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ABSTRACT

Collaborative filtering approaches exploit information about
historical affinities or ratings to predict unknown affinities
between sets of “users” and “items” and make recommen-
dations. However a model that also incorporates heteroge-
neous sources of information that may be available on the
users and/or items can become a much more effective recom-
mender, in terms of both increased relevance of the predic-
tions as well as explainability of the results. In this paper,
we propose a Bayesian approach that exploits not only such
“side-information”, but also a different kind of heterogeneity
that captures the variations in the mapping from user/item
attributes to the affinities of interest. Such predictive hetero-
geneity is likely to occur in large recommender systems that
involve a diverse set of users, and can be mitigated by us-
ing multiple localized predictive models rather than a single
global one that covers all user-item pairs. The scope or cov-
erage of each local model is determined simultaneously with
the model parameters. The proposed approach can incor-
porate different types of inputs to predict the preferences of
diverse users and items. We compare it against well-known
alternative approaches and analyze the results in terms of
both accuracy and interpretability.

1. INTRODUCTION

The data involved in most recommender systems is often
represented as a dyadic relation consisting of some utility
function or affinity (e.g., ratings) between two sets of en-
tities (e.g., users and movies). These relationships can be
represented as the entries of a matrix, where the rows and
columns are the entities from the two sets, and the matrix
entries are the affinity values, if known. Collaborative filter-
ing approaches to recommender systems have concentrated
on exclusively using the few known ratings to predict the
rest [23]. However they are known to suffer from problems
such as cold-start, and also need to be augmented if they are
to exploit additional “side-information” such as values of in-
dependent variables (attributes) that may be associated with
the entities in the two sets, interaction networks that may
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exist within entities of a given type, etc. On the other hand,
content-based recommender systems utilize attribute infor-
mation, but often rely on a single global predictive model.
Having only a single model for the entire dataset is limiting
when the entities have distinct sub-populations that differ
from one another in terms of the importance of different
sources of information in determining the affinities that are
to be estimated.

By viewing the data involved in recommender systems as
a set of matrices (or tensors, if there is interaction among
three or more sets of entities) with some shared axes, instead
of a single denormalized file of data, it is easier to visualize
the relationships between users, items, and their respective
profiles or attributes, as well as the known ratings of the
users for these items. It also facilitates an alternate view
of the problem; instead of users rating items, it can just as
easily be seen as items rating the users. A similar approach
to viewing collaborative filtering from an item perspective
is mentioned in [6]. There is no fundamental difference in
the modeling that must take place, but it demonstrates that
there can be an analogous separation of items into groups
based on how they respond to the user attributes. Find-
ing and grouping similar items in addition to similar users
allows for more specific models to be trained on relatively
homogeneous sub-groups of the set of all dyadic user-item
pairs of interest. Additionally, though this appears as a
content-based recommendation approach, since the group-
ing of users and items is directly influenced by the known
affinities, it is possible to incorporate some of the advantages
of collaborative filtering systems as well.

In this paper, we introduce a Bayesian approach to recom-
mender systems that decomposes the dyadic data into soft or
“mixed-membership” co-clusters while simultaneously learn-
ing local models for each co-cluster. We compare this model
to other well-known models, and show that the results are
comparable in accuracy, while showing much greater inter-
pretability and actionability.

2. RELATED WORK

As described in [2], recommender systems seek to maximize
for each user a utility function measuring the usefulness of
items for that user. Much of the recent literature on col-
laborative filtering, including those that are based on ma-
trix factorization (many of which were motivated by the
Netflix Prize problem), ignore all sources of attribute in-
formation [13, 28, 23]. This is in part an unintended conse-



quence of the popularity of the Netflix competition, since the
dataset involved had no additional information other than a
timestamp associated with each rating. However when other
datasets that contained extra information were encountered,
approaches that do use such side information were put forth.
These approaches often use such sources indirectly (e.g., as
a regularizer to matrix factorization or through a kernel [1,
17, 5]); the known ratings are still the main driver behind
the estimation of unknown affinities.

In contrast, content-based recommender systems often fo-
cus on a single aspect of external information, such as tag-
ging information [6], [7], in predicting user-item affinities.
Even approaches that incorporate multiple sources of infor-
mation do so in one global model with a single similarity
measure between the coupled user profile and item feature
vectors. Even those collaborative-filtering approaches that
use a kernel or regularizer based on this outside information
do so in a global fashion. A single predictive model based
on the user/item attributes does not exploit the predictive
heterogeneity that may exist across different user and item
groups. On the other hand, while the use of multiple predic-
tive models to deal with such heterogeneity is encountered
in a wide range of disciplines, from statistics to economet-
rics to control and marketing [19, 20, 15, 11, 12, 22, 18],
these approaches typically apply only to denormalized data
representations, rather than the multirelational data that is
encountered in many recommender systems.

One approach to using heterogeneous sources of information
is found in content-based recommender systems such as the
one discussed in [7]. In that paper, and many other content-
based approaches, the external user and item features are
represented as coupled vectors representing user preferences
and item characteristics, respectively. To find the affinity of
a particular user-item pair, a similarity measure is calculated
between the two corresponding vectors. For the approach
proposed in that paper, the tags associated with each user
and item were used to generate these vectors. Since both
the users and items have explicit tags associated with them,
the vectors for each are relatively sparse and can be stored
and used efficiently.

Sometimes there exist item characteristics that are explic-
itly given (such as the director, producer, and distributor
of a film), but no corresponding vector of user preferences
is readily available. In this case, it is possible to derive the
user preference vector by using the explicit item affinities as
a user’s implicit preferences about the item characteristics.
Some methods of deriving a user profile from item attributes
and user affinities are described in [21]. The machine learn-
ing algorithms described in that paper are suggested for
learning the profiles based on item attributes that are well
structured (i.e., a few attributes that are consistent across
all items, with known possible values for the attributes).
However, sometimes the number of attributes of an item
may vary, such as the number of actors associated with a
movie. Additionally, the possible values for those features
may have extremely high cardinality (e.g., there are tens of
thousands of possible actors that might be associated with
a movie). Both these issues are problematic for this class of
approaches.

The use of user and item vectors whose elements correspond
exactly to one another is common in content-based recom-
mendation systems [6]. This allows for simple calculation
of the affinities, since the vectors can be directly used in an
inner product. Another approach is to allow for additional
information about users to be represented without a corre-
sponding characteristic in the item wvector, and vice-versa.
Such features could be used to capture the overall bias for
a user or item that could affect the values of the affinities,
though it would not affect the ordering of items for a par-
ticular user.

It can be helpful to recognize that the similarity measure
computed on a user’s preferences and a corresponding item’s
characteristics is simply a number. With this realization, it
is easy to see that using multiple similarity measure values
(arising from heterogeneous profile and characteristic vec-
tors) as features of an ensemble model would allow for the
fusion of the various content-based affinity predictions in or-
der to find a better overall recommendation. This ensemble
recommendation would be based on heterogeneous aspects of
the users and items. Also, by approaching the fusion of the
predictors in this fashion, it would be perfectly reasonable to
use different similarity measures of the various user profile
and respective item characteristic vectors, which might be
more appropriate for each of the types of profile and charac-
teristic information. In fact, the function on the user-item
vector pair does not need to be a true similarity measure at
all, but could be any function useful to the overall model.
Additionally, by also including a co-cluster bias term in this
ensemble model [4], one can capture information similar to
collaborative filtering approaches, where a group of similar
users would all have a reasonably comparable affinity for a
group of similar items.

There have been a few recent approaches proposed that can
directly deal with both heterogeneous attributes as well as
the predictive heterogeneity of users and items in predict-
ing the affinities of the user-item dyads. Two of these ap-
proaches are SCOAL (Simultaneous Co-clustering and Learn-
ing) [8] and PDLF (Predictive Discrete Latent Factor Mod-
eling) [4]. Both approaches partition the users and items
into a grid of blocks (co-clusters) of related users and items,
while simultaneously learning a predictive model on each
co-cluster. The predictors directly use the attributes, as op-
posed to using them as a soft similarity constraint (as seen
in [1, 17, 5]). The organic emergence of these predictive
models is coupled with the formation of the co-clusters that
define the domain of the models. Such coupling of the mod-
els and co-clusters improves both the interpretability and the
accuracy when modeling predictively heterogeneous dyadic
datasets, as this mechanism can effectively exploit both lo-
cal neighborhood patterns as well as the globally available
attributes [8, 4].

The Bayesian approach presented in this paper also exploits
user and item features by grouping users and items into co-
clusters and training separate models for each (user-group,
item-group) pair. Thus different weights can be used for the
features in each co-cluster model. However, unlike SCOAL,
the groupings are soft rather than hard; each user/item be-
longs to multiple groups with different probabilities. Also,
since an underlying probability model is assumed for the
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Figure 1: Graphical model for Latent Dirichlet At-
tribute Aware Bayesian Affinity Estimation.

observed data, the learning approach based on maximum
likelihood is very different as well.

There are several Bayesian collaborative filtering approaches
to recommender systems problems, such as Mixed Member-
ship stochastic Blockmodels (MMBs) [10], which use the
rating values to group the users and items via a soft co-
clustering. Prediction of the unknown ratings is accom-
plished by using the weighted average of the co-cluster means
associated with a particular dyad. This model has proved to
be very scalable; however, it also ignores any available side
information and typically addresses only 0/1 affinities such
as the presence or absence of an unweighted link. Other
Bayesian collaborative filtering approaches include frame-
works for probabilistic matrix factorization with inference
techniques such as Variational approximations [14] and sam-
pling based MCMC methods [24]. Again, these approaches
focus on utilizing only the ratings data. Recently, Bayesian
models based on topic models for document clustering [9]
have been applied to estimating affinities between users and

news articles [3], allowing for content-based adaptations within

a matrix factorization approach. Two-sided generalizations
of topic models have also been proposed for co-clustering
and matrix approximation problems, without taking into ac-
count auxiliary sources of information [25], [26].

3. LaD-BAE

This paper describes an Attribute Aware Bayesian Affinity
Estimation approach to recommender systems that is re-
lated to Latent Dirichlet Allocation. Our approach is called
the Latent Dirichlet Attribute Aware Bayesian Affinity Es-
timation (LaD-BAE) model. Figure 1 shows the graphical
model for LaD-BAE; a mixture of KL clusters obtained as
the cross-product of clustering the two sets of entities into
K and L clusters, respectively. The approach is very sim-
ilar to the LD-BAE model described in [27], but with the
alteration that unobserved values are ignored (which makes
the LaD-BAE algorithm more scalable). More detailed in-
formation on the update equations and their derivations can
be found in that tech report. A summary of the generative
process for the entity attributes and the dyad ratings is as
follows:

1. Sample mixing coefficients: w1 ~ Dir(a)
2. Sample mixing coefficients: w2 ~ Dir(a)

3. For each entity e1nm € &1

(a) Sample cluster assignment: z1, ~ Disc(m1)
(b) Sample entity attributes: @im ~ py, (€1m|0121,,)

4. For each entity e2, € &2

(a) Sample cluster assignment: z2, ~ Disc(r2)
(b) Sample entity attributes: @2n ~ Py, (T2n|022,,)

5. For each dyad (e1m,€2,) such that eim, € &1, €2, € Ea

(a) Sample affinity (rating): ymn ~ Dy, (Ymn|BL,,, 20, Tmn)

The overall joint distribution over all observable and latent
variables is then given by:

p(V, X1, X, 21, 2o, w1, mo|an, a2, @1, 02, 8) =
p(milon)p(ma|os)

I, p(z1m|71)p0s (@116121,,) )
(TL, p(z2nlm2)pus (201622,))
( Hm,n Py (ymn Wlhnzznwm")pwz (w2n|02zzn ))

The complexity of the distribution after marginalizing out
the latent variables precludes the direct maximization of the
observed (log) likelihood via an Expectation Maximization
(EM) algorithm. Instead, we use a variational approach by
constructing a lower bound on the log likelihood using a fully
factorized mean field approximation to the true posterior
distribution over the latent variables. The optimal factor-
ized distribution over the latent variables (Z1,Z2, 71, m2)
that corresponds to the tightest lower bound on the observed
likelihood is given by:

q*(Zh Z2, T, 71'2) =
¢ (m117)a" (m2132) (11,0 4" (z1mlrin)) (L, 07 (z201r20) ).

where ¢(m1|71) and ¢(72|v2) are K- and L-dimensional Dirich-
let distributions with parameters ;1 and ~2, respectively.
The cluster assignments z1,, and z2, follow discrete distri-
butions over K and L clusters with parameters 71, and ran,,
respectively. Using this approximation, we are able to obtain
updates for the variational and free model parameters, which
are used in an EM algorithm, described in Algorithm 1.

We also incorporated pre-computed profile-attribute simi-
larity features in the LaD-BAE model. These features are
not considered in the clustering of the users or the items,
so they can be used in the calculation of y (increasing the
dimension of 3 accordingly) without further change to the
updates.

In order to determine the best K and L for our model, we
used a greedy search procedure described in Algorithm 2.
Essentially, it consists of an inner loop and an outer loop.
The outer loop updates the row and column clusters by inde-
pendently increasing K and L by 1, and the inner loop uses
Algorithm 1 to update the candidate models. The evalua-
tion metric is then calculated for each candidate model on
a validation set, and the best model becomes the new cur-
rent model for the outer loop. If neither the row nor column
cluster split improves upon the evaluation metric for the
current model, the algorithm stops and returns the current
best model and its corresponding values of K and L.



Algorithm 2 Choose K and L

Input: Yobs, X1, Xo, Kinit, Linit
Output: ai,a2,01,0,,3
[m], [n), [KIE, (07

Step 0: Split Vobs into Virain and Vvanidation

Step 1: Train LaD-BAE model using Yirain and other input parameters
Step 2: Compute the evaluation metric Ecurrent Of the learned model on the validation set, Vyalidation

Until Convergence of Ecurrent

Step 3 Evaluate a row cluster split on the current model Mcyrrent

Step 3a Compute the contribution Ej of each row cluster to Ecurrent

Step 3b Select the worst cluster, kworst, as the candidate to split

Step 3c Create a new cluster, knew, with 71, = 0 for all m, k

Step 3d For rows with error below the median metric, assign T1mk,c., = Mimkwors: @A T1mkyorse = 0

Step 3e Retrain LaD-BAE, seeding with the newly adjusted responsibilities

Step 3f Compute the evaluation metric Eyow of the newly learned row-split model on the validation set
Step 4 Evaluate a column cluster split on the current model Mcurrent

Step 4a Compute the contribution E; of each column cluster to Ecyrrent

Step 4b Select the worst cluster lyors¢ as the candidate to split

Step 4c Create a new cluster e, with ro,; = 0 for all n,

Step 4d For columns with error below the median metric, assign 72,

new = T2nlyorst AN T2n140,e = 0

Step 4e Retrain LaD-BAE, seeding with the newly adjusted responsibilities
Step 4f Compute the evaluation metric Ecolumn Of the newly learned column-split model on the validation set
Step 5 Accept the best split model (and update Mcurrent and Fcurrent) if its corresponding E is better than Ecurrent

Algorithm 1 Learn LaD-BAE

InpUt: yob57 Xla XZa Ka L

Output: a1, a,01,0,,3
[m], [n), [KIE, [T

Step 0: Initialize a1, a2, ©1, O3, B, T1mk, T2nl
Until Convergence
Step 1: E-Step
Until Convergence
Step 1la: Update y1x
Step 1b: Update v2;
Step 1c: Update r1mk
Step 1d: Update ran;
Step 2: M-Step
Step 2a: Update 015
Step 2b: Update 04
Step 2c: Update 3,
Step 2d: Update a1
Step 2e: Update a2

4. EXPERIMENTS

As a comparison for our model, we compared the test RMSE
to four other models: (1) using the global average, (2) a
model comprised of the global average adjusted by local
user and item bias terms, (3) a linear regression model on
the entire data matrix, and (4) PMF (as implemented in
GraphLab [16]). All of these models are deterministic, and
consistently produce the same answer (for the same param-
eter values). However, the LaD-BAE model is susceptible
to seeding conditions, and therefore an average over 5 runs
is given.

4.1 Yahoo! Movies

We first give results on the Yahoo! Movies dataset. This
dataset (obtained at http://webscope.sandbox.yahoo.com/)
contains a training set of 211,231 movie ratings for 7,642
users and 11,915 movies. This training data is very sparse;
the known entries are only .23% of the entire matrix. A test
set is also provided, containing 10,136 ratings from 2,309
users and 2,380 movies

In addition to the ratings matrix, this dataset has user at-
tributes (age and gender) and movie attributes (average
movie rating value in the training set, number of ratings in
the training set, MPAA rating, genre, and GNPP — a fea-
ture derived from awards nominated and won, which tries
to capture the popularity of a movie).

4.2 Quantitative Analysis

The LaD-BAE model selection finds a large number of user
clusters (8) for this data, and few movie clusters (2), de-
spite the fact that there are more movie features, and in
fact only two user features. This seems to indicate that for
this dataset, the heterogeneity of the user attributes (and
in fact movie attributes) is less important than the predic-
tive heterogeneity in the response of the users to the movie
attributes when separating the data. The results for the
various algorithms on the dataset are shown in Table 1.

A surprising result for this dataset is how well the bias model
performs when compared to the other models. Additionally,
all of the feature-based models had worse errors than those
for the models that depend wholly on the ratings values.
Clearly, the features used in this dataset were not excep-
tionally helpful in obtaining good predictions at a global
level, though the LaD-BAE model was able to achieve an
RMSE similar to the best models in its best case (the best
LaD-BAE model had an RMSE value of 0.9897), and even
on average the LaD-BAE model is only slightly behind the
best models. Thus LaD-BAE is able to recover from features
that are not predictive at a global level to some degree by
finding more local models that fit the data more accurately.

4.3 Qualitative Analysis

Since there were so many co-clusters found by the model
selection algorithm, and as some of the features were rep-
resented in a l-of-k format, we present only a few of the
co-clusters and (s found by the feature-based algorithms.
As our representative co-clusters we chose row clusters 4, 5,
and 8 with both column clusters, i.e. provide the coefficients



Model RMSE
Global Average 1.471670
Bias Model 0.986491
Global Linear 1.097887
PMF (lambda 0.225, D=50) | 0.9867
LaD-BAE (K=8,L=2) 1.00027

Table 1: Average RMSE Results on the Yahoo!
Movies Dataset.

for six co-clusters. For our features, we chose the co-cluster
bias, user age, movie average rating, movie GNPP, movie
number of ratings, and the indicator that the movie was
rated PG. The corresponding (s are displayed in Table 2.

Clearly the most important features in both models are the
co-cluster bias and the GNPP value. The LaD-BAE model
captures some slight variations in the local co-clusters, which
enable it to perform much better than the global linear
model. Co-cluster (4,2) and (8,2) seem to slightly favor
movies with a PG rating, while that rating has no influence
on the other co-clusters. On the other hand, co-cluster (5,1)
tends to rate commonly rated movies lower, which might in-
dicate that those users have some intolerance for popularly
rated movies. Another interesting trend is that movie cluster
2 has higher weights on the GNPP than cluster 1, indicating
that some movies are popular because of the awards which
they earn, while others are popular with users despite the
opinions of the critics. Also, user cluster 8 has a relatively
strong trend for rating movie lower as the user age increases.
This could be a group of users who grow increasingly critical
of the movies they see as they get older.

44 HetRec 2011 Moviel ens Dataset

Next, we demonstrate results for our algorithm on the Movie-
Lens dataset provided in conjunction with this workshop,
and compare the results of this model to a global model and
a slightly more intelligent model that ignores the heteroge-
neous attributes. We divided the data into separate training,
validation, and testing sets, based on the timestamps of the
users’ ratings. We held back the last 4 ratings of each user
as the test set, the previous 4 ratings for the validation set,
and everything else was used as the training set. This split
left a minimum of 12 training examples for each user. Se-
lection of model parameters K and L was performed using
the validation set, and the final models were trained on a
combination of the training and validation sets (providing a
minimum of 16 training examples per user).

For the attributes on this dataset, we used the user “bias”
(the difference between the user’s mean score and the over-
all mean of the data) as the only user attribute. For item
attributes, we used the average scores and percentages of
“fresh” ratings for both critics and audience from Rotten
Tomatoes, as well as the movie “bias”. Additionally, we de-
rived 5 dyad-level features representing the utility function
for the user profiles and item features for directors, coun-
tries, locations, and genres. Using this data, model selection
resulted in only 2 user clusters and 4 movie clusters.

45 Quantitative Analysis

Model RMSE
Global Average 1.010671
Bias Model 0.882657
Global Linear 0.775841
PMF (lambda 0.07, D=20) | 0.8367
LaD-BAE (K=2,L=4) 0.775587

Table 3: Average RMSE Results on the HetRec 2011
MovieLens Dataset.

The RMSE values for each of the models is given in Table 3.
Notably, LaD-BAE does not beat the global linear model
every time, which is likely due to the extreme sparsity of
the data coupled with the relative unimportance of the in-
dependent user and item features. It is easier for the more
adaptive model to overfit when the data is so sparse. When
analyzing the model features, we examined the s (feature
weights) of the best LaD-BAE model.

The RMSE values obtained for this dataset were much bet-
ter than those for Yahoo! Movies in every model. This is
likely due to the much higher sparsity of the Yahoo! Movies
dataset, as even the feature-ignorant models performed con-
siderably worse. Also, the feature-based models were much
more competitive on this dataset, indicating that the hetero-
geneous features from the HetRec 2011 MovieLens dataset
are much more predictive of ratings than those for the Ya-
hoo! Movies dataset. In particular, the use of the features
based on utility functions for actors and directors were easily
derived from this recent dataset, but were not successfully
generated on the Yahoo! Movies dataset. Thus, the utility
functions of the heterogeneous attribute vectors appear to
be very useful features for predicting rating values.

Clearly, taking user and movie bias information into account
yields a more informative model than one that simply takes
into account the global average. The matrix factorization
model is reasonably good given that it does not take advan-
tage of any of the external sources of information. However,
the global linear model performs substantially better than
matrix factorization by taking this additional information
into account. And the LaD-BAE model can perform even
better than the global linear model by capturing predictive
heterogeneity in user and item clusters.

4.6 Qualitative Analysis

The matrix factorization model yields latent factors that
describe the users and items, but those latent factors are
not easily interpreted. One of the useful characteristics
of the LaD-BAE model is that it still allows for human-
recognizable interpretation of its results. In fact, it is helpful
to compare these results to the global linear model, to see
how LaD-BAE is able to capture the predictive heterogene-
ity present in the data. The Bs for both models are given in
Table 4.

From the results, we can see that a few of the features are
much more helpful in predicting the affinities than others. In
particular, the biases are important for all the models, espe-
cially the co-cluster and movie biases. For the global model,
the only feature that is relevant outside of these biases is the
feature representing the relationship between a user’s actor



Model CC Age Avg Rat | GNPP | # Rat PG

Global 4.0887 | -0.0824 | -0.0081 0.6153 | -0.0013 | 0.0198

LaD-BAE (k,1)

(4,1) 4.2344 | 0.0000 0.0000 0.6013 | 0.0000 | 0.0000

(4,2) 4.1813 | 0.0000 0.0000 0.7415 | 0.0000 | 0.1233

(5,1) 4.3272 | 0.1661 0.0000 0.4360 | -0.1716 | 0.0000

(5,2) 4.0963 | 0.2198 -0.2720 0.6608 | 0.0000 | 0.0000

(8,1) 4.1066 | -0.3514 0.0000 0.4893 | 0.0000 | 0.0000

(8,2) 4.0300 | -0.3348 0.0000 0.5451 | 0.0000 | 0.1108

Table 2: ( values for selected Yahoo! Movies co-clusters and features.

Model CC U M AR AF CR CF D C L A G
Global 3.4364 | 0.1452 | 0.3964 | 0.0146 | -0.0313 | -0.0336 | 0.0317 | 0.0814 | 0.0207 | 0.0087 | 0.2584 | 0.0466
LaD-BAE (k,l)
(1,1) 3.4572 | 0.0025 | 0.3994 | 0.0129 | 0.0389 | -0.0310 | -0.0427 | 0.1080 | 0.1330 | 0.4167 | 0.1046 | -0.0083
(1,2) 3.4449 | 0.0737 | 0.3632 | 0.0025 | 0.0457 | -0.0280 | -0.0474 | 0.0245 | 0.0031 | 0.7349 | -0.0130 | -0.0191
(1,3) 3.4038 | 0.1311 | 0.3859 | 0.0212 | 0.0556 | -0.0278 | -0.0586 | 0.0279 | 0.2879 | 0.1479 | -0.0245 | 0.0441
(1,4) 3.4457 | 0.0810 | 0.3913 | 0.0477 | 0.0226 | -0.0733 | -0.0354 | 0.0154 | 0.2066 | 0.5353 | 0.0454 | -0.0299
(2,1) 3.4895 | 0.1937 | 0.3888 | 0.0184 | 0.0118 | -0.0317 | -0.0093 | 0.0762 | 0.0862 | 0.0723 | 0.0763 | 0.0072
(2,2) 3.4943 | 0.1959 | 0.3603 | 0.0277 | 0.0270 | -0.0433 | -0.0227 | 0.0447 | 0.0183 | 0.1639 | 0.0324 | -0.0028
(2,3) 3.4724 | 0.2676 | 0.3742 | 0.0262 | 0.0301 | -0.0398 | -0.0322 | -0.0121 | 0.0955 | 0.0424 | -0.0005 | 0.0373
(2,4) 3.5206 | 0.2143 | 0.3904 | 0.0158 | -0.0073 | -0.0269 | -0.0001 | 0.0087 | 0.1876 | 0.1309 | 0.0716 | -0.0167

Table 4: (§ values for linear models features. Column heading abbreviations are as follows: CC: co-cluster, U:
user bias, M: movie bias, AR: Average Audience Rating, AF: Audience Freshness Score, CR: Average Critics

Rating, CF: Critics Freshness Score, D: Director, C: Country, L: Location, A: Actors, G: Genre.

preferences and the actors appearing in the film. Thus, on
average the most important factor in deciding whether a user
will rate a movie highly appears to be how similar users have
rated similar movies. A movie’s popularity across all users
is also helpful information, as well as whether the user likes
the actors appearing in the film. Finally, users do appear
to have a slight bias for or against giving high ratings in
general, which can also be somewhat predictive.

For the split model, in user cluster 1 the user bias is less
important, and the actor and director features are much
more important. This indicates that the first user cluster
captures the behavior of users who are much more swayed
by their favorite actors and directors despite other qualities
of the film, while the second cluster captures the behavior
of users who are generally less influenced by who directed or
played in a film. Additionally, the effect of actors on ratings
for movie clusters 2 and 4 is more important in both user
clusters. This could be explained by blockbuster movies that
are very popular, and often include performances by many
actors who are popular across all users.

Location, country, and genre do not seem to be a large influ-
ence in a user’s rating of a movie. Additionally, the average
ratings and freshness scores from Rotten Tomatoes do not
appear to be very informative. In other words, this feature
does not seem to help the model predict the ratings (as ev-
idenced by the low magnitude of its weight in the model).
This is likely due to the fact that these features might al-
ready be captured in the other more important features,

especially the movie bias, which contains a very similar “av-
erage rating” that is more directly related to the rating being
predicted.

4.7 Further Analysisof HetRec Moviel ens

Recognizing that the low-scoring features were likely intro-
ducing noise into the system and creating additional unde-
sirable local minima in the solution space for LaD-BAE, we
removed all the features except for co-cluster bias, user bias,
movie bias, actor, and director. With these five features
only, we ran an additional set of experiments for the global
model and LaD-BAE, and found that while the prediction
error of the global model increased to 0.77661, the average
prediction error of LaD-BAE decreased to 0.7735. Table 5
shows the (s for the models after feature selection, which
demonstrate many of the same patterns as the corresponding
features in the larger model. The remaining features carried
even more weight, indicating that their influence was more
apparent when not masked by the less informative (but still
somewhat correlated) features of the larger model.

5. CONCLUSIONSAND FUTURE WORK

We have shown that while matrix factorization and similar
algorithms that ignore side-information can be very effective
for recommender systems, models that use heterogeneous
sources of data for predicting the affinities can achieve even
greater accuracies. This is especially true when the features
used are informative. With the availability of many het-
erogeneous sources of data, it is important to exploit the
available data and work with models that can incorporate



Model cC U M A D
Global 3.4364 | 0.2035 | 0.3890 | 0.2629 | 0.0827
LaD-BAE (k)

(1,1) 3.3918 | 0.1877 | 0.4537 | 0.1133 | 0.0336
(1,2) 3.5034 | 0.2515 | 0.4482 | 0.1956 | 0.1846
(1,3) 3.4929 | 0.1766 | 0.4305 | 0.4519 | 0.1217
(1,4) 3.4880 | 0.2499 | 0.4531 | 0.3106 | 0.0195
(2,1) 3.3822 | 0.1052 | 0.3537 | 0.3582 | 0.0869
(2,2) 3.5916 | 0.1325 | 0.3023 | 0.5113 | 0.4935
(2,3) 3.5083 | 0.0656 | 0.3075 | 0.6260 | 0.3446
(2,4) 3.4824 | 0.1805 | 0.3376 | 0.4106 | 0.1567

Table 5: § values for models after pruning.

the additional features effectively. The focus of this paper
was on learning multiple local models in the process of in-
corporating such features.

Specifically, we proposed a Bayesian approach called LaD-
BAE to capture the predictive heterogeneity in the interac-
tion among different groups of users and items. LaD-BAE
can take advantage of both feature heterogeneity as well
as predictive heterogeneity to obtain good predictions for
affinities between users and items. Additionally, the mod-
els obtained by LaD-BAE are much more interpretable than
matrix factorization or even a global linear model. They are
also more actionable, since one can separately understand
and model/target different sub-populations rather than use
a one-size-fits-all approach underlying a global model. One
additional advantage of the LaD-BAE model (as well as sim-
ilar approaches) is its ability to combine multiple content-
based predictions, while also including a co-cluster bias term
that allows for collaborative filtering information to be used
in the same composite model.

We achieved our best results using only a few informative
features; finding and utilizing additional informative fea-
tures, and particularly ones that are not highly correlated
with the current features, we could realize even greater im-
provements in the accuracy. One such feature that we would
like to explore, but did not have the time to complete, is
the use of tag information, such as is described in [7] and
[6]. Features extracted from any social networks among the
users are also worthy of further investigation.
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