But there again, the classi®ers are trying to
solve the same problem, or some aspect of the same
problem, though they might be looking at di�erent
training samples. In the case I presented here, the
support classi®ers are generally solving di�erent
problems. So, there is a fundamental di�erence. It
is only similar in the sense that we do not need each
classi®er to perform very well.
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