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ABSTRACT
Many measures of healthcare delivery or quality are not
publicly available at the individual patient or hospital level
largely due to privacy restrictions, legal issues or reporting
norms. Instead, such measures are provided at a higher or
more aggregated level, such as state-level, county-level sum-
maries or averages over health zones (HRR1s and HSA2s).
Such levels constitute partitionings of the underlying indi-
vidual level data into segments that may not match the
data clusters that would have been obtained if one analyzed
individual-level data. Moreover, different data sources may
use different underlying partitions as the bases for their data
summarization. How can one run data mining procedures
such as clustering or regression on data where different vari-
ables are available at different levels of aggregation or granu-
larity? We first examine this problem in a clustering setting
given a mix of individual-level and (arbitrarily) aggregated
level data. For this setting, we present an extension of the
Latent Dirichlet Allocation model that can use such aggre-
gated information. The model provides reasonable cluster
centroids under certain conditions, and is extended to im-
pute masked features at the individual-level. The imputed
feature values are based on an underlying mixture distribu-
tion, and help to improve the performance in subsequent pre-
dictive modeling tasks. The model parameters are learned
using an approximated Gibbs sampling method, which em-
ploys the Metropolis-Hastings algorithm efficiently. Experi-
mental results using data from the Dartmouth Health Atlas,
CDC, and the U.S. Census Bureau are provided to illustrate
the generality and capabilities of the proposed framework.
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1. INTRODUCTION
Despite the tremendous information explosion and avail-

ability of public-domain medical and healthcare data re-
cently (for example see www.data.gov/health), many of the
health-related features or indicators are only available at a
highly aggregated level, due to privacy concerns, reporting
norms or legal issues [14]. In particular, routinely collected
administrative data sets, such as national registers, aim to
collect information on a limited number of variables for the
whole population, while survey and cohort studies contain
more detailed data from a sample of the population [12].
Even if the individual records are available, some features
may be suppressed to protect identities of data holders. For
example, Texas Department of State Health Services pro-
vides ‘Texas Inpatient Public Use Data File (PUDF)’, which
contains data on discharges from Texas hospitals [1], but
the ZIP code information in PUDF is suppressed or elim-
inated depending on the number of patients in a given re-
gion. As data mining algorithms should ideally be applied to
individual-level data to discover valuable information, lim-
ited access to the raw entries introduces conflict of interests
between data miners, patients and providers [15]. Several
privacy preserving data mining algorithms have been sug-
gested to overcome this conflict [3, 9]. However, require-
ments of privacy preservation are difficult to achieve for sev-
eral types of analyses, and these algorithms are typically
more complex and less capable compared to privacy-agnostic
techniques.

Many health or healthcare indicators are available at dif-
ferent aggregated levels, rather than providing an entry for
each individual. For example, average income by state,
average death ratio by city, or average smoking rate by
country are available through a variety of easily accessible
public reports. Although these aggregated statistics can-
not reconstruct the underlying individual-level data, these
aggregated data can be combined with individual data to
produce more informative models. In epidemiology, it has
been observed that ecological bias from aggregate adminis-
trative data can be alleviated by incorporating surveys of
individual exposures or case-control data, leading to recent



attempts at integrating data at multiple levels of summariza-
tion. In [11], hierarchical related regression (HRR) is intro-
duced, which combines both aggregated and individual level
datasets. The proposed HRR model alleviates ecological bi-
ases on its group-level data while improving individual-level
predictabilities. However, the features in both aggregated
and individual datasets need to be the same, and the gen-
erative process of the data is not considered. On the other
hand, in [12], two datasets with different features are used
to build a better regression model within a Bayesian frame-
work. But both datasets need to be at the same level of
aggregation.

In this paper, we seek a better utilization of such aggre-
gated information for augmenting the individual-level data.
Assuming that the dataset of interest is generated by a mix-
ture model, and that the partitions that form aggregation
units (such as states or counties) contain different ratios of
the mixture components, we introduce an extension of the
Latent Dirichlet Allocation (LDA) model [5], using the Cen-
tral Limit Theorem to capture the underlying clusters. De-
spite the limited nature of given aggregated information,
our clustering algorithm provides not only reasonable clus-
ter centroids, but also imputes the unobserved individual
features. These imputed features reflect the underlying dis-
tribution of the data, thus a predictive model using these
extended information shows improved accuracy. As many
datasets in the healthcare domain are divided into multiple
tables containing different levels of aggregation (sometimes
obtained from different sources), the suggested methodol-
ogy in this paper can be useful in maximizing the use of
such available information. Our approach can easily be ex-
tended to situations where different features are aggregated
over different partitions of the raw data records.

2. CLUSTERING MODEL
We denote the set of features that are available at the

individual level, where “individual” refers to entities at the
highest resolution available, by ~xo. The features that are ob-
served only at an aggregated level are denoted by ~xu, where
u denotes ‘unobserved’ at the individual level. Thus there is
an underlying“complete”dataset (Dx = {(~xo, ~xu)1, (~xo, ~xu)2,
..., (~xo, ~xu)N}), which has all features observed. The data
provider only provides the values of observed variables though.
In addition, it specifies a set of partitions: P = {D1

x,D2
x, ...,DPx }

where
⋃P
p=1D

p
x = Dx and Dpx

⋂
Dqx = ∅ for any p, q. These

partitions specify the aggregated values provided on the un-
observed features (~xu), Ds = {~s1, ~s2, ..., ~sP }, where ~sp is de-

rived from Dx as ~sp = 1
Np

∑N
i=1 ~xui1(~xui∈D

p
x) (sample mean

within Dpx) and Np = |Dpx|. Note that in general, different
partitions (and hence levels of aggregation) may apply to
different unobserved variables. Though our approach can
be readily extended to cover such situations, in this paper
we consider a common partitioning to keep the notation and
exposition simple.

Suppose we want to find K clusters in the complete data,
denoted by {C1, C2, ..., CK}. To cater to the unobserved data,
for now an assumption of conditional independence) is made
(to be relaxed later): p(~xo, ~xu|Ck) = p(~xo|Ck)p(~xu|Ck). Let
~ξk and ~θk be the parameters for the distributions p(~xu|Ck)
and p(~xo|Ck) respectively. If all data features are observed
at the individual level, a LDA-like clustering model can be
built based on the conditional independence assumption as

Figure 1: (a) Clustering models when complete data
is available (left) and (b) when only aggregates ~s are
observed instead of ~u (right).

in Figure 1 (left), where ~π is sampled from a Dirichlet distri-
bution parametrized by ~α. Figure 1 (right) shows a modified
clustering model that accommodates the aggregated nature
of the unobserved variables. As ~xu and ~xo are independent
given Ck, they can be separated using different nodes. In the
model, ~xu is not observed; rather the derived (aggregated)
features ~s are observed.

Even though the model of Fig. 1(b) captures the problem
characteristics, it is highly inefficient and contains redun-
dant nodes. Fortunately, the complexity of the model can
be reduced by removing the unobserved nodes ~xu’s if Np
is large enough. Let ~ηk and Tk be the mean and variance
of the distribution, p(~xu|Ck). Using the linearity of mean
statistics and the Central Limit Theorem, ~sp can be ap-
proximated as being generated from a normal distribution

N (~µp,Σ
2
p), where ~µp =

∑K
k=1 πpk~ηk, Σ2

p =
∑K
k=1

πpkT
2
k

|Np| .

The generation process of ~s doesn’t involve ~xu’s. As ~xu
doesn’t contribute to the likelihood of the model, ~xu can
actually be removed, resulting in the efficient Clustering
Using features with DIfferent levels of Aggregation (CU-
DIA) model as shown in Figure 2. The generative process
for CUDIA is as follows:

For ~sp in Ds,

– Sample ~πp ∼ Dirichlet(~α).

– Sample ~sp ∼ N (~µp,Σ
2
p),

where ~µp =
∑K
k=1 πpk~ηk and Σ2

p =
∑K
k=1

πpkT
2
k

Np
.

– For ~xoi in Dpx,

Sample ~zi ∼ Multinomial(~πp).

Sample ~xoi ∼
∏K
k=1 p(~xo|~θk)zik .

~π is sampled from a Dirichlet distribution parametrized
by ~α, and observed sample mean statistics ~s is generated
from a Normal distribution parametrized by a mixture of
true means ~ηs and a covariance Σ2. ~z’s in each partition
are sampled from a Multinomial distribution parametrized
by ~π, which is specific to the partition, and corresponding

~xos are sampled from a distribution
∏K
k=1 p(~xo|~θk)zk , where

the suitable form of p(~xo|~θk) depends on the properties of
the variable ~xo’s. For conciseness, the remaining sections of
this paper will denote ~xo as ~x.

3. INFERENCE
A generic EM algorithm [8] cannot be applied due to

the coupling between ~z and ~π as the normalization con-
stant of its posterior distribution is intractable. Collapsed



Figure 2: Graphical Model of CUDIA.

Gibbs sampling [13] also cannot be applied because ~π can-
not be integrated out due to non-conjugacy between ~s and ~π.
However the model can be learned using either variational
methods or Gibbs sampling approaches, and this paper fol-
lows the latter alternative. However, näıve Gibbs sampling
approaches are computationally inefficient, thus this paper
employs an approximated Gibbs sampling approach, which
can be applied when the dimension of ~x is small. The model
parameter estimation follows the MCEM algorithm [6] using
this approximation technique.

3.1 E-step: Gibbs Sampling
In CUDIA, the latent variables are ~π and z. So we have:

p(X,S,Π,Z|~η, ~θ, ~α)

=

P∏
p=1

p(~sp|~πp, ~η)p(~πp|~α)

Np∏
i=1

K∏
k=1

p(~xi|~θk)zikp(~zi|~πp).

For each partition p, the Gibbs sampling is performed as
follows:

~π(j+1)
p ∼ p(~π|~z(j)1 , ~z

(j)
2 , ..., ~z

(j)
Np
, ~sp, ~η, ~α) (1)

~z
(j+1)
i ∼ p(~z|~π(j+1)

p , ~xi, ~θ). (2)

However, sampling ~π is problematic as Eq. (1) is not a
trivial distribution. Instead of sampling directly from Eq.
(1), Metropolis-Hastings (MH) algorithm can be used with
a proposal density Dirichlet(~α):

~π
(new)
p ∼ Dir(~α) and ζ ∼ Uniform(0, 1).

~π
(j+1)
p ← ~π

(new)
p if ζ < g(~π

(new)
p , ~π

(j)
p )

∏K
k (

π
(new)
pk

π
(j)
pk

)n(z
(j)
·k ),

where g(~π
(new)
p , ~π

(j)
p ) =

p(~sp|~π
(new)
p ,~η)p(~π

(new)
p |~α)2

p(~sp|~π
(j)
p ,~η)p(~π

(j)
p |~α)2

and

n(z
(j)
·k ) is the count of z

(j)
·k = 1.

Even though this MH algorithm inside the Gibbs sampling
becomes inefficient when dealing with large datasets, the
sampling step of ~z’s can be removed assuming a large enough
data size of Np and a small dimension of ~x.

The overall idea of this approximation is as follows: If ~x is
generated from an exponential family distribution, p(zk|~x, π)
is continuous with respect to ~x, so that p(~z|~x, ~π) ≈ p(~z|~x +
d~x, ~π). Consider a ball of radius r > 0 centered at ~xc,
Br(~x

c), such that p(~z|~xc, ~π) ≈ p(~z|~x, ~π), where ~x is in the
ball. If the number of ~x’s that are in the ball is large
enough, then n(z·k) in the ball can be approximated as
n(z·k) ≈ |Br(~xc)|E[zk|πp, ~xc] ≈

∑
~x∈Br(~xc)

E[zk|πp, ~x]. This
idea can be effectively applied when Np is large and the

dimension of ~x is small, even better when ~x is a discrete
variable. Assuming partitional balls over Dpx, n(z·k) in the

partition p can be approximated as
∑Np

i=1E[zk|πp, ~xi]. Let-
ting the number of Gibbs samples be NGibbs, the algorithm
works as follows:

For j = 1 to NGibbs,

– Sample π
(j+1)
p using MH algorithm,

where n(z
(j)
·k )←

∑Np

i=1E[zk|π(j)
p , ~xi]

– Set E[zk|π(j+1)
p , ~xi] =

p(~xi|~θk)π
(j+1)
pk∑K

k=1
p(~xi|~θk)π

(j+1)
pk

.

E[zk|~x] ∝
∑NGibbs
j=1 E[z

(j)
k |π

(j)
p , ~x].

The last line of the algorithm is derived by using the Par-
tition Theorem of conditional expectation [10]. As a result,
the actual sampling process occurs only in the MH sampling.
In this paper, we used a burning period of 10 samples, and
NGibbs ≈ 50 to 100 [2]. Experimental results show that with
this small number of samples, the algorithm converges with
reasonable speed.

3.2 M-step: Parameter Estimation
Model parameters are ~α, ~θ and ~η. Maximization on ~α

and ~θ can be easily performed and won’t be discussed in
this paper. ~η∗ and T∗ can be obtained by alternating the
maximization steps on ~η and T respectively. However, if
we assume Tk = δI for any k, the maximization step on ~η
can be simplified. To simplify the notation, the following
matrices are defined [18] :

Si = [s1i, s2i, ..., sPi]
T (3)

Π̂ = [~̂π1, ~̂π2, ..., ~̂πP ]T , where ~̂πp =

∑NGibbs
i=1 ~π

(i)
p

NGibbs
(4)

W = diag(N1, N2, ..., NP ) (5)

H = [~η1, ~η2, ..., ~ηK ]T (6)

As ~s is normally distributed in CUDIA, the solution of ‘weighted
linear regression’ can be applied:

H∗·i = (Π̂TWΠ̂)−1Π̂TWSi. (7)

Note that rank(Π̂TWΠ̂) = rank(Π̂) = K w.p. 1 if P > K.

However, mean values (Π̂) are susceptible to outliers from
the Gibbs sampling. To ensure the invertibility, regulariza-
tion techniques can be incorporated. For example, if a Ridge
penalty is used, then H becomes:

H∗·i = (Π̂TWΠ̂ + λI)−1Π̂TWSi. (8)

4. DETERMINISTIC HARD CLUSTERING
The CUDIA model provides an intuitive deterministic hard

clustering algorithm. From the log-likelihood of CUDIA, the
objective function becomes:

min
Z,~µ,~η

∑
p

{
∑
k,np

znpk ‖ ~xnp − ~µk ‖
2}+ β ‖ ~sp −

∑
k

∑
np
znpk

Np
~ηk ‖2

(9)

= min
Z,~µ,~η

∑
p,k,np

znpk ‖ ~xnp − ~µk ‖
2 +

β

KNp
‖ ~sp −

∑
k

π̂pk~ηk ‖2

(10)



Table 1: Dataset Description. Target is not in-
cluded when performing the imputation. The top
5 biggest population states are selected to maintain
large enough Np. (Case 1)

Hospital-level
1 Hospital beds(Target)
2 Home health agency

visits per decedent
3 Percent of deaths

occurring in hospital

State-level
1 Medical discharge rate
2 Surgical discharge rate

where π̂pk =

∑
np

znpk

Np
and β is a parameter that determines

weights to mean statistics. Local minima of this objective
function can be found by alternating minimization steps be-
tween Z and (~µ, ~η):

• Assignment Step

znpk∗ ← 1,

if k∗ = arg min
k

‖ ~xnp−~µk ‖2 −2(~sp−HT ~̂πp)
T ~ηk( β

KNp
)

znpk∗ ← 0, otherwise.

• Update Step

~µk ←
∑
n

(znk~xn)/Nk, ~πp ←
∑
np

~znp/Np

H·i ← (Π̂TWΠ̂ + λI)−1Π̂TWSi

5. EXPERIMENTAL RESULTS
In this section, several experimental results using the CU-

DIA model are provided using data from the Dartmouth
Health Atlas, CDC and the Census Bureau. Depending on
the nature of the predictor and the data source, averaged
values are provided at hospital, county, HRR/HSA or state
levels. Thus “individual” will refer to either a single hospital
or a single county as these are at the finest granularity level
in the corresponding studies. The CUDIA model is used to
impute the aggregated features at the individual-level, and
its results are compared to predictive modeling using only
higher level data.

5.1 Dartmouth Health Atlas: Case 1
The Dartmouth Health Atlas dataset [16] is composed of

several tables with different levels of aggregation. For exam-
ple, the number of beds in a hospital can be accessed at the
hospital-level, whereas the medical/surgical discharge rates
can only be obtained at State/HRR/HSA levels. Table 1
describes the subset of the Dartmouth data used in this ex-
periment. Only data from the 5 most populous states (CA,
FL, IL, NY, TX) was used so as to have a higher value of
number of hospitals per state. For this subset, the“complete
data” would have consisted of five variables at the hospital-
level, of which two are actually available only at the state
level. The CUDIA model can be used to impute the unob-
served features (~xu). The imputation can be performed as
follows:

~̂xu ←
K∑
k=1

E[zk|~xo]~ηk (11)

Table 2: Regression Results on Dartmouth datasets.
R2s over 5-fold cv are listed. As K < P , K > 5 is not
an option.

Dataset Case 1 Case 2 Case 3
No Imputation 0.548 0.547 0.667

(±0.056) (±0.030) (±0.026)
State-level Imputation 0.559 0.576 0.671

(±0.061) (±0.037) (±0.029)
CUDIA Imp. (K = 2) 0.557 0.539 0.659

(±0.052) (±0.032) (±0.052)
CUDIA Imp. (K = 3) 0.552 0.545 0.680

(±0.056) (±0.032) (±0.023)
CUDIA Imp. (K = 4) 0.563 0.593 0.686

(±0.057) (±0.029) (±0.027)
CUDIA Imp. (K = 5) 0.577 0.596 0.684

(±0.056) (±0.030) (±0.027)

Table 3: Coefficients of Linear regression when K =
5. All features are standardized. (Case 1)

Independent Variable Coefficient
Home health agency visits per decedent 0.371
Percent of deaths occurring in hospital 0.928

Medical discharge rate -0.180
Surgical discharge rate 0.376

Linear regression is used to perform the task on three
kinds of datasets: 1) ‘hospital-level’ dataset alone, 2) im-
puted complete dataset using ‘state-level’ summaries and 3)
imputed dataset using the CUDIA model. 5-fold CV is per-
formed and Table 2 shows the results. K = 5 gives the
best R2 value among all the alternatives. Table 3 shows
the coefficients of Linear regression when K = 5. The im-
puted medical discharge rate is negatively correlated with
the number of beds in a hospital.

5.2 Dartmouth + External Source: Case 2
State-level summaries of health-related indicators can be

obtained from various external sources. For example, the
Center for Disease Control and Prevention (CDC) publishes
annual state-level health statistics, that covers aging, cancer,
diabetes, etc. In this experiment, the Dartmouth dataset is
used with an external dataset from StateMaster.com, which
provides multiple state-level statistics for free. The hospital-
level Dartmouth dataset from the previous experiment is
used as is. The state-level dataset is replaced with the ex-
ternal dataset, which has state-level 1) healthcare spending,
2) hospital admissions and 3) adult physical disabilities in-
formation. All these features are not available in the Dart-
mouth data. As in the previous experiment, three datasets
are formed. Table 2 shows the R2 results using 5-fold CV.
Imputation using the CUDIA model leads to a 9% increase
in R2 value compared to the base model without imputa-
tion. Table 4 shows the coefficients of Linear regression
when K = 5. The imputed healthcare spending exhibits
the strongest correlation with hospital spending, as one may
expect.



Table 4: Coefficients of Linear regression using the
external source when K = 5. All features are stan-
dardized. (Case 2)

Independent Variable Coefficient
Home health agency visits per decedent 0.296
Percent of death occurring in hospital 0.290

Healthcare spending 0.382
Admissions 0.211

Adult physical disabilities -0.102

Table 5: Coefficients of Linear regression using the
external source when K = 4. All features are stan-
dardized. (Case 3)

Independent Variable Coefficient
Medicare Part-B 0.548

Income per capita 0.018
Healthcare spending -0.154

Education level (Bachelor or higher) -0.329

5.3 Dartmouth + External Source: Case 3
In this experiment, Medicare part-A reimbursement at

HSA-level is predicted based on Medicare part-B reimburse-
ment and an additional external information. In the Dart-
mouth dataset, ‘Selected Medicare Reimbursement’ table
contains the columns of Medicare reimbursement part-A and
part-B at HSA-level. Although Medicare part-A is closely
related to part-B, additional features, such as income or
education levels, can be incorporated not only improving
the performance of the regression but also providing richer
interpretations. The external state-level features used in
this experiment are 1) income per capita, 2) total health-
care spending and 3) education level (ratio of bachelors or
higher). The experiment is performed using three datasets,
which are prepared as in the previous experiments. Table 2
shows the results. Table 5 exhibits the coefficients of Linear
regression when K = 4. The imputed ‘education level’ and
Medicare Part-A are negatively correlated.

5.4 CDC Diabetes Dataset
The Center for Disease Control and Prevention (CDC)

[7] provides county-level estimates of 1) obesity, 2) diabetes
and 3) physical inactivity. In this experiment, we predict
the county-level obesity rate using the other features in the
CDC dataset and additional state-level features. The state-
level features used in this experiment are the same as in the
previous experiment (Dartmouth Case 3). The top 5 biggest
states are used, as some smaller states have very few coun-
ties. Table 7 shows the R2 results. The imputed dataset
using the CUDIA model gives the best result. The state-
level imputed dataset yields a poorer result than the dataset
with no imputation. This indicates that the uncertainty in
the state-level imputation of the added variables over-rode
any extra benefits that these variables could have provided.
Table 6 depicts the coefficients when K = 5. While the im-
puted ‘income per capita’ at county-level shows a negative
correlation, both imputed ‘healthcare spending’ and ‘educa-
tion level’ are positively correlated with the target (obesity

Table 6: Coefficients of Linear regression on CDC
diabetes dataset when K = 5. All features are stan-
dardized. ‘Obesity rate’ is set as a target.

Independent Variable Coefficient
Diabetes 0.019

Physical inactivity 1.29
Income per capita -0.224

Healthcare spending 0.227
Education level (Bachelor or higher) 0.388

Table 7: Regression Results on CDC Diabetes and
Census Bureau Dataset. R2s over 5-fold cv are
listed.

Dataset CDC Diabetes Census Bureau

No Imputation 0.401 0.508
(±0.034) (±0.056)

State-level Imputation 0.395 0.506
(±0.034) (±0.056)

CUDIA Imp. (K = 2) 0.347 0.505
(±0.215) (±0.20)

CUDIA Imp. (K = 3) 0.296 0.499
(±0.033) (±0.055)

CUDIA Imp. (K = 4) 0.419 0.514
(±0.035) (±0.058)

CUDIA Imp. (K = 5) 0.421 0.520
(±0.032) (±0.060)

rate at county-level).

5.5 Census Bureau Health Insurance Dataset
The U.S. Census Bureau [17] provides county-level esti-

mates of insured population ratio by income levels. Income
levels are divided into three overlapping groups: 1) all in-
come levels, 2) at or below 200% of poverty threshold and 3)
at or below 250% of poverty threshold. Suppose we want to
see which other factors affect propensity of poor people to
buy healthcare insurance at the county level. The state-level
dataset in the previous experiment is used to determine if
other factors play a role. Table 7 shows the regression results
using the CUDIA model and the coefficients when K = 5
are described in Table 8. ‘Income per capita’ and ‘educa-
tion level’ are negatively correlated with the target (percent
insured for the below 200% of poverty group). This result
indicates that the imputed county-level summaries for both
income per capita and education level implicitly inform us of
the sizes of poverty group at county-level. Moreover, the im-
puted healthcare spending at county-level exhibits a positive
relationship. Thus these imputed features provide a richer
interpretation of the predictive model while simultaneously
improving the prediction accuracy.

6. CONCLUDING REMARKS
In this paper, aggregated statistics over certain partitions

are utilized to identify clusters and impute features that are
observed only as more aggregated values. The imputed fea-
tures are further used in Regression modeling, leading to im-



Table 8: Coefficients of Linear regression on Census
Bureau dataset when K = 5. All features are stan-
dardized. ‘Percent insured for the below 200% of
poverty’ is set as a target.

Independent Variable Coefficient
Percent insured for all income levels 2.10

Income per capita -0.436
Healthcare spending 1.227

Education level (Bachelor or higher) -2.524

proved R2 values. The experiments provided in this paper
are illustrative of the generality of the propsed framework
and its applicability to several healthcare related datasets in
which individual records are often not available, and differ-
ent information sources reflect different types and levels of
aggregation. Empirical studies on larger and richer datasets
are forthcoming.

CUDIA is quite scalable, and in particular, the deter-
ministic hard clustering version of the CUDIA model can
be readily applied to massive datasets. Furthermore, the
square loss function on ~xo can be generalized to Bregman
divergence, or equivalently, one can cater to any noise func-
tion from the exponential family of probability distributions
[4]. One restriction of the current model is that the number
of clusters (K) cannot be more than the number of parti-
tions specified by the data provider(P). This is why we had
to stop at K=5 for several of the results even though the R2

values were improving with with increasing K. Adding more
partitions, e.g., incorporating data from more than 5 states,
should reflect in further improvements in the results.
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