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Spatially Adaptive Classification of Land Cover
With Remote Sensing Data
Goo Jun, Member, IEEE, and Joydeep Ghosh, Fellow, IEEE

Abstract—This paper proposes a novel framework called
Gaussian process maximum likelihood for spatially adaptive clas-
sification of hyperspectral data. In hyperspectral images, spectral
responses of land covers vary over space, and conventional classi-
fication algorithms that result in spatially invariant solutions are
fundamentally limited. In the proposed framework, each band of
a given class is modeled by a Gaussian random process indexed
by spatial coordinates. These models are then used to character-
ize each land cover class at a given location by a multivariate
Gaussian distribution with parameters adapted for that location.
Experimental results show that the proposed method effectively
captures the spatial variations of hyperspectral data, significantly
outperforming a variety of other classification algorithms on three
different hyperspectral data sets.

Index Terms—Classification, Gaussian processes, hyperspectral
imaging (HSI), kriging, spatial statistics.

I. INTRODUCTION

R EMOTE sensing data provide synoptic and timely infor-
mation for identifying and monitoring large geographical

areas that are less accessible by other means. In particular,
hyperspectral imaging provides rich spectral information about
remotely sensed objects and is one of the most useful and popu-
lar techniques for land use and land cover (LULC) classification
[1]. Each pixel in a hyperspectral image consists of hundreds
of spectral bands ranging from infrared to visible spectrum.
Different land-cover classes show different spectral responses.
For example, spectral responses of forest are quite different
from spectral responses of corn fields, but there are only subtle
discrepancies between spectral responses of various types of
corn fields. On the other hand, there also exist within-class
variations in the spectral responses of the same land-cover class.
Identification of a land-cover class from other classes with
similar spectral responses becomes a challenging task when
the within-class variation is comparable to the between-class
differences.

Variations of spectral features can be contributed to many
factors such as soil composition, weather, terrain, hydrologic
conditions, and/or measurement noise. Many of these are spa-
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Fig. 1. Averaged spectral responses of water class at different locations.
(a) Botswana image. (b) Locations of water. (c) Spectral signatures.

tially varying factors. Geographically closer regions usually
have similar geological and environmental conditions; hence,
smaller variations of spectral responses are expected in smaller
spatial footprints. Fig. 1 shows how the spectral signature
of a single land-cover class changes over space. Fig. 1(a)
shows the red–green–blue version of a hyperspectral image
acquired by Hyperion over the Okavango Delta, Botswana. This
30-m resolution data cover a spatial extent of approximately
44 km by 7.5 km and is used in the experiments described later.
Fig. 1(b) shows three different locations of water samples in this
image, and Fig. 1(c) shows the average spectral responses at
these locations in the corresponding color. As can be seen from
the figure, there are nonnegligible changes of spectral responses
within the same land-cover class.
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Fig. 2. Toy example showing how spatial variations affect a global model. (a) Spatial variation. (b) p(x|y) from global estimates. (c) Local model p(x|y, s = 1).

Conventional classification algorithms assume a global
(single) model that applies to all pixels, i.e., across the entire
image. Although this assumption may hold in small spatial
footprints, spectral signatures do not remain constant across
the image as shown in the example. In the presence of spatial
variations, a classifier with a global model trained on a small
region may not generalize well to other areas. On the other
hand, training such a classifier using the samples taken across
the entire image may lead to large within-class variations in the
training data, and the resulting classifier would have difficulties
in distinguishing similar land-cover classes from one another.
Fig. 2 is a toy example that illustrates the problems of using
a global model under spatially varying distributions. Red and
blue points in Fig. 2(a) are randomly generated from two
different Gaussian distributions with spatially varying means.
The x-axis represents the 1-D spatial coordinate s, and the
y-axis represents a 1-D feature x. At a given location, data
points of each class are randomly generated from a unimodal
Gaussian distribution. Means of class-conditional distributions
are generated by smooth quadratic functions of s, and the
same (constant) standard deviations (SD) are used for both
classes. The red and blue curves indicate the true means used to
generate random samples. Fig. 2(b) shows the class-conditional
Gaussian distributions p(x|y) modeled by maximum likeli-
hood (ML) estimators without utilizing any spatial information.
Fig. 2(c) shows true class-conditional distributions of both
classes at a specific location p(x|y, s = 1). As can be seen in
the example, it is possible to have better separation of classes
by proper modeling of spatially varying parameters. The main
aim of this paper is to statistically model such variations using
Gaussian processes (GPs), in order to spatially detrend spec-
tral features. Classification methods acting on these detrended
features result in substantially improved labeling of land
covers.

Statistical modeling of spatially varying data has long been
studied as an important field of statistics, called spatial statistics
or geostatistics [2]. Geostatistical techniques such as kriging
have been used to model spatial dependencies in data and
used for a variety of environmental problem applications [3],
[4]. In kriging, each instance is modeled as an outcome of
a random process, and the prediction for a new location is
made by a linear combination of values at previously known
locations, weighted differently according to the pairwise dis-
tances. Nearby instances usually get higher weights than distant

instances, and the underlying assumption for such a weighting
scheme is embodied in the first law of geography by Waldo
Tobler: “Everything is related to everything else, but near things
are more related than distant things [5].” This underscores the
importance of neighborhood information as well as global (non-
myopic [6]) relationships between spatially remote instances.
The kriging approach has recently been adopted by the machine
learning community, where it is referred to as a GP model [7].
In the GP model, instances in the feature space are modeled as
realizations of Gaussian random processes.

We now propose a novel framework for the spatially adaptive
classification of hyperspectral data and name it the Gaussian
process maximum likelihood (GP-ML) model [8]. In
GP-ML, spectral features of a given class are decomposed as a
sum of a constant (global) component and a spatially varying
component, which is modeled by Gaussian process regressions
(GPRs). Once the spatially varying component is identified, it
is subtracted from the original features for spatial detrending.
The residual information is assumed to be spatially invariant
and is modeled as conventional multivariate Gaussians to
facilitate ML estimation.

II. RELATED WORK AND BACKGROUND

A. Land-Cover Classification With Hyperspectral Data

In recent years, the LULC classification by hyperspectral
image analysis has become an important part of remote sensing
research [1], [9]–[11]. Compared to multispectral images where
each pixel usually contains a few bands, pixels in hyperspec-
tral image consist of more than a hundred spectral bands,
providing fine-resolution spectral information. Classification
techniques used for this application should be able to handle
high-dimensional high-resolution data and a fairly high number
of classes.

There have been a number of studies that utilize spatial
information for hyperspectral data analyses or attempt to use
features that are relatively invariant across space [12], [13]. A
geostatistical analysis of hyperspectral data has been studied
by Griffith [14], but no classification method was provided.
One way to incorporate spatial information into a classifier
is stacking feature vectors from neighboring pixels [15]. A
vector stacking approach for the classification of hyperspectral
data, i.e., max-cut support vector machine (MC-SVM), has
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been proposed by Chen et al. [16], where features from the
homogeneous neighborhood are stacked using a MC algo-
rithm. We compare the proposed framework to the MC-SVM
algorithm in the experiment section. Another way to incorpo-
rate spatial information is via image segmentation algorithms
[17], [18]. The results from these approaches largely depend on
the initial segmentation results. Some algorithms exploit spatial
distributions of land-cover classes directly. The simplest direct
method is majority filtering [19], where the classified map is
smoothed by 2-D low-pass filters. Another popular method that
incorporates spatial dependencies into the probabilistic model
is the Markov random field model [20]–[23]. Bazi and Melgani
[24] used a GP classifier for classification of hyperspectral
images but not for spatial adaptation. GPs have been also
used recently for detecting change [25] and for estimating
biophysical parameters [26]. Han and Goodenough [27] pro-
posed using surrogate data for analyzing the nonlinearities in
hyperspectral data. The closest approach to this paper is by
Goovaerts [28], where the existence of each land-cover class is
modeled by indicator kriging to be combined with the spectral
classification results. However, the spatial information was not
used to model the variations of spectral features. In fact, none
of the aforementioned algorithms measure and model spatial
variations of spectral features directly.

Generative models of hyperspectral data often assume a
multivariate Gaussian distribution for each class, and both the
ML classification and the expectation-maximization algorithm
have been widely used in hyperspectral data analyses [29].
When applied to large spatially extended regions, a classifier
is often trained at one location and applied to other locations,
and there have been several studies to adapt for dynamically
changing properties of hyperspectral data in such settings.
Chen et al. applied manifold techniques to analyze the non-
linear variations of hyperspectral data [30], [31]. Kim et al.
extended this manifold-based approach with multiresolutional
analyses [32] and proposed a spatially adaptive manifold learn-
ing algorithm for hyperspectral data analysis in the absence
of sufficient labeled examples [33]. Some studies have pro-
posed classification algorithms that can transfer the knowledge
learned from one region to spatially or temporally separated
regions. For example, Rajan et al. [34] provided a frame-
work to transfer knowledge between spatially and temporally
separated hyperspectral data, but this approach does not uti-
lize spatial relations between locations. There have also been
studies on the active learning of hyperspectral data to mini-
mize the required number of labeled instances to achieve the
same or better classification accuracies [35]–[37], but these
active learning algorithms do not utilize any spatial information
either.

In our earlier works [8], [38], a spatially adaptive classi-
fication algorithm was proposed, where spatial variations of
spectral features are characterized by GPs. In this paper, the
previously proposed framework is enhanced by decomposing
the spectral features of a given class as a sum of a constant
(global) component and a spatially varying component and by
processing each dimension separately before dimensionality
reduction. These enhancements lead to a substantial improve-
ment in performance, as evidenced across a more extensive
set of experiments that cover a wider range of hyperspectral
images.

B. Spatial Data Analysis

Many real-world data sets have spatial components. Spatial
information is critical in certain social science data such as cen-
sus, survey, and public health data taken from different cities.
Other classical examples of spatial data include geological
data such as the distribution of mineral ores, soil composition,
and weather data. Spatial information also plays an important
role in the study of ecological data such as the distribution
of endangered species, vegetation data, and agricultural data.
Statistical analysis of spatial data is referred to as spatial statis-
tics or geostatistics [39]. In spatial statistics, each data point is
considered to be an outcome of a random process x(s). s ∈ S is
the spatial coordinate of the data point, where S ⊂ R2 is the set
of spatial locations in a 2-D Euclidean space. In this setup, we
can observe that nonspatial statistical models can be thought as
a special case of the spatial model. Spatial data can be modeled
as point patterns, lattice data, or geospatial data according to
the characteristics of S [2]. We will focus on the geospatial
data model, where S is a fixed set of points in R2. The most
common task of geospatial data analysis is predicting the value
of x(s∗) for a new location s∗ from the fixed set of existing data
x(s), s ∈ S. The process of finding the optimal linear predictor
is called kriging, named after a South African mining engineer,
D. G. Krige [40], [41]. When the underlying stochastic process
is a Gaussian random process, the linear predictor obtained by
kriging is optimal in the least-square sense. In kriging, x(s)
is modeled as a sum of a trend (mean) function μ(s) and an
additive noise term ε(s)

x(s) = μ(s) + ε(s).

There are several different types of kriging. The simplest one is
called simple kriging, where it is assumed that the process has
a zero mean μ(s) = 0, and the covariance function is known
a priori. There are more general techniques such as ordinary
kriging and universal kriging, where μ(s) is assumed to be
some unknown constant and unknown function, respectively
[2], [39]. The GPR model in machine learning is a simple
kriging model, since a zero-mean prior is typically assumed
[7]. Kriging has been widely used to model various kinds of
spatially varying quantities but has rarely been combined with
classification algorithms to develop spatially adaptive classifi-
cation schemes.

Recently, a technique called geographically weighted regres-
sion (GWR) [42] has been studied for regression problems
where relationships between independent and dependent vari-
ables vary over space. GWR is different from kriging in a
sense that its objective is to find spatially varying regression
coefficients, while, in kriging, the objective is to find the spatial
variation of variables. GWR and kriging both can be used for
similar tasks, and a recent comparative study has shown that
kriging is more suitable for prediction of spatially varying quan-
tities, but a hybrid approach may be beneficial for description
of complex spatially varying relationships [43].

C. ML Classification

The ML classifier is a popular technique for classification of
hyperspectral data. Let y ∈ {y1, . . . , yc} be the class label as-
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sociated with the spectral feature vector x ∈ Rd. The posterior
class probabilities are given by the Bayes’ rule

p(y = yi|x,Θ) =
p(y = yi|Θ)p(x|y = yi,Θ)∑c
i=1 p(y = yi|Θ)p(x|y = yi,Θ)

(1)

where Θ is the set of model parameters. Let the class-
conditional distributions be modeled by multivariate Gaussian
distributions

p(x|y = i,Θ) ∼N (μi,Σi)

=
1

(2π)n/2|Σi|1/2
e−

1
2 (x−μi)

TΣ−1
i

(x−μi). (2)

Θ = {(μi,Σi)|i = 1, . . . , c}, where μi and Σi are the mean
vector and the covariance matrix of the ith class. The ML
classifier makes an ML estimation of these parameters using
the training data with known class labels. It then picks the
class label of a test instance as the one that has the maximum
posterior probability according to (1) and (2), i.e., it applies the
Bayes’ decision rule [44].

D. GPR

Over the last decade, the GP model for machine learning [7]
has gained popularity. It has been applied to many domains
including regression and classification problems. GP models
are generally well suited for regression problems since they
eliminate the model selection problem [45].

A random vector x is jointly Gaussian, denoted as x ∼
N (μ,Σ), if and only if its joint probability density function
has the form of (2). One useful property of a Gaussian ran-
dom vector is that conditional and marginal distributions of
Gaussian random vectors are also Gaussian. A GP is a random
process such that all finite dimensional distributions of the
process are jointly Gaussian random vectors [7]. Let x be a
random process indexed by s, then x(s) is a GP, if and only
if x = [x(s1), x(s2), . . . , x(sn)]

T is a jointly Gaussian random
vector for any finite set of S = {s1, s2, . . . , sn}. As a Gaussian
distribution is defined by its mean and covariance, a GP is fully
defined by a mean function μ(s) and a covariance function
k(s1, s2) and denoted as x(s) ∼ GP(μ(s), k(s1, s2)). In GPR,
the target variable is modeled by a Gaussian random process.
Let us assume that the values of x are observed for some
S = {s1, s2, . . . , sn}, and x(s) is modeled as x(s) = f(s) + ε,
where ε is an additive white Gaussian noise term ε ∼ N (0, σ2

ε ).
We assume a (zero mean) GP prior for f(s)

f(s) ∼ GP (μ(s) = 0, k(s1, s2)) .

Then, given f(s), the distribution of x(s) is also Gaussian

p (x(s)|f(s)) = N
(
f(s), σ2

ε

)
.

In regression problems, we are interested in making predic-
tions based on the training data x = [x(s1), . . . , x(sn)]

T . The
predictive distribution of an out-of-sample instance x(s∗) can

be easily derived from the conditional distribution of jointly
Gaussian random vectors as

p (x(s∗)|x(s1), . . . , x(sn))=N
(
k(s∗, S)

[
KSS + σ2

ε I
]−1

x,

k(s∗, s∗) + σ2
ε − k(s∗, S)

[
KSS + σ2

ε I
]−1

k(S, s∗)
)

(3)

where k(s∗, S)=[k(s∗, s1), k(s∗, s2), . . . , k(s∗, sn)], k(S,
s∗)= k(s∗, S)

T , and KSS is a matrix such that its (i, j)th
element Kij = k(si, sj). Given a set of known instances x,
the predictive distribution is Gaussian with parameters shown
in (3). The predictive mean k(s∗, S)[KSS + σ2

ε I]
−1x is a

linear combination of known instances x, weighted according
to the spatial correlation between s∗ and (s1, s2, . . . , sn),
which is represented by k(s∗, S). In other words, we have
a linear estimator that uses the kernel smoothing values
k(s∗, S) as the weights. The predictive variance of x(s∗) is
the difference between the noninformative variance defined by
the prior distribution and the information provided by spatial
correlation. As can be seen in the formula, the covariance
function k(s1, s2) fully determines the characteristics of a
GP. In many applications, the value of k(s1, s2) decreases as
|s1 − s2| increases, which means that nearby known values
have more influence in determining the unknown value x(s∗)
as compared to known values further away.

III. METHODS

A. GP-ML Framework

We propose a novel framework for the classification of hyper-
spectral data, namely, the GP-ML model, which characterizes
the mean of each spectral band as a random process over
space using the GP model. This framework provides a practical
and effective way to model spatial variations in hyperspectral
images. As discussed in earlier sections, the GP model has been
long known in spatial statistics as kriging [2]. Traditionally,
kriging has been considered to be only suitable for modeling
of a single or small number of target variables. In this paper, we
directly model spatially adaptive class-conditional distributions
of high-dimensional data. For a given class, it is assumed that
each band is spatially independent of other bands and well
described by a single GP. Although values of different spectral
bands in hyperspectral data are correlated, we simplify the
problem by employing the naïve Bayes’ assumption. Naïve
Bayes’ classifiers assume that features are independent given
a class label, and studies have shown that the algorithm works
well for many high-dimensional classification problems [46].
Modeling multiple correlated target variables has also been
studied in spatial statistics, and it is called cokriging [2]. It is
impractical and too demanding, however, to model hyperspec-
tral data directly by cokriging [28], since cokriging requires
solving (n+ 1) · d linear equations for n data points with d
dimensions, and the system becomes sensitive to noise due
to the greatly increased number of parameters. There is also
a broad literature on estimating the covariance matrix when
faced with inadequate amounts of training data [47], [48] that
can be applied if one desires to learn full covariance matrices.
Estimating nonstationary covariance functions using local es-
timation methods as in [27] could be also considered, but it
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Fig. 3. Simplified illustration of GP-ML idea. The spatially varying mean of
each component of the ith class μ̂i(s) is modeled using GPR, and then, the
variation is removed from each data point before fitting a stationary Gaussian
distribution. (a) Data with spatial variation. (b) Spatial variation removed.

would significantly increase the complexity of the proposed
framework.

Let x be a d-dimensional vector representing spectral bands
of a pixel in a hyperspectral image, and y ∈ {y1, y2, . . . , yc}
be the class label that represents land-cover types, where c
is the number of classes. The class-conditional probability
distribution p(x|yi) is usually assumed to be a multivariate
Gaussian. For simple notation, let us focus on a single class
and omit i where possible. Typically, both the mean μ and
the spectral covariance Σ are considered to be constant over
the entire image. Instead, GP-ML models x(s) as a Gaussian
random process are indexed by a spatial coordinate s ∈ R2.
It is assumed that the spectral covariance matrix Σ is con-
stant without spatial variation. The mean function of μ(s)
is modeled as a sum of a constant (global) mean μconst

and a spatially varying zero-mean function μ̂(s), i.e., x(s) ∼
GP(μ̂(s) + μconst, k(s1, s2)). Fig. 3 illustrates the concept
using a simplified 1-D two-class example. Fig. 3(a) shows the
original data with spatial variation. Each class is modeled as
a sum of a constant mean μconst and the spatially varying
zero-mean function μ(s). Once we find μ̂(s) by GPRs and
subtract it from the data, the residual information x(s)− μ̂(s)
can be modeled with standard Gaussian distributions as shown
in Fig. 3(b).

First, we subtract the constant (global) mean of the ith class
from each instance of that class to make the data zero mean

x̂k = xk − μconst, 1 ≤ k ≤ ni,

where μconst =
1

ni

ni∑
k=1

xk.

xk, k = 1, . . . , ni are instances that belong to the ith class,
where ni is the number of instances in the ith class. Now,
let x̂j be a vector consisting of the jth bands of xk’s,
x̂j = [x̂j

1, x̂
j
2, . . . x̂

j
ni
]T . Then, we find the spatially vary-

ing means for jth dimension of the training data μ̂j =

[μ̂j
1(s1), . . . , μ̂

j
ni
(sni

)]T and the predictive mean at the location

s∗ of the test instance μ̂∗(s∗) = [μ̂1
∗(s∗), . . . , μ̂

d
∗ (s∗)]

T accord-
ing to (3)

μ̂j =σ2
fj
KSS

[
σ2
fj
KSS + σ2

εj
I
]−1

x̂j (4)

μ̂j
∗(s∗) =σ2

fj
k(s∗, S)

[
σ2
fj
KSS + σ2

εj
I
]−1

x̂j (5)

where k = 1, . . . , ni, j = 1, . . . , d. σ2
fj

and σ2
εj

are hyperpa-
rameters for signal and noise powers of the jth band in the data.
Then, we subtract μ̂k = [μ̂1

k(sk), . . . , μ̂
d
k(sk)]

T from each xk to
remove spatially varying components from the original data

x′
k = xk − μ̂k, 1 ≤ k ≤ ni.

x′ can be thought as spatially detrended instances; hence,
the distribution of x′ is assumed to be multivariate Gaussian
without spatial variation. Rather than estimating the parameters
of high-dimensional Gaussian distributions, it is desirable to
reduce the dimensionality of the data. For example, Fisher’s
multiclass linear discriminant analysis (LDA) finds a Rd →
R(c−1) dimensional projection Φ for a c-class problem [44].
The projection matrix Φ could be obtained from any linear other
dimensionality reduction methods. Fisher’s LDA is employed
in most of our experiments since it finds the optimal linear
subspace for separation of Gaussian distributed data; hence, it
conforms to the GP-ML framework that assumes multivariate
Gaussian distributions for spatially detrended data. There are
other linear dimensionality reduction techniques developed for
classification of hyperspectral data such as decision boundary
feature extraction (DBFE) [49] and nonparametric weighted
feature extraction (NWFE) [50]. The proposed framework is
also evaluated using NWFE, which is more recent and less
restrictive than DBFE, and the result will be presented in the
experiment section. Let Φ be the m× d projection matrix (m <
d) obtained from a dimensionality reduction algorithm. The
parameters for multivariate Gaussian distribution at s∗ in the
m dimensional linear subspace are

μ∗φ(s∗) =Φ (μ̂∗(s∗) + μconst) , (6)

Σφ =
1

ni − 1

ni∑
k=1

(
Φx′

k − 1

ni

ni∑
l=1

Φx′
l

)

×
(
Φx′

k − 1

ni

ni∑
l=1

Φx′
l

)T

. (7)

The subscript φ is used to denote the parameters and in-
stances in the projected space. The class-conditional distribu-
tion of x∗φ at location s∗ in the projected space is assumed to
be Gaussian

p(x∗φ|s∗, yi) ∼ N
(
μ∗φ(s∗),Σφ

)
.

By substituting (6) and (7) into (2) together with the value
x∗φ = Φx∗, we can calculate the probability that the test in-
stance x∗ at location s∗ belongs to the ith class. By repeating
the whole process for all the classes, one can predict the class
label y∗ that has the highest class-conditional probability.

Fig. 4 shows the results of applying the GP-ML model to the
Indian Pine data. The x-axis represents the spatial coordinate
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Fig. 4. Examples of spatial variations from Indian Pine data. Blue crosses are the training data (50%), red crosses are the test data at different locations, and blue
curves are the predicted means obtained by GPRs. Points are selected by vertical and horizontal slices of the image containing the most samples of a given class.

s along horizontal or vertical slices, and the y-axis represents
the spectral values of a selected band. Points in blue are the
training instances, and points in red are the test instances. The
blue curves are the mean functions of the jth spectral band
μ̂j(s) + μj

const, predicted by the GP-ML model. As can be
seen from the figure, there are significant amounts of spatial
variation in the spectral responses of a given class, and they are
effectively captured by the GP-ML algorithm.

B. Efficient Computation of GPs

In GP-ML, we need d GPs per class to model d-dimensional
data. In hyperspectral data analysis, this implies that we need
to compute hundreds of GPRs, which is computationally very
challenging. The most time-consuming part is the inversion
of the covariance matrix as in (4) and (5). When we have
n instances in a class, (σ2

fKSS + σ2
ε I) is an n× n matrix;

hence, inverting the matrix requires O(n3) computations. Using
Cholesky decomposition as in [7] helps when we need rank-1
updates, but in our case, KSS is fixed for a given class, and
(σ2

f , σ
2
ε ) varies for each dimension. In this case, Cholesky

decompositions cannot be updated efficiently, since σ2
ε I is a

full-rank matrix. Instead, we exploit the eigen decomposition
of the covariance matrix. KSS is a positive semidefinite matrix;
hence, we can diagonalize the matrix

KSS =V ΛV T = V diag(λk)V
T , k = 1, . . . , n

K−1
SS =V Λ−1V T = V diag

(
λ−1
k

)
V T .

Columns of V are eigenvectors of KSS , and Λ is a di-
agonal matrix such that the kth diagonal element λk is the
corresponding eigenvalue of the kth column of V . Since V is an

orthonormal matrix, V V T = I and V IV T = I; hence, we can
derive simple analytical solutions for the inverses in (4) and (5)(

σ2
fKSS + σ2

ε I
)−1

=
(
σ2
fV ΛV T + σ2

εV IV T
)−1

=V
(
σ2
fΛ + σ2

ε I
)−1

V T

=V diag

(
1

σ2
fλk + σ2

ε

)
V T

where k = 1, . . . , n. In the same manner, (4) can be further
simplified as

σ2
fKSS

(
σ2
fKSS + σ2

ε I
)−1

= V
(
σ2
fΛ

)
	V TV

(
σ2
fΛ + σ2

ε I
)−1

V T

= V diag

(
σ2
fλk

σ2
fλk + σ2

ε

)
V T .

It is important to note that the matrix multiplications in (4) and
(5) should be calculated from right to left because it will always
leave a column vector in the right end of the equation, and we
do not need to multiply two n× n matrices. This method has
the time complexity of O(n2) instead of O(n3) for the entire
calculation once we have the eigen decomposition beforehand.
Because KSS is common across all dimensions for a given
class, we need only one eigen decomposition per class.

C. Covariance Function

In the GP model, a covariance function determines the nature
of the process, and the covariance function is characterized
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by hyperparameters. Most covariance functions have a hyper-
parameter called the length parameter, which determines how
fast the correlation between two points changes as the distance
between the points increases. We employed the popular squared
exponential covariance function [7]

k(s1, s2) = exp

(
−‖s1 − s2‖2

2L2

)
(8)

where L is the length parameter. In GP-ML, the length param-
eter L is assumed to be identical over all classes and over all
dimensions. The signal power σ2

f and the noise power σ2
ε are

also hyperparameters.
There are two different approaches for hyperparameter es-

timation [7]: greedy search and cross validation. The greedy
search method uses the partial derivatives of the likelihood of
the GP and finds a locally optimal set of hyperparameters. In
this paper, we used cross validation to find the length parameter
L that maximizes the overall classification accuracies. We did
not use the likelihood-based method because of two reasons.
First, we have too many GPs that are not independent of one
another; hence, it is difficult to model the overall likelihood.
Second, finding hyperparameters based on individual likelihood
is not appropriate, since our objective function is the overall
classification accuracies rather than the fitness of individual
processes; hence, it is better to select parameters based on the
classification results. A predefined set of L values were tried
using four-fold cross validation on the training data to find the
one that yields the highest classification accuracy. The range
of L was determined according to the spatial resolution of the
hyperspectral image.

Hyperparameters for the signal power and the noise power
are explicitly measured from the training data. The variance of
the jth band σ2

j is measured and assigned to the signal power
σ2
fj

and the noise power σ2
εj

by assuming a fixed signal-to-noise

ratio, R = σ2
f/σ

2
ε

σ2
j =σ2

f + σ2
ε = (R+ 1)σ2

ε

σ2
ε =

1

R+ 1
σ2
j σ2

f =
R

R+ 1
σ2
j .

Initially, we tried selection of the best value for R also by
cross validation, but values ranging from 5 to 100 did not make
noticeable changes in overall accuracies; hence, a fixed value of
ten is used in the following experiments.

IV. EXPERIMENTS

Three different hyperspectral data sets are used for empirical
evaluations of the proposed framework: Purdue University’s
Indian Pine data from Indiana [16], [51], National Aeronautics
and Space Administration’s (NASA) Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) data from the John F. Kennedy
Space Center (KSC) area in Florida [52], and the Earth
Observing-1 (EO-1) hyperspectral data from the Okavango
Delta area in Botswana, Africa [53]. Detailed description of
each data set will be given in the following sections.

We compared the performance of the GP-ML algorithm to
three other classification methods: the Gaussian ML classifier,
the SVM classifier, and the MC-SVM [16]. The ML algorithm

is selected as a baseline method, since GP-ML is a spatially
adaptive alteration of ML. GP-ML is identical to the ML classi-
fier if there is no spatial variation in the expected signature of a
class. SVM is a popular classification algorithm particularly for
high-dimensional data and has been widely employed for the
classification of hyperspectral data [54]. MC-SVM is a spatially
adaptive SVM technique that incorporates the standard SVM
with the MC algorithm, which is a preprocessing method for
hyperspectral data analysis to incorporate spatial information as
augmented features. The MC algorithm processes each instance
in the training data by selecting its 3 × 3 neighborhood and
then dividing the pixels in this neighborhood into two groups
using the MC of the fully connected neighborhood graph. Pixels
in the same partition as the training instance are assumed
to belong to the same land-cover class, and averaged feature
values from those pixels are concatenated to the feature of
the given instance. As a result, the dimensionality of the data
is doubled. It has been shown that the MC-SVM algorithm
performs better than many other previously proposed methods
including Markov random field and majority filtering algo-
rithms that also exploit spatial information [16]. MC-SVM
results are included in our experiments since [16] compares the
results to other spatially adaptive classification techniques using
the Botswana data, which is also used in our experiments. For
fairness, it should be noted that the MC-SVM requires more
information than other algorithms, since it utilizes information
from unlabeled samples in the 3 × 3 neighborhoods of training
instances.

Four-fold cross validations with subsampling are used for
evaluation. The entire data set is divided into four equally
sized subsets, and for each experiment, one of those subsets
is used as the test data, and the other three subsets are used
as the training data. Cross-validation sets are kept the same
for different classification algorithms for better comparison.
This setup is equivalent to having four different hold-out sets,
where all algorithms are tested with the same four hold-out test
sets. Each set of the training data is then further subsampled
at 20%, 50%, 75%, and 100% sampling rates to observe how
each classification algorithm performs with different amounts
of training data. Thus, a 100% sampling rate means that we used
75% of the entire data for training for each of the four cross-
validation runs, a 50% sampling rate means that we used 37.5%
of the entire data for training, etc. The ML classifier also uses
Fisher’s multidimensional LDA for dimensionality reduction.
Radial basis function (RBF) kernels are used for SVM and
MC-SVM. For multiclass SVM classification, the one-versus-
all with continuous output scheme is used [55]. Parameters
for RBF kernels are also searched by cross validation, i.e., in
each experiment, the given training set is further divided into
training–training and training–validation sets, using four-fold
cross validation once again. Thus, now, with 20% sampling
rate, we use 20%× 75% = 15% of the training data (which
is 15% × 75% of the entire data) as training–training and
the remaining 5% of the training data as training–validation
for parameter search. Hyperparameter search for the proposed
GP-ML algorithm is also performed in the same manner. The
MC-SVM setup is identical to the SVM setup except that it
uses the stacked vectors as input features. All results reported
are averaged over the hold-out sets and are, thus, indicative of
the true generalization error.
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TABLE I
AVERAGE CLASSIFICATION ACCURACY [WITH STANDARD DEVIATIONS (SD)]

ON HOLD-OUT SETS FOR INDIAN PINE DATA

Fig. 5. Classified maps for the Indian Pine data, comparing groundtruth with
the results of four different methods. 50% of the available training data is used.
(a) Groundtruth. (b) ML. (c) SVM. (d) MC-SVM. (e) GP-ML.

A. Indian Pine Data

The Indian Pine data and the ground references were pro-
vided by the Laboratory for Applications of Remote Sensing at
Purdue University [51], [56]. This data set is one of the most
well-known hyperspectral data and has been used in multiple
studies [54]. The size of the image is 145 × 145 pixels, and each
pixel consists of 220 bands with 17-m spatial resolution [57].
The data were obtained by NASA/Ames using the AVIRIS on
June 12, 1992. The ground reference image originally contained
16 different land-cover classes, and we discarded four classes
that have less than 100 samples to avoid the small sample-size
problem. Twelve classes are used in the experiments as shown

in Table II. Water absorption bands and noisy bands (band 1,
104–109, 150–163, and 219–220) are removed from the data
before experiments.

Table I shows the overall classification accuracies for the
Indian Pine data. The proposed GP-ML classifier consis-
tently shows significantly better results than ML, SVM, and
MC-SVM results. In particular, with the minimum amount of
training data (20%), GP-ML shows an average overall accuracy
of 92.87%, while the second best result from MC-SVM is only
86.38%. Fig. 5 shows the example classification results using
50% of the training data together with the ground reference
map. Twelve land-cover classes are shown in different colors.
Table II shows confusion matrices from all four algorithms.
Each row indicates the number of instances classified as the
corresponding class, and each column indicates the number of
instances originally labeled as the corresponding class. It is
noticeable that although SVM generally shows better overall
accuracies than the ML classifier, for certain classes, the SVM
result is much worse than that of the ML classifier. Techniques
with spatial information generally show much lower error rates
for all classes, and GP-ML dominates other classifiers in most
cases. The worst case error of GP-ML is around 12% for the
Corn class, which is also significantly better than the worst-case
error of MC-SVM, which is about 18% for the Soy-clean and
the Building–grass–trees–drives classes. Detailed explanation
about these classes can be found in [56]. From Table II(a)
and (b), nonspatial classifiers make many errors distinguishing
different types of tillage. For example, both ML and SVM
methods show many errors between Son-notill and Soy-min.
It is clear that spatial information helps a lot in these classes,
as Table II(c) and (d) shows significantly reduced number of
errors in the same categories. The proposed GP-ML shows
better performances not only for the Soy classes (classes 7 to 9)
than other classifiers but also for the different types of tillages
in the Corn classes (classes 1 to 3).

B. KSC

The KSC data set was acquired by the NASA AVIRIS sensor
over the KSC area on March 23, 1996 [52]. The data originally
consist of 242 bands, and the bands that were noisy or impacted
by water absorption were removed, which leaves 176 bands
for use. The groundtruth was developed using land-cover maps
derived by the KSC staff from color infrared photography,
Landsat Thematic Mapper imagery, and field surveys. Land-
cover identification for this area is difficult because of the simi-
larity of the spectral signatures between certain classes and the
existence of mixed classes. There exist 13 different land-cover
types including water and mixed classes. The hyperspectral
image used for experiments has 512 × 614 pixels with 18-m
spatial resolution.
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TABLE II
CONFUSION MATRICES FOR INDIAN PINE DATA USING 50% OF AVAILABLE

TRAINING DATA. (a) ML. (b) SVM. (c) MC-SVM. (d) GP-ML

TABLE III
AVERAGE CLASSIFICATION ACCURACY

ON HOLD-OUT SETS FOR KSC DATA
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Fig. 6. Classified maps for the KSC data, comparing groundtruth with the
results of four different methods; 50% of the available training data is used.
(a) Ground reference map. (b) ML. (c) SVM. (d) MC-SVM. (e) GP-ML.

Table III shows average classification accuracies with stan-
dard deviations. As in the Indian Pine experiments, the pro-
posed GP-ML algorithm consistently performs better than other
algorithms in a statistically meaningful manner. Full confusion
matrices for KSC and Botswana experiments are provided
in [58] as well as more detailed explanations, where the
GP-ML algorithm also shows lower errors than other algo-
rithms for most classes. The only exception is the hardwood
swamp class, where the MC-SVM result shows the lowest av-
erage error. Fig. 6 shows the example classification results using
50% of the training data together with the ground reference
map. Land-cover classes of KSC data set are categorized into
upland classes (classes 1 to 7), wetland classes (classes 8 to 12),
and the water class. Spectral signatures within the same cat-
egory are more similar to each other than those in different
categories, which makes it more challenging to differentiate
land-cover classes within the same category. In [58], MC-SVM
shows generally better classification results than ML and SVM,
but it is also observable that misclassification rates between
wetland classes are not much improved. GP-ML shows bet-
ter overall classification accuracies across most classes, better

results for mixed classes, and less confusion between wetland
classes as well.

C. Botswana

The Botswana data set was obtained from the Okavango
Delta by the NASA EO-1 satellite with the Hyperion sensor on
May 31, 2001 [53]. The acquired data originally consisted of
242 bands, but only 145 bands are used after removing noisy
and water absorption bands. The area used for experiments
has 1476 × 256 pixels with 30-m spatial resolution. Fourteen
different land-cover classes are used for experiments including
seasonal swamps, occasional swamps, and dried woodlands.
The groundtruth labels are collected using a combination of
vegetation surveys, aerial photography, and a high-resolution
IKONOS multispectral imagery.

Overall, classification accuracies for Botswana data are
shown in Table IV. Unlike the previous cases, the GP-ML result
is worse than the SVM-based results at the 20% sampling rate.
It turns out that, with 20% sampling, classes 2 (Hippo grass)
and 14 (exposed soil) sometimes suffer from the small sample-
size problem; thus, the Gaussian ML-based methods fail for
those classes. At all other sampling rates, GP-ML dominates
other methods. Confusion matrices for Botswana data are also
provided in [58]. ML and SVM results also show high error
rates for the Ripirian class, which correspond to narrow regions
along the river. MC-SVM and GP-ML both show fewer errors
in these classes than nonspatial methods. GP-ML particularly
shows lower misclassification rates between different types of
Acacia classes. This result clearly demonstrates that the pro-
posed GP-ML framework effectively minimizes within-class
variation, which leads to better separation of land-cover classes
having similar spectral responses.

D. Enhanced Dimensionality Reduction

The experimental evaluations of ML and GP-ML algorithms
presented earlier were all generated using Fisher’s multidimen-
sional LDA, which has several limitations such as the number of
features being upper bounded by c− 1. As mentioned earlier,
however, the proposed framework can be combined with any
dimensionality reduction technique. We employed NWFE [50]
in the GP-ML framework and evaluated it using the Indian Pine
data. The number of extracted features is varied from 11, the
same as the number of features from the LDA algorithm, to 40.
Table V compares the NWFE-based results with LDA-based
ones. GP-ML results are significantly better than the baseline
ML results in all cases. It is interesting to observe that NWFE
results are much better than LDA results when 20% of the
training data is used and less than 20 features are used. In
this setting, using additional features is detrimental as there
are not enough data to properly estimate the larger number
of parameters, i.e., NWFE also suffers from small sample-
size problem in these cases. When more data are available, the
advantage of NWFE is lost, supporting our original hypothesis
that LDA is quite well matched with the GP-ML framework.

V. CONCLUSION

We have proposed a novel framework for the classification
of hyperspectral data with spatially adaptive model parameters.
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TABLE IV
AVERAGE CLASSIFICATION ACCURACY

ON HOLD-OUT SETS FOR BOTSWANA DATA

TABLE V
COMPARISON OF TWO DIFFERENT FEATURE EXTRACTION ALGORITHMS USED IN CONJUNCTION WITH ML/GP-ML ON INDIAN PINE DATA [AVERAGE

CLASSIFICATION ACCURACIES (WITH SD)
ON HOLD-OUT SETS ARE SHOWN]

The proposed algorithm models spatially varying means of each
spectral band of a given class using a GPR model. For a given
location, the predictive distribution of a given class is modeled
by a multivariate Gaussian distribution with spatially adjusted
parameters obtained from the proposed algorithm. Experiments
on three different hyperspectral data sets show that the proposed
framework performs significantly better than the baseline ML
classifier, the popular SVM classifier, and prior methods that
exploit spatial information.
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