
Learning to Rank With Bregman Divergences and Monotone Retargeting

Sreangsu Acharyya ∗
Dept. Electrical Engineering
University of Texas Austin

Oluwasanmi Koyejo∗
Dept. Electrical Engineering
University of Texas Austin

Joydeep Ghosh
Dept. Electrical Engineering
University of Texas Austin

Abstract

This paper introduces a novel approach for learn-
ing to rank (LETOR) based on the notion of
monotone retargeting. It involves minimizing
a divergence between all monotonic increasing
transformations of the training scores and a pa-
rameterized prediction function. The minimiza-
tion is both over the transformations as well as
over the parameters. It is applied to Bregman di-
vergences, a large class of “distance like” func-
tions that were recently shown to be the unique
class that is statistically consistent with the nor-
malized discounted gain (NDCG) criterion [19].
The algorithm uses alternating projection style
updates, in which one set of simultaneous projec-
tions can be computed independent of the Breg-
man divergence and the other reduces to parame-
ter estimation of a generalized linear model. This
results in easily implemented, efficiently paral-
lelizable algorithm for the LETOR task that en-
joys global optimum guarantees under mild con-
ditions. We present empirical results on bench-
mark datasets showing that this approach can
outperform the state of the art NDCG consistent
techniques.

1 Introduction

Structured output space models [1] have dominated the task
of learning to rank (LETOR). Regression based models
have been justifiably superseded by pairwise models [11],
which in turn are being gradually displaced by list-wise ap-
proaches [6, 17]. This trend has on one hand greatly im-
proved the quality of the predictions obtained but on the
other hand has come at the cost of additional complexity
and computation. The cost functions of structured mod-
els are often defined directly on the combinatorial space

∗* Both authors contributed equally.

of permutations, which significantly increase the difficulty
of learning and optimization compared to regression based
approaches. We propose an approach to the LETOR task
that retains the simplicity of the regression based models,
is simple to implement, is embarrassingly parallelizable,
and yet is a function of ordering alone. Furthermore, MR
enjoys strong guarantees of convergence, statistical con-
sistency under uncertainty and a global minimum under
mild conditions. Our experiments on benchmark datasets
show that the proposed approach outperforms state of the
art models in terms of several common LETOR metrics.

We adapt regression to the LETOR task by using Bregman
divergences and monotone retargeting (MR). MR is a novel
technique that we introduce in the paper and Bregman di-
vergences [5] are a family of “distance like” functions well
studied in optimization [8], statistics and machine learn-
ing [2] due to their one to one connections with modeling
uncertainty using exponential family distributions. Breg-
man divergences are the unique class of strongly statisti-
cally consistent surrogate cost functions for the NDCG cri-
terion [19], a de facto standard of ranking quality. In ad-
dition to these statistical properties, Bregman divergences
have several properties useful for optimization and specif-
ically useful for ranking. The LETOR task decomposes
into subproblems that are equivalent to estimating (uncon-
strained as well as constrained) generalized linear models.
The Bregman divergence machinery provides easy to im-
plement, scalable algorithms for them, with a user chosen
level of granularity of parallelism. We hope the reader will
appreciate the flexibility of choosing an appropriate diver-
gence to encode desirable properties on the rankings while
enjoying the strong guarantees that come with the family.

We introduce MR by first discussing direct regression of
rank scores and highlighting its primary deficiency: its at-
tempt to fit the scores exactly. An exact fit is unnecessary
since any score that induces the correct ordering is suffi-
cient. MR addresses this problem by searching for a order
preserving transformation of the target scores that may be
easier for the regressor to fit: hence the name “retargeting”.

Let us briefly sketch our line of attack. In section 2 we

present a method to reduce the optimization over the infi-
nite class of all monotonic increasing functions to that of al-
ternating projection over a finite dimensional vector space.
In section 3.2.3 we show when that optimization problem
is jointly convex by resolving the question of joint convex-
ity of the Fenchel-Young gap. This result is important in its
own right. We introduce Bregman divergences in section 3
and discuss properties that make them particularly suited to
the ranking task. We show (i) that one set of the alternating
projections can be computed in a Bregman divergence in-
dependent fashion 3.2.1, and (ii) separable Bregman diver-
gences allow us to use sorting 3.2.2 that would have oth-
erwise required exhaustive combinatorial enumeration or
solving a linear assignment problem repeatedly.

Notation: Vectors are denoted by bold lower case let-
ters, matrices are capitalized. x† denotes the transpose
of the vector x, ||x|| denotes the L2 norm. Diag(x) de-
notes a diagonal matrix with its diagonal set to the vector
x. Adj-Diff(x) denotes a vector obtained by taking ad-
jacent difference of consecutive components of [x0] . Thus
Cum-Sum(Adj-Diff(x)) = x. A vector x is defined to be
in descending order if xi ≥ xj if i > j, the set of such
vectors is denoted by R↓. Vector x is isotonic with y if
xi ≥ xj then yi ≥ yj . The unit simplex is denoted by ∆

and the positive orthant byR+
d. ψ(·) is used to denote the

Legendre dual of the function φ(·). Partitions of sets are
denoted by Π and P.

2 Monotone Retargeting

We introduce our formulation of learning to rank, this con-
sists of a set of queries Q = {q1, qi . . . q|Q|} and a set of
items V that are to be ranked in the context of the queries.
For every query qi, there is a subset Vi ⊂ V whose ele-
ments have been ordered, based on their relevance to the
query. This ordering is customarily expressed via a rank
score vector r̃i ∈ Rdi=|Vi| whose components r̃ij corre-
spond to items in Vi. Beyond establishing an order over the
set Vi, the actual values of r̃ij are of no significance. For
a query qi the index j of r̃ij is local to the set Vi hence r̃ij
and r̃kj need not correspond to the same object. We shall
further assume, with no loss in generality, that the subscript
j is assigned such that r̃ij is in a descending order for any
Vi. Note that r̃i induces a partial order if the number of
unique values ki in the vector is less than di.

For every query-object pair {qi, vij} a feature vectorRn 3
aij = F (qi, vij) is pre-computed. The subset of training
data pertinent to any query qi is the pair {r̃i,Ai} and is
called its qset. Thus, the column vector r̃i consists of the
rank-scores r̃ij andAi is a matrix whose jth row is aij†.

Given a loss function Di : R|Vi| × R|Vi| 7→ R+ we may
define the regression problem min

w

∑
i

D(r̃i, f(Ai,w)) where

f : R|Vi|×n ×Rn 7→ R
|Vi| is some fixed parametric form

with the parameter w. As discussed, this is unnecessarily
stringent for ranking. A better alternative is:

min
w,Υi∈M

∑
i

Di

(
r̃i,Υi ◦ f(Ai,w)

)
,

where Υi : R|Vi| 7→ R
|Vi| transforms the component of

its argument by a fixed monotonic increasing function Υi,
and M is the class of all such functions. Now f(Ai,w)
no longer need to equal r̃i point-wise to incur zero loss.
It is sufficient for some monotonic increasing transform of
f(Ai,w) to do so. With no loss in generality of modeling,
we may apply the monotonic transform to r̃i instead. This
avoids the minimization over the function composition, but
the need for minimizing over the set of all monotone func-
tions remains. One possible way to eliminate the minimiza-
tion over the function space is to restrict our attention to
some parametric family inM at the expense of generality.
Instead, with no loss in generality, the optimization over
the infinite space of functionsM can be converted into one
over finite dimensional vector spaces R|Vj |, provided we
have a finite characterization of the constraint setR↓i:

min
w,r∈R↓i

∑
i

Di(ri, f(Ai,w)) s.t. R↓i = {r| ∃M∈MM(r̃i)=r}.

(1)
The SetR↓i: The convex composition r = αr1+(1−α)r2

of two isotonic vectors r1 and r2 preserves isotonicity, as
does the scaling αr1 for any α ∈ R+. Hence the set R↓i
is a convex cone. This makes the problem computation-
ally tractable because the set can be described entirely by
its extreme rays, or by the extreme rays of its polar. We
claim the set R↓i can be expressed as the image of the set
{R+}|Vi|−1 ×R under a linear transformation by a partic-
ular upper triangular matrix U with positive entries:

R↓i = Ux s.t. x ∈ {R+}|Vi|−1 ×R

The matrix U is not unique and can be generated from any
vector v ∈ R+

|Vi|, but as we shall see, any member from
the allowed class of U is sufficient for a exhaustive repre-
sentation ofR↓i.
Lemma 1. The set of all vectors inRd that are sorted in a
descending order is given by Ux s.t. x ∈ {R+}|Vi|−1 ×
R where U is a triangular matrix generated from a vector
v ∈ R+

d such that the ith row U(i, :) is {0}i−1 × v(i :)

Proof. Consider solving Ux = r̃i for any vector r̃i sorted
in descending order. We have x = (Diag)

−1
(v) ×

Adj-Diff(r̃i) which is in {R+}|Vi|−1 ×R
For regression functions capable of fitting an arbitrary ad-
ditive offset, no generality is lost by constraining the last
component to be non-negative.

In addition to the setR↓i we shall make frequent use of the
set of all discrete probability distributions that are in de-
scending order, i.e. R↓i ∩ ∆i that we represent by ∆i

o.

We give a similar representation of this set by generat-
ing an upper triangular matrix T from the vector v∆ =
{1, 1

2 , · · ·
1
i · · ·

1
d} and considering x ∈ ∆.

Lemma 2. The set ∆o of all discrete probability distribu-
tions of dimension d that are in descending order is the
image Tx s.t. x ∈ ∆ where T is an upper triangular
matrix generated from the vector v∆ = {1, 1

2 · · ·
1
d} such

that T (i, :) = {0}i−1 × v∆(i :)

Proof. The proof follows Lemma (1). Tx is in the simplex
∆ because it is a convex combination of vectors in ∆.

With appropriate choices of the distance like function
Di(·, ·) and the curve fitting function f(·, ·) we can trans-
form (1) into a bi-convex optimization 1 problem over a
product of convex sets. We chooseDi(·, ·) to be a Bregman
divergence Dφ

(
·
∣∣∣∣∣∣·), defined in Section 3.1, and f(Ai,w)

to be (∇φ)
−1

(〈Ai,w〉), leading to the formulation:

min
w∈W,r∈R↓i

|Q|∑
i=1

1

|Vi|
Dφ
(
ri

∣∣∣∣∣∣(∇φ)
−1

(〈Ai,w〉)
)
. (2)

Coordinate-wise updates of (2) are equivalent to learning
canonical GLMs under linear constraints for which scal-
able techniques are known [9]. The LETOR task has addi-
tional structure that allows more efficient solutions.

3 Background

We make heavy use of identities and algorithms associated
with Bregman divergences, some that to the best of our
knowledge are new e.g. Theorem 2, Lemmata 3, 4 and in-
dependent proof of Theorem 1. Theorem 2, and Lemmata
3, and 4 are particularly relevant to ranking. The purpose
of this section is to collect these results in a single place.

3.1 Definitions

Bregman Divergence: Let φ : Θ 7→ R, Θ = domφ ⊆
R
d be a strictly convex, closed function, differentiable on

int Θ. The corresponding Bregman divergence Dφ

(
·
∣∣∣∣∣∣·) :

dom(φ)× int(dom(φ)) 7→ R+ is defined as Dφ

(
x
∣∣∣∣∣∣y) ,

φ(x)− φ(y)− 〈x− y,∇φ(y)〉 . From strict convexity it
follows that Dφ

(
x
∣∣∣∣∣∣y) ≥ 0 and Dφ

(
x
∣∣∣∣∣∣y) = 0 iff x =

y. Bregman divergences are (strictly) convex in their first
argument, but not necessarily convex in their second.

In this paper we only consider functions of the form φ(·) :
R
n 3 x 7→

∑
i wiφ(xi) that are weighted sums of

identical scalar convex functions applied to each compo-
nent. We refer to this class as weighted, identically sepa-
rable (WIS) or simply IS if the weights are equal. This

1A biconvex function is a function of two arguments such that
with any one of its argument fixed the function is convex in the
other argument.

φ(x) Dφ
(
x
∣∣∣∣∣∣y)

1
2
||x||2W 1

2
||x− y||2W∑

i wixi log xi x ∈ ∆ wKL (x‖y) =
∑
i wixi log(xi

yi
)∑

i wi(xi log xi−xi)
x ∈ R+

d

wGI (x‖y)
=
∑
i wi
(
(xi−1) log(xi−1

yi−1
)−xi+yi

)
Table 1: Examples of WIS Bregman divergences.

class has properties particularly suited to ranking. Ma-
halonobis distance with diagonal W , weighted KL diver-
gence wKL (x‖y) and weighted and shifted generalized
I-divergence wGI (x‖y) are in this family (Table 1).

Bregman Projection: Given a closed convex set S,
the Bregman-projection of q on S is Projφ (q,S) ,

ArgminpDφ

(
p
∣∣∣∣∣∣q) p ∈ S.

A function φ(·) has modulus of strong convexity s if
φ(αx+(1−α)y) ≤ αφ(x)+(1−α)φ(y)− s

2
α(1−α)||x−y||2.

For a twice differentiable φ(x) this means that eigenvalues
of its Hessian are lower bounded by s.

The Legendre conjugate ψ(·) of the function φ(·) is de-
fined as (φ)

∗
(x) , ψ(x) , supλ(〈λ,x〉 − φ(λ)). If

φ(·) is a convex function of Legendre type [21], as will
always be the case in this paper,

(
(φ)
∗)∗

(·) = φ(·) and
(∇φ(·))−1

= ∇ψ(·) is a one to one mapping.

The Fenchel-Young inequality (3) is fundamental to con-
vex analysis and plays an important role in our analysis.

ψ(y) + φ(x)− 〈y,x〉 ≥ 0. (3)

3.2 Properties

The convexity of (2) in r andw (separately) can be proven
by verifying the identity (by evaluating its LHS):

Dψ

(
∇φ(y)

∣∣∣∣∣∣∇φ(x)
)

= Dφ

(
x
∣∣∣∣∣∣y). (4)

3.2.1 Universality Of Minimizers

A mean-variance like decomposition (described in the ap-
pendix, Theorem (3)) holds for all Bregman divergences.
It plays a critical role in Theorem 1 that has significant im-
pact in facilitating the solution of the LETOR problem.

Theorem 1. For R↓ ⊂ R
d the entire set of vectors

with descending ordered components, the minimizer y∗ =

Argmin
y∈R↓

Dφ

(
x
∣∣∣∣∣∣y) is independent of φ(·) if φ(·) is WIS.

Proof: sketched in the appendix.

Following our independent proof of Theorem 1, we have
since come across an older proof [20] in the context of max-
imum likelihood estimators of exponential family models
under conic constraints that were developed prior to the

popularity of Bregman divergences. Whereas the older
proof uses Moreau’s cone decomposition[21], ours uses
Theorem 3 (in appendix) and yields a much shorter proof.

Corrolary 1. If domψ(·) = R
d where ψ(·)is the Leg-

endre conjugate of the WIS convex function φ(·) then

Argminy∈R↓∩domφDφ

(
y
∣∣∣∣∣∣(∇φ)

−1
(x)
)

= (∇φ)
−1

(y∗)

where y∗ = Argminy∈R↓ ||x− y||2.
Corollary (1) implies that for choices of convex function
φ(·) indicated, the minimization over ri ∈ R↓ ∩ domφ
can be obtained by transforming the equivalent squared
loss minimizer by (∇φ)

−1
(·). The squared loss minimiza-

tion is not only simpler but its implementation can now be
shared across all different φ(·)s where Corollary 1 applies.
This class of convex functions is the same as “essentially
smooth” [21]. Three such functions are listed in Table 1.

3.2.2 Optimality of Sorting

For any sorted vector x, finding the permutation of y that
minimizesDφ

(
x
∣∣∣∣∣∣y) shows up as a subproblem in our for-

mulation that needs to be solved in an inner loop. Thus
solving it efficiently is critical and this is yet another in-
stance where Bregman divergences are very useful.

For an arbitrary divergence function the search over the op-
timal permutation is a non-linear assignment problem that
can be solved only by exhaustive enumeration. For an ar-
bitrary separable divergence the optimal permutation may
be found by solving a linear assignment problem, which is
an integer linear program and hence also expensive to solve
(especially in an inner loop, as required in our algorithm).

On the other hand, if φ(·) is IS, the solution is remarkably
simple, as shown in Lemma 3 where

[
x1
x2

]
denotes a vector

inR2 with components x1 and x2.

Lemma 3. If x1 ≥ x2 and y1 ≥ y2 and φ(·) is IS, then
Dφ
([x1
x2

]∣∣∣∣∣∣[y1
y2

])
≤ Dφ

([x1
x2

]∣∣∣∣∣∣[y2
y1

])
and Dφ

([y1
y2

]∣∣∣∣∣∣[x1
x2

])
≤

Dφ
([y2
y1

]∣∣∣∣∣∣[x1
x2

])
Proof.
Dφ
([x1
x2

]∣∣∣∣∣∣[y1
y2

])
−Dφ

([x1
x2

]∣∣∣∣∣∣[y2
y1

])
= 〈(∇φ(y2)−∇φ(y1)), x1 − x2〉 .

There exists c ≥ 0 s.t. x1−x2 = c(y1−y2). Proof follows
from monotonicity of ∇φ, ensured by convexity of φ. We
can exchange the order of the arguments using (4).

Using induction over d for y ∈ Rd the optimal permutation
is obtained by sorting. Not only is Lemma 3 extremely
helpful in generating descent updates, it has fundamental
consequences in relation to the local and global optimum
of our formulation (see Lemma 4).

3.2.3 Joint Convexity and Global Minimum

Using Legendre duality one recognizes that equation (2)
quantifies the gap in the Fenchel-Young inequality (3).

Dφ
(
ri

∣∣∣∣∣∣(∇φ)−1 (Aiw)
)

= ψ(Aiw) + φ(ri)− 〈ri,Aiw〉 .

Although this clarifies the issue of separate convexity inw
and ri, the conditions under which joint convexity is ob-
tained is not obvious. Joint convexity, if ensured, guaran-
tees global minimum even for a coordinate-wise minimiza-
tion because our constraint set is a product of convex sets.
We resolve this important question in Theorem 2.

Theorem 2. The gap in the Fenchel-Young inequality
ψ(y) + φ(x)− 〈x,w〉 for any twice differentiable strictly
convex φ(·) with a differentiable conjugate (φ)

∗
(·) = ψ(·)

is jointly convex if and only if φ(x) = c||x||2 for all c > 0.

Proof: sketched in the appendix.

3.3 Algorithms

Now we discuss Bregman’s algorithm associated with
Bregman divergences. The original motivation for intro-
ducing [5] Bregman divergence was to generalize alternat-
ing orthogonal projection. A significant advantage of the
algorithm is its scalability and suitability for paralleliza-
tion. It solves the following (Bregman projection) problem:

min
x
Dφ

(
x
∣∣∣∣∣∣y) s.t. Ax ≤ b (5)

Bregman’s algorithm:

Initialize: λ0 ∈ R+d and z0 such that

∇φ(z0) =
[
A†|∇φ(y)

][
λ0†, 1

]†
Repeat: Till convergence

Update: Apply Sequential or Parallel Update

Solve: ∇φ(zt+1) =
[
A†|∇φ(y)

][
λt+1†, 1

]†

Sequential Bregman Update:

Select i: LetHi = {z| 〈ai, z〉 ≤ bi}

If in violation: Compute Projφ
(
zt,Hi

)
i.e.

∇φ(Projφ
(
zt,Hi

)
) = ∇φ(zt) + ctiai,

Update: λt+1 = λt + cti1i

Parallel Bregman Update:

For all i in parallel: Compute Projφ
(
zt,Hi

)
, cti

Update: λt+1
i = λt + cti1i

Synchronize: λt+1 = ∇−1φ(
∑
i∇φ(λi

t+1))

4 LETOR with Monotone Retargeting

Our cost function is an instantiation of (2) with a WIS Breg-
man divergence. In addition, we include regularization and
a query specific offset. Note that the cost function (2) is
not invariant to scale. For example squared Euclidean, KL

divergence and generalized I-divergence are homogeneous
functions of degree 2, 1 and 1 respectively. Thus the cost
can be reduced just by scaling its arguments down, with-
out actually learning the task. To remedy this, we restrict
the ris from shrinking below a pre-prescribed size. This is
accomplished by constraining ris to lie in an appropriate
closed convex set separated from the origin, for example,
an unit simplex or a shifted positive orthant. This yields:

min
βi,w,ri∈R↓i∩Si

|Q|∑
i=1

1

|Vi|
Dφ
(
ri

∣∣∣∣∣∣(∇φ)
−1

(Aiw + βi1)
)

+
C

2
||w||2, (6)

or equivalently

min
βi,w,ri∈R↓i∩Si

|Q|∑
i=1

1

|Vi|
Dψ
(
Aiw + βi1

∣∣∣∣∣∣∇φ (ri)
)
+

C

2
||w||2, (7)

where Si are bounded sets excluding 0, chosen to suit the
divergence. The parameter C is the regularization parame-
ter. In non-transductive settings, the query specific offsets
βi will not be available for the test queries. This causes no
difficulty because βi does not affect the relative ranks over
the documents. We update the ri’s and {w, {βi}} alter-
nately. Note that each is a Bregman projection.

If Si = domφ and domψ = R
d, the optimization over

ri reduces to an order constrained least squares problem
(corrolary-1). Examples of such matched pairs are (i)
wKL (·‖·) and ∆i, and (ii) shiftedwGI (·‖·) and 1+R+

d.
A well studied, scalable algorithm for the ordered least
squares problem is pool of adjacent violators (PAV) algo-
rithm [3]. One can verify that PAV, like Bregman’s algo-
rithm (5) is a dual feasible method. One may also use
Lemma 1 to solve it as a non-negative least squares prob-
lem for which several scalable algorithm exists [15].

To be able to use Bregman’s algorithm it is essential that
R↓i be available as an intersection of linear constraints, as
is readily obtained for any prescribed total order, as shown:

R↓i = {ri,j+1 − ri,j ≤ 0}∀j∈Ji ,

∆o
i = R↓i ∩ {

∑
j

rij = 1} ∩ {ri,di > 0}. (8)

Partial orders are discussed in section 4.1.

The advantages of the Bregman updates (3.3), are that they
are easy to implement (more so when Projφ (·, ·) is avail-
able in closed form e.g. squared Euclidean), have minimal
memory requirements, and hence they scale readily and al-
low easy switch from a sequential to a parallel update.

The parallel Bregman updates applied to (2), (8) clearly
exposes massive amounts of fine grained parallelism at the
level of individual inequalities in R↓i or ∆o

i , and is well
suited for implementation on a GPGPU[18]. We note fur-
ther that the optimization for ri is independent for each
query, thus can be embarrassingly parallelized.

For optimizing over w one may use several techniques
available for parallelizing a sum of convex functions, for
example parallelize the gradient computation across the
terms or use more specialized technique such as alternat-
ing direction of multipliers [4]. Further, {w, {βi}} can be
solved jointly simply by augmenting the feature matrix Ai

with 1. We hope the readers will appreciate this flexibil-
ity of being able to exploit parallelism at different levels of
granularity of choice.

4.1 Partial Order

Recall that a partial order is induced if the number of
unique rank scores ki in r̃i is less than di. In this case our
convention of indexing Vi in a descending order is ambigu-
ous. To resolve this, we break ties arbitrarily. Consider a
subset of Vi whose elements have the same training rank-
score. We distinguish between two modeling choices: (a)
the items in that subset are not really equivalent, but the
training set used a resolution that could not make fine dis-
tinctions between the items,2 we call this the “hidden or-
der” case, and (b) the items in the subset are indeed equiv-
alent and the targets are constrained to reflect the same
block structure, we call this case “block equivalent” and
can model it appropriately. Although we have removed the
discussion on the latter in the interest of space, this too can
be modeled efficiently by MR.

4.1.1 Partially Hidden Order

In this model we assume that the items are totally ordered,
though the finer ordering between similar items is not vis-
ible to the ranking algorithm. Let Pi = {Pik}kik=1 be a
partition of the index set of Vi, such that all items in Pik
have the same training rank-score. We denote their sizes
by dik = |Pik|. The sets Vi effectively get partitioned fur-
ther into {Pik}kik=1 by the ki < di unique scores given to
each of its members. Though such a score specifies an or-
der between items from any two different sets Pij and Pil,
the order within any set Pik remains unknown. This is very
common in practice and is usually an artifact of the high
cost of acquiring training data in a totally ordered form.
The optimization problem may be solved using either an
inner or an outer representation of the constraint sets.

Outer representation: Recall that Bregman’s algorithm
3.3 is better suited for the outer representation (8).

Denote the set of rank-score vectors having the same par-
tially ordered structure as r̃i by Ri. For partial order we
may describe Ri by linear inequalities as follows:

{rim > rin}ki−1
j=1 ∀i∈[1,|Q|], m ∈ Pij , n ∈ Pi,j+1,

with each j generating dijdi,j+1 inequalities, which is very
high. The proliferation of inequalities may be reduced by

2or that, we only care to reduce the error of predicting rij >
rik when r̃ij < r̃ik, note the strict inequality.

x
t+1
i = Argmin

x∈∆
Dφ
(
Tx
∣∣∣∣∣∣(∇φ)

−1
(
PtiAiw

t
+ β

t
i

))
∀i (10)

Pt+1
i = Argmin

π
Dφ
(
Tx

t+1
i

∣∣∣∣∣∣(∇φ)
−1
(
πAiw

t
+ β

t
i

))
∀i (11)

w
t+1

, {βt+1
i } = (12)

Argmin
w,{βi}

|Q|∑
i=1

Dφ
(
Tx

ti+1
∣∣∣∣∣∣(∇φ)

−1
(
Pt+1
i Aiw + β

t
i

))
+
C

2
||w||2

Figure 1: Algorithm for Partially Hidden Order

introducing auxiliary variables {r̄i,l}ki−1
l=1 and the follow-

ing inequalities:

{r̄i,j+1 > riPij > r̄i,j}∀i∈[1,|Q|]. (9)

However, since Bregman’s algorithms are essentially
coordinate-wise ascent methods, their convergence may
slow unless fine grained parallelism can be exploited. For
commodity hardware, an alternative to the exterior point
methods are interior point methods that use an inner repre-
sentation of the convex constraint set.

Inner representation: For our experiments we use the up-
dates in figure 1. In particular, we use the method of D
proximal gradients for (10) where the proximal term is a
Bregman divergence defined by a convex function whose
domain is the required constraint set [13], [22], [16]. This
automatically enforces the required constraints.

To handle partial order we introduce a block-diagonally
restricted permutation matrix Pi that can permute indices
in each Pij independently. Since the items in Pij are not
equivalent they are available for re-ordering as long as that
minimizes the cost (6). Block weighted IS Bregman diver-
gences have the special property that sorting minimizes the
divergence over all permutations (Lemma 3). Thus update
(11) can be accomplished by sorting.

The updates (10), (11) and (12) each reduce the lower
bounded cost (6), and therefore the algorithm described
in figure 1 converges. However, the vital question about
whether the updates converge to a stationary point remains.

Convergence to a Stationary Point If repeated application
of (10) and (11) (sorting) for a fixedwt+1, {βt+1

i } achieves
the minimum then convergence to the stationary point is
guaranteed. Thus we explore the question whether (11) and
(10) together achieves a local minimum.

The tri-factored form riPiUxi is a cause for concern.
Somewhat re-assuring is the fact that the range of PiUxi
is Ri which again is a convex cone and that the tri-
factored representation of any point in that cone is de-
scribed uniquely. This however is not sufficient to en-
sure that a minimum is achieved by (10) and (11) because
though the constraint set is convex, the cost function (6)
is not convex in the tri-factored parameterization. Worse

still, the parameterization is discontinuous because of the
discrete nature of P.

While one may address the discreteness problem via a real-
relaxation of P to doubly stochastic matrices, the local min-
ima attained in such a case will be in the interior of the
Birkhoff polytope and not at the vertices that (11) sort-
ing would have obtained. Therefore such a convex relax-
ation cannot answer the question whether (10) and sorting
achieves the local minimum. Thus it is surprising that sort-
ing followed by the xi updates does achieve the local min-
imum of (6) on the cone Ri, as a consequence of the fol-
lowing Lemma.

Lemma 4. Let vectors
[
x1
x2

]
and

[y1
y2

]
be conformally par-

titioned. Let
[y1
y2

]∗
= Argminy′i∈Π(y1),

y′1≥y
′
2

Dφ

([y′
1

y′
2

]∣∣∣∣∣∣[x1
x2

])
where Π(yi) is the set of all permutations of the vector yi.

If the Bregman divergence Dφ

(
·
∣∣∣∣∣∣·) is conformally separa-

ble then y∗i is isotonic with xi ∀i = 1, 2

Proof. The proof is by contradiction. Assume y∗i is a mini-
mizer that is not isotonic with xi, then one may permute y∗i
to match the order of xi to obtain a reduced cost, yielding
a contradiction.

The utility of Lemma 4 is that in spite of the caveats men-
tioned it can correctly identify the internal ordering of the
components of the left hand side that achieves the mini-
mum for a fixed wt+1, {βt+1

i }, given a fixed right hand
side. With the knowledge of the order obtained, one may
then compute the actual values with relative ease with (10).

5 Experiments

We evaluated the ranking performance of the proposed
monotone retargeting approach on the benchmark LETOR
4.0 datasets (MQ2007, MQ2008) [23] as well as the
OHSUMED dataset [12]. Each of these datasets is pre-
partitioned into five-fold validation sets for easy compar-
ison across algorithms. For OHSUMED, we used the
QueryLevelNorm partition. Each dataset contains a set of
queries, where each document is assigned a relevance score
from irrelevant (r = 0) to relevant (r = 2).

All algorithms were trained using a regularized linear rank-
ing function, with a regularization parameter chosen from
the set C ∈ {10−50, 10−20, 10−10, 10−5, 100, 101}. The
best model was identified as the model with highest mean
average precision (MAP) on the validation set. All pre-
sented results are of average performance on the test set.
As the baseline, we implemented the NDCG consistent re-
normalization approach in [19] (using the NDCGm normal-
ization) for the squared loss and the I-divergence (gener-
alized KL-divergence). ListNet was implemented [7] as
the KL divergence baseline since their normalization has

no effect on KL-divergence. MR was implemented using
the partially hidden order monotone retargeting approach
(Section 4.1). We compared the performance of MR (Nor-
malized MR) to the MR method with the normalization 1

|Vi|
removed (Unnormalized MR).

The algorithms were implemented in Python and executed
on a 2.4GHz quad-core Intel Xeon processor without pay-
ing particular attention to writing optimized code. Ample
room for improvement remains. Square loss was the fastest
with respect to average execution times per iteration at 0.58
seconds whereas KL achieved 1.01 seconds per iteration
and I-div 1.14 seconds per iteration. We found that al-
though MQ2007 is more than 4 times larger than MQ2008,
MQ2007 only required about twice the time execution on
average, highlighting the scalability of MR. On average
SQ, KL and I-div took 99, 90 and 65 iterations.

Table 5 compares the algorithms in terms of expected re-
ciprocal return (ERR) [10], Mean average precision (MAP)
and NDCG. Unnormalized KL divergence cost function led
to the best performance across datasets. The most sig-
nificant gains over the baseline were for the I-divergence
cost function. Monotone retargeting showed consistent per-
formance gains over the baseline across metrics (NDCG,
ERR, Precision), suggesting the effectiveness of MR for
improving the overall ranking performance.

Figure 2 shows a subset of performance comparisons us-
ing the NDCG@N and Precision@N metrics. Our exper-
iments show a significant improvement in performance on
the range of datasets and cost functions. Across datasets,
the difference between the baseline and our results were
most significant with the I-divergence (generalized KL di-
vergence) cost function.

There are two things worth taking special note of: (i)
Although the baseline algorithms were proposed specif-
ically for improving NDCG performance, MR improves
the ranking accuracy further, even in terms of NDCG. (ii)
MR seems to be consistently peaking early. This prop-
erty is particularly desirable and is encoded specifically in
the cost functions such as NDCG and ERR. In our initial
formulation we used WIS Bregman divergence so that the
weights could be tuned to obtained the early peaking be-
havior. However that proved unnecessary because even the
unweighted model produced satisfactory performance. The
effect of query length normalization was, however, incon-
sistent. Some of our results were insensitive to it, whereas
other results were adversely affected. We conjecture that it
is an artifact of using the same amount of regularization as
in the un-normalized case.

6 Conclusion and Related Work

One technique that shares our motivation of learning to
rank is ordinal regression [14] which optimizes parameters

MQ 2007 ERR
I-div SQ KL

Unnormalized MR 0.3698 0.3703 0.3737
Normalized MR 0.3702 0.3601 0.3731

Baseline 0.1953 0.3639 0.3643
MQ 2007 MAP

I-div SQ KL
Unnormalized MR 0.5379 0.5361 0.5398

Normalized MR 0.5358 0.5282 0.5399
Baseline 0.3611 0.5330 0.5380

MQ 2007 NDCG
I-div SQ KL

Unnormalized MR 0.6961 0.7398 0.6978
Normalized MR 0.6954 0.6953 0.6981

Baseline 0.5512 0.6927 0.6952
MQ 2008 ERR

I-div SQ KL
Unnormalized MR 0.4137 0.41559 0.4238

Normalized MR 0.4144 0.41392 0.4085
Baseline 0.2724 0.40978 0.4132

MQ 2008 MAP
I-div SQ KL

Unnormalized MR 0.6439 0.6532 0.6571
Normalized MR 0.6449 0.6549 0.6461

Baseline 0.4513 0.6428 0.6530
MQ 2008 NDCG

I-div SQ KL
Unnormalized MR 0.7339 0.7398 0.7451

Normalized MR 0.7346 0.7396 0.7330
Baseline 0.5892 0.7344 0.7399

OHSUMED ERR
I-div SQ KL

Unnormalized MR 0.5657 0.5410 0.5410
Normalized MR 0.5796 0.5093 0.5093

Baseline 0.2255 0.5450 0.5467
OHSUMED MAP

I-div SQ KL
Unnormalized MR 0.4537 0.4417 0.4531

Normalized MR 0.4463 0.4394 0.4506
Baseline 0.3421 0.4465 0.4524

OHSUMED NDCG
I-div SQ KL

Unnormalized MR 0.7000 0.6878 0.6997
Normalized MR 0.6935 0.6798 0.6916

Baseline 0.5805 0.6892 0.6947

Table 2: Test ERR, MAP and NDCG on different datasets.
The best results are in bold.

1 2 3 4 5 6 7 8 9 10
NDCG@N

0.1

0.2

0.3

0.4

0.5

I-div Baseline
I-div Proposed Normalized
I-div Proposed Unnormalized

1 2 3 4 5 6 7 8 9 10
NDCG@N

0.2

0.3

0.4

0.5

0.6

0.7

I-div Baseline
I-div Proposed Normalized
I-div Proposed Unnormalized

1 2 3 4 5 6 7 8 9 10
NDCG@N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

I-div Baseline
I-div Proposed Normalized
I-div Proposed Unnormalized

1 2 3 4 5 6 7 8 9 10
Pre@N

0.2

0.3

0.4

0.5

0.6

I-div Baseline
I-div Proposed Normalized
I-div Proposed Unnormalized

1 2 3 4 5 6 7 8 9 10
Pre@N

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

I-div Baseline
I-div Proposed Normalized
I-div Proposed Unnormalized

1 2 3 4 5 6 7 8 9 10
Pre@N

0.1

0.2

0.3

0.4

0.5

0.6

0.7

I-div Baseline
I-div Proposed Normalized
I-div Proposed Unnormalized

1 2 3 4 5 6 7 8 9 10
NDCG@N

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

KL Baseline
KL Proposed Normalized
KL Proposed Unnormalized

1 2 3 4 5 6 7 8 9 10
NDCG@N

0.45

0.50

0.55

0.60

0.65

0.70

KL Baseline
KL Proposed Normalized
KL Proposed Unnormalized

1 2 3 4 5 6 7 8 9 10
NDCG@N

0.44

0.46

0.48

0.50

0.52

0.54

0.56

KL Baseline
KL Proposed Normalized
KL Proposed Unnormalized

1 2 3 4 5 6 7 8 9 10
Pre@N

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

KL Baseline
KL Proposed Normalized
KL Proposed Unnormalized

1 2 3 4 5 6 7 8 9 10
Pre@N

0.35

0.40

0.45

0.50

0.55

0.60

0.65

KL Baseline
KL Proposed Normalized
KL Proposed Unnormalized

1 2 3 4 5 6 7 8 9 10
Pre@N

0.45

0.50

0.55

0.60

0.65

0.70

KL Baseline
KL Proposed Normalized
KL Proposed Unnormalized

1 2 3 4 5 6 7 8 9 10
NDCG@N

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

Square Baseline
Square Proposed Normalized
Square Proposed Unnormalized

1 2 3 4 5 6 7 8 9 10
NDCG@N

0.45

0.50

0.55

0.60

0.65

0.70

Square Baseline
Square Proposed Normalized
Square Proposed Unnormalized

Figure 2: MR performance vs. NDCG
consistent baseline measured using
NDCG@N and Precision@N. Datasets:
MQ2007 (left), MQ2008 (middle),
OHSUMED (right).

of a regression function as well as thresholds. Unfortu-
nately we do not have space for a full literature survey and
only mention a few key differences. The log-likelihood of
the classic ordinal regression methods are a sum of loga-
rithms of differences of monotonic functions and are much
more cumbersome to optimize over. To our knowledge they
do not share the strong guarantees that MR with Bregman
divergences enjoys. The prevalent technique there seems
to require fixing a finite number of thresholds up-front, an
arbitrary choice that MR does not make. However, it is
not clear if that is a restriction of ordinal regression or is a
prevalent practice.

In this paper we introduced a family of new cost functions
for ranking. The cost function takes into account all possi-
ble monotonic transforms of the target scores, and we show
how such a cost function can be optimized efficiently. Be-
cause the sole objective of learning to rank is to output good
permutations on unseen data, it is desirable that the cost
function be a function of such permutations. Though sev-
eral permutation dependent cost functions have been pro-
posed, they are extremely difficult to optimize over and one
has to resort to surrogates and/or cut other corners. We
show that with monotone retargeting with Bregman diver-
gences such contortions are unnecessary. In addition, the
proposed cost function and algorithms have very favorable
statistical, optimization theoretic, as well as empirically ob-
served properties. Other advantages include extensive par-
allelizability due to simple simultaneous projection updates
that optimize a cost function that is convex not only in each
of the arguments separately but also jointly, with a proper
choice of the cost function from the family.

A Appendix: Proof Sketches

Theorem 1

Proof. Let the components of y∗ take k unique values. Par-
tition the set indexing the components into Π = {Πi}ki=1

s.t. ∀j ∈ Πi y
∗
j = ci ∀i∈[1,k]. Let the scalar mean of

x on Πi be µΠi . By (14), ∑
j∈Πi

Dφ
(
xj

∣∣∣∣∣∣y∗j) =∑
j∈Πi

Dφ
(
xj

∣∣∣∣∣∣µΠi

)
+Dφ

(
µΠi

∣∣∣∣∣∣ci). First, we prove by contra-
diction that y∗j = µΠi ∀j ∈ Πi, otherwise ∃ y′ ∈ Rd s.t.
y′l = y∗l ∀l /∈ Πi, and ∀j ∈ Πi ci+1 ≤ y′j = c′ ≤ ci−1

s.t. Dφ

(
µΠi

∣∣∣∣∣∣c′) < Dφ

(
µΠi

∣∣∣∣∣∣ci). Thus Dφ

(
x
∣∣∣∣∣∣y′) <

Dφ

(
x
∣∣∣∣∣∣y∗), clearly a contradiction.

Let Argminy∈R↓Dθ

(
x
∣∣∣∣∣∣y) = z∗ for θ 6= φ. Let z∗ in-

duce the partition P = {Pl}ml=1. If Π = P always, then
y∗j = z∗j completing the proof. Shift the indexing of the
partitions to the first j where Πj , Pj differs. Now with new
index, WLOG 3 assume Π1 ⊂ P1, P1 ⊂ Π1 ∪ Π2. Define
Π̇2 = Π2 ∩ P1, Π̈2 = Π2 \ Π̇2 6= ∅, else P1 can be refined

3We encourage the reader to draw a picture for clarity.

into Π1,Π2 obtaining a lower cost (by Corollary 3). Let the
means of Π̇2, Π̈2 = ẏ2, ÿ2. By definition y∗2 is their convex
combination. Now ẏ2 ≥ ÿ2, else one can reduce the cost
by refining Π2 into Π̇2, Π̈2. Therefore ẏ2 ≥ y∗2 ≥ ÿ2. Note
y∗1 ≥ ẏ2 or else we can refine P1 into Π1, Π̇2. Thus we have
y∗1 ≥ ẏ2 ≥ ÿ2 which is in contradiction with y∗1 < y∗2 .

Theorem 2

Proof. For succinctness we use the abbreviations: x(α) =
αx1 + (1− α)x2, y(α) = αy1 + (1− α)y2, φi =
φ(xi), ψi = ψ(xi), Φ(α) = αφ1 + (1− α)φ2 and
Ψ(α) = αψ1 + (1− α)ψ2. Joint convexity is equivalent
to φ(x(α)) +ψ(y(α))− 〈x(α),y(α)〉 ≤ Φ(α) + Ψ(α)−
α 〈x1,y1〉−(1−α) 〈x2,y2〉 ∀ x1,x2 ∈ domφ, y1,y2 ∈
domψ. Thus we have to show:

φ(x(α))+ψ(y(α)) ≤ Φ(α)+Ψ(α)+

B︷ ︸︸ ︷
α(1− α) 〈x1 − x2,y1 − y2〉

(13)
for all arguments in the domain. Assume with no loss

in generality that φ(·) and ψ(·) are strongly convex with
modulus of strong convexity (1 + s1), (1− s2) with s1 >
−1, s2 < 1, respectively. Reciprocal of the modulus of
strong convexity of the Legendre dual is the Lipschitz con-
stant of the gradient of a convex function [21], therefore
(1 + s1) ≤ 1

1−s2 , being the lower and upper bounds of the
eigenvalues of the Hessian of φ(·) respectively. Simplify-
ing expression (13) using our strong convexity assumptions
and positivity of α(1−α), we obtain that we have to show
(1 + s1)||x1−x2||2 + (1− s2)||y1− y2||2− 2B ≤ 0. Or

||(x1−x2)−(y1−y2)||2+s1||x1−x2||2−s2||(y1−y2)||2 ≤ 0.

Let p = x1−x2 and q = y1−y2. By choosing (1+s)p =
q we obtain s1 > s2 + s1s2, or equivalently (1 + s1) ≥

1
1−s2 . Thus the lower and upper bounds of the eigenvalues
of Hessian of φ(·) must coincide.

B Appendix: Optimality of Means

Theorem 3. [2] Let π be a distribution over x ∈ domφ and
µ = E

x∼π
[x] then the expected divergence about s is

E
x∼π

[
Dφ
(
x
∣∣∣∣∣∣s)] = E

x∼π

[
Dφ
(
x
∣∣∣∣∣∣µ)]+Dφ

(
µ
∣∣∣∣∣∣s). (14)

From non-negativity of Bregman divergence it follows that

Corrolary 2. [2] E
x∼π

[x] = Argmin
y∈domφ

E
x∼π

[
Dφ
(
x
∣∣∣∣∣∣y)] .

Corrolary 3. If random variable x takes values in X = X1∪X2

with X1 ∩ X2 = ∅ then Argmin
µ∈X

E
x|X

[
Dφ
(
x
∣∣∣∣∣∣µ)] ≥

Argmin
µ1∈X1

E
x|X1

[
Dφ
(
x
∣∣∣∣∣∣µ1

)]
+ Argmin

µ2∈X2

E
x|X2

[
Dφ
(
x
∣∣∣∣∣∣µ2

)]
.

Acknowledgements

Authors acknowledge support from NSF grant IIS 1016614
and thank Cheng H. Lee for suggesting improvements over
our initial submission.

References

[1] Gükhan H. Bakir, Thomas Hofmann, Bernhard
Schölkopf, Alexander J. Smola, Ben Taskar, and
S. V. N. Vishwanathan. Predicting Structured Data
(Neural Information Processing). The MIT Press,
2007.

[2] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh.
Clustering with Bregman divergences. Journal of Ma-
chine Learning Research, 6:1705–1749, 2005.

[3] Michael J. Best and Nilotpal Chakravarti. Active
set algorithms for isotonic regression; a unifying
framework. Mathematical Programming, 47:425–
439, 1990.

[4] Stephen Boyd, Neal Parikh, Eric Chu, Borja Pe-
leato, and Jonathan Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direc-
tion method of multipliers. Foundations and Trends
in Machine Learning, 3(1):1–122, 2011.

[5] L. M. Bregman. The relaxation method of finding
the common points of convex sets and its application
to the solution of problems in convex programming.
USSR Computational Mathematics and Mathematical
Physics, 7:200–217, 1967.

[6] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. Learning to rank: from pairwise approach
to listwise approach. In Proceedings of the 24th inter-
national conference on Machine learning, ICML ’07,
pages 129–136, New York, NY, USA, 2007. ACM.

[7] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. Learning to rank: from pairwise approach to
listwise approach. In ICML ’07: Proceedings of the
24th international conference on Machine learning,
pages 129–136, New York, NY, USA, 2007. ACM.

[8] Y Censor and A Lent. An iterative row-action method
for interval convex programming. Journal of Op-
timization Theory and Applications, 34(3):321–353,
1981.

[9] Yair Censor. Row-action methods for huge and
sparse systems and their applications. SIAM Review,
23:444–466, 1981.

[10] Olivier Chapelle, Donald Metlzer, Ya Zhang, and
Pierre Grinspan. Expected reciprocal rank for graded
relevance. In Proceedings of the 18th ACM con-
ference on Information and knowledge management,
CIKM ’09, pages 621–630, New York, NY, USA,
2009. ACM.

[11] Yoav Freund, Raj Iyer, Robert E. Schapire, and
Yoram Singer. An efficient boosting algorithm for

combining preferences. J. Mach. Learn. Res., 4:933–
969, 2003.

[12] William Hersh, Chris Buckley, T. J. Leone, and David
Hickam. Ohsumed: an interactive retrieval evaluation
and new large test collection for research. In Pro-
ceedings of the 17th annual international ACM SIGIR
conference on Research and development in informa-
tion retrieval, SIGIR ’94, pages 192–201, New York,
NY, USA, 1994. Springer-Verlag New York, Inc.

[13] Alfredo N Iusem. Steepest descent methods with gen-
eralized distances for constrained optimization. Acta
Applicande Mathematicae, 46:225–246, 1997.

[14] Valen E. Johnson and James H. Albert. Ordinal data
modeling. Statistics for social science and public pol-
icy. 1999.

[15] Dongmin Kim, Suvrit Sra, and Inderjit S. Dhillon.
Fast projection-based methods for the least squares
nonnegative matrix approximation problem. Stat.
Anal. Data Min., 1(1):38–51, 2008.

[16] Jyrki Kivinen and Manfred K. Warmuth. Exponen-
tiated gradient versus gradient descent for linear pre-
dictors. Information and Computation, 132, 1995.

[17] Yanyan Lan, Tie-Yan Liu, Zhiming Ma, and Hang Li.
Generalization analysis of listwise learning-to-rank
algorithms. In Proceedings of the 26th Annual In-
ternational Conference on Machine Learning, ICML
’09, pages 577–584, New York, NY, USA, 2009.
ACM.

[18] John Nickolls, Ian Buck, Michael Garland, and Kevin
Skadron. Scalable parallel programming with cuda.
Queue, 6(2):40–53, March 2008.

[19] Pradeep Ravikumar, Ambuj Tewari, and Eunho Yang.
On NDCG consistency of listwise ranking methods.
In Proceedings of 14th International Conference on
Artificial Intelligence and Statistics, AISTATS, 2011.

[20] R.E.Barlow and H.D.Brunk. The isotonic regression
problem and its dual. Journal of American Statistical
Association, 67(337):140–147, 1972.

[21] R T. Rockafellar. Convex Analysis (Princeton Land-
marks in Mathematics and Physics). Princeton Uni-
versity Press, December 1996.

[22] Censor Y and Zenios S. The proximal minimization
algorithmwith d-functions. Journal of Optimazation
Theory and Applications, 73:451–464, 1992.

[23] Tie yan Liu, Jun Xu, Tao Qin, Wenying Xiong, and
Hang Li. Letor: Benchmark dataset for research on
learning to rank for information retrieval. In In Pro-
ceedings of SIGIR 2007 Workshop on Learning to
Rank for Information Retrieval, 2007.

