
39

CUDIA: Probabilistic Cross-level Imputation using Individual
Auxiliary Information
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In healthcare-related studies, individual patient or hospital data are not often publicly available due to pri-
vacy restrictions, legal issues or reporting norms. However, such measures may be provided at a higher or
more aggregated level, such as state-level, county-level summaries or averages over health zones such as
Hospital Referral Regions (HRR) or Hospital Service Areas (HSA). Such levels constitute partitions over
the underlying individual level data, which may not match the groupings that would have been obtained if
one clustered the data based on individual-level attributes. Moreover, treating aggregated values as repre-
sentatives for the individuals can result in the ecological fallacy. How can one run data mining procedures
on such data where different variables are available at different levels of aggregation or granularity? In
this paper, we seek a better utilization of variably aggregated datasets, which are possibly assembled from
different sources. We propose a novel “cross-level” imputation technique that models the generative process
of such datasets using a Bayesian directed graphical model. The imputation is based on the underlying data
distribution and is shown to be unbiased. This imputation can be further utilized in a subsequent predic-
tive modeling, yielding improved accuracies. The experimental results using a simulated dataset and the
Behavioral Risk Factor Surveillance System (BRFSS) dataset are provided to illustrate the generality and
capabilities of the proposed framework.
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1. INTRODUCTION
In healthcare-related studies, individual patient or hospital data may contain private
or confidential information such as medical conditions. Public disclosure of raw data
potentially introduces ethical or legal issues. Thus, in many cases, disclosure of sen-
sitive raw data requires legally authorized protocols such as Health Insurance Porta-
bility and Accountability Act (HIPAA) Privacy Rule [HIPAA Compliance Assistance
2003], which includes several de-identification techniques [Emam and Fineberg 2009],
or data providers’ consent to share. Adherence to these regulations can consume con-
siderable time and effort, and may result in only a limited number of attributes or
features being provided to researchers. On the other hand, such measures may be
provided publicly at higher or more aggregated levels, such as state-level, county-
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level summaries or averages over health zones such as Hospital Referral Regions
(HRR) or Hospital Service Areas (HSA) (for example see http://www.data.gov/health
or http://www.cdc.gov/datastatistics/). Averaged statistics over such levels protect pri-
vacy by blending individual information in group summaries, thereby making indi-
vidual data subjects invisible or unidentifiable over sensitive data. This kind of ag-
gregate information may provide richer feature spaces compared to publicly available
individual-level data without infringing privacy and legal issues.

Aggregate information has been frequently used across various domains such as
political science, ecological and healthcare-related studies due to its relatively easier
access. A common practice to deal with such information is to regard group summaries
as representatives for the individuals in the same group. Individual-level feature in-
teractions can be inferred by applying several statistical tools, known as “cross-level
inferences” [Achen and Shively 1995], [King 1997], in which partitions based on such
levels consist of homogeneous characteristic individuals (the constancy assumption).
However, this assumption is valid usually under restrictive conditions such as very
small sized partitions. Even worse, the constancy assumption is difficult to verify in
real applications. In fact, many partitions derived from such levels are composed of a
heterogeneous population, which causes the ecological fallacy. Thus, the applicability
and the effectiveness of cross-level inference are still controversial [Freedman 1999].

Aggregate variables in healthcare data are not the only problem that hin-
ders individual-level statistical analyses or data mining research. Many healthcare
datasets have limited scope of variables or features as the survey has a pre-defined
purpose. In such cases, designing additional sets of surveys might be inappropriate
due to cost or temporal dynamics. Although combining multiple datasets from differ-
ent sources can be an alternative solution, their aggregation levels generally differ
in their geographical regions or administrative units. For example, routinely collected
administrative data sets, such as national registers, aim to collect information on a
limited number of variables for the whole population, while survey and cohort studies
contain more detailed data from a sample of the population. To the best of our knowl-
edge, systematic integration of multiple data sources with different aggregation levels
has not been studied thoroughly, and we firstly propose a theoretical framework on
combining and utilizing such datasets. We expect that a proper utilization of such data
might (i) help to reduce any extra cost or (ii) extend the scope of current healthcare
research.

In this paper, we seek a better utilization of such aggregated information for aug-
menting individual-level data. Suppose two datasets from possibly multiple sources
are available for research where their aggregation levels are also different. Figure 1
shows an example of data presented at different levels of aggregation, state-level
and county-level. We refer to the dataset with a finer granularity as the individual-
level dataset, and the other dataset as the aggregate-level dataset. Assuming that the
dataset of interest is generated by a mixture model that represents underlying hetero-
geneous groups, we introduce a novel generative process that captures the underlying
distributions using a Bayesian directed graphical model and the Central Limit Theo-
rem. Despite the limited nature of given aggregated information, our clustering algo-
rithm provides not only reasonable cluster centroids, but also imputes the unobserved
individual features more effectively. These “cross-level” imputed features better re-
flect the underlying distribution of the data, thus a subsequent predictive model using
such extended information shows improved performance. Many datasets in the health-
care domain are divided into multiple tables containing different levels of aggregation
(sometimes obtained from different sources), and the suggested methodology in this
paper can be useful in increasing the utility in such scenarios.
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Fig. 1. (a) State-level obesity estimates (left) and (b) county-level diabetes estimates (right). Treating state-
level summaries as representative county-level estimates might lead to ecological fallacy. Both figures are
adopted from Centers for Disease Control and Prevention (CDC, http://www.cdc.gov/).

The rest of the paper is organized as follows: We begin by reviewing traditional
statistical cross-level imputation techniques and then outline various inference mech-
anisms that will be used extensively in our approach. In Section 3, we approach the
problem by modeling the data generation process. We start from a generic Bayesian
clustering model, then step-by-step, we impose additional constraints and transform
the simple model to suit the problem setting. After presenting the final model, its
model parameter estimation technique is explained in Section 4. Due to the complex-
ity of the model, a new approximate Monte Carlo Expectation Maximization (MCEM)
algorithm is developed, which is more computationally efficient than a generic MCEM
technique. Moreover, a deterministic algorithm that can be used as a parameter ini-
tialization method is derived as a valuable artifact of our probabilistic approach. Using
the learned model parameters, in Section 4, we propose a “cross-level imputation” for-
mula, which basically enables us to estimate the masked individual values for the
aggregate features. The imputation procedure is shown to be a “unbiased” estimator,
and it statistical properties are analyzed in detail. To highlight the effectiveness of our
approach, we first examine the imputation quality using a simulated dataset in Sec-
tion 6.1. Then we demonstrate various possible settings in real applications using the
Behavioral Risk Factor Surveillance System (BRFSS) dataset in Section 6.2. Finally,
we discuss the possible constraints of our framework and future work in Section 7.

2. RELATED WORK
In this section, we summarize three bodies of related work, starting from traditional
imputation techniques in statistics. This is followed by ecological study techniques,
where aggregated and individual information are both available. Finally, we briefly
discuss various approaches that are used to make inferences in Bayesian graphical
models.

Imputation techniques in statistics. In statistics, there is a vast literature on imputa-
tion techniques that are mainly used to substitute missing values in data [Rubin 2004].
A once-common method is cold-deck imputation, where a missing value is imputed
from randomly selected similar records from another dataset. More sophisticated tech-
niques, such as the nearest neighbor imputation and the approximate Bayesian boot-
strap, have been developed to supersede this original method. As a special case, when
geographical information is missing in the data, geo-imputation techniques are widely
used, where the imputation is taken from approximate locations derived from asso-
ciated data [Henry and Boscoe 2008]. Regression estimation [Tabachnick and Fidel
2001] is another widely used imputation technique in statistics. In regression estima-
tion, the variable with missing data is treated as the dependent variable, while the
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other variables are treated as the independent variables. A normal regression is per-
formed based on this setting, then the missing values are replaced by the regression
results. Regression estimation assumes enough number of complete individual sam-
ples, which is not the case in our setting. If missing values are rather sparse, a Boot-
strap technique can be used to improve a subsequent predictive modeling performance
[Brownstone and Valletta 2001]. However, these traditional techniques are based on
individual-level data, and some of them have limited applicability.

Ecological studies. In ecological studies, aggregated information is usually the unit
of analysis, as individual information is usually not available due to expensive ac-
quisition costs or legal issues. Most of the ecological analyses are based on ecologi-
cal regression, which uses the Goodman’s “constancy assumption” [Goodman 1953],
[Goodman 1959], [King 1997]. The constancy assumption states that behavior within
an ecological group does not depend on the other specific characteristics of the group
i.e. a group consists of homogenous individuals. Although ecological studies have been
used frequently across multiple domains such as social science and healthcare analy-
sis, the validity of the studies is still controversial because of the difference between
ecological correlation and individual correlation [Robinson 1950], which is also known
as the “ecological fallacy”. In many cases, the constancy assumption may not hold be-
cause regional and contextual effects on ecological groups cannot be overlooked, and
one ecological group is rarely homogeneous in its behavior.

Ecological regression analysis based on the constancy assumption is vulnerable to
“confounding factors” and “aggregation bias”. Traditionally, the aggregation bias has
been tackled in two ways: (i) by assuming a quadratic model rather than a linear
model, or (ii) by calculating interval estimates for unobserved individual features
rather than point estimates. In the first method, a quadratic model is obtained by
relaxing the constancy assumption [Achen and Shively 1995]. In this framework, an
individual in a specific ecological group is no longer independent of the group, and this
relationship is specified by a linear model, resulting in a quadratic model at aggrega-
tion level. However, the added assumption is not verifiable in most of the cases, and
the interpretation of the results becomes harder. In the second method, unobserved
individual features are bounded to satisfy aggregated information constraints. This
technique is also known as the “method of bounds” [Duncan and Davis 1953]. But the
bounds are too broad to be informative in practice, and are typically only used as a
sanity check tool.

Despite their theoretical instabilities, ecological analyses continue to be used due
to relatively easier access to the aggregate data [Freedman 1999]. Fortuitously, in re-
cent years, it has been reported that auxiliary individual-level information can help
to reduce the ecological fallacy [Wakefield and Salway 2001]. In the Hierarchical Re-
lated Regression (HRR) framework, auxiliary individual-level information represents
a small fraction of the individual samples that constitute the aggregate information
[Jackson et al. 2008], [Jackson et al. 2009]. This setting is useful when acquisition
costs of getting individual data are expensive, so detailed information is only obtained
from a small portion of the entire population. The HRR model relates the regression
coefficients from both aggregate and individual data. This analysis has been shown to
reduce the ecological bias, but the type of the auxiliary information used in HRR is
different from the setting in this paper. In our setting, auxiliary individual-level in-
formation has no overlapping feature or column with available aggregate-level data.
This happens because aggregated features are privacy sensitive and hence cannot be
revealed at individual level for even a small subset of the population. We instead fo-
cus on a generative process of such data, and derive an inference mechanism to get
estimated individual values for the aggregated features. From the generative process,
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heterogeneity of ecological groups is naturally captured by suitable mixture distribu-
tions, resulting in better imputation.

Inference algorithms in Bayesian Graphical Models. In Bayesian graphical models
such as the model presented in this paper, inference can often be challenging. The
Expectation Maximization (EM) algorithm is a popular approach when latent vari-
ables are present in the models. However, many sophisticated models such as Latent
Dirichlet Allocation (LDA) [Blei et al. 2003] have intractable posterior distributions for
the latent variables. To approximate the posterior distributions, other techniques such
as variational EM algorithm, Gibbs sampling and collapsed Gibbs sampling have been
proposed. Although their computational complexities and assumptions are slightly dif-
ferent, their performances are often comparable [Asuncion et al. 2009]. In this paper,
we demonstrate an approximated Gibbs sampling approach, which is specialized for
our setting. Then we propose a related deterministic algorithm that is not only much
faster but also scalable to massive datasets.

3. CLUSTERING MODEL
We denote the set of attributes or features that are available at the individual level
by ~xo, where “individual” refers to entities at the finest resolution available. The fea-
tures that are observed only at an aggregated level are denoted by ~xu, where u denotes
‘unobserved’ at the individual level. Thus there is an underlying “complete” dataset,
Dx = {(~xo, ~xu)1, (~xo, ~xu)2, ..., (~xo, ~xu)N}, which has all features known for each indi-
vidual. The data provider only provides the values of observed variables though. In
addition, it specifies a set of partitions: P = {D1

x,D2
x, ...,DPx }, where

⋃P
p=1Dpx = Dx and

Dpx
⋂
Dqx = ∅ for any distinct p, q. These partitions specify the aggregated values pro-

vided on the unobserved features (~xu), Ds = {~s1, ~s2, ..., ~sP }, where ~sp is derived from
Dx as ~sp = 1

Np

∑N
i=1 ~xui1(~xui∈Dp

x) (sample mean within Dpx) and Np = |Dpx|. Note that in
general, different partitions (and hence levels of aggregation) may apply to different
unobserved variables. Though our approach can be readily extended1 to cover such sit-
uations, and in this paper we consider a common partitioning to keep the notation and
exposition simple.

Suppose we want to find K clusters denoted by {C1, C2, ..., CK} in the complete
data. Note that the clusters are based on the full features (~xo, ~xu), while the par-
titions typically reflect geographical or administrative units, so that the partitions
don’t match with the intrinsic clusters. To cater to the unobserved data, an assump-
tion of conditional independence is made: p(~xo, ~xu|Ck) = p(~xo|Ck)p(~xu|Ck) for any Ck.
Let ~πp = (p(C1|Dpx), p(C2|Dpx), ..., p(CK |Dpx))T = (πp1, πp2, ..., πpK)T , which represents the
mixing coefficients of the partition p. Let ~ξk and ~θk be the sufficient statistics for the
distributions p(~xu|Ck) and p(~xo|Ck) respectively. If all data features are observed at the
individual level, an LDA-like clustering model can be built based on the conditional
independence assumption as in Figure 1 (a), where ~π is sampled from a Dirichlet
distribution parametrized by ~α. As ~xu and ~xo are independent given Ck, they can be
separated using different nodes. Figure 1 (b) shows a modified clustering model that
accommodates the aggregated nature of the unobserved variables. In the model, ~xu is
not observed; rather the derived (aggregated) features ~s are observed.

Even though the model of Figure 1(b) captures the problem characteristics, it is
highly inefficient and contains redundant nodes. Fortunately, the complexity of the
model can be reduced by removing the unobserved nodes ~xu’s if Np is large enough. Let
~ηk and T2

k be the mean and variance of the distribution, p(~xu|Ck). Using the linearity

1Section 5.1 outlines how this extension can be achieved after we have introduced the single aggregation
level case.
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Fig. 2. (a) Clustering models when complete data is available (left) and (b) when only aggregates ~s are
observed instead of ~xu (right).

of mean statistics and the Central Limit Theorem (CLT), ~sp can be approximated as
being generated from a normal distribution as follows:

~sp ∼ N (~µp,Σ
2
p) (1)

~µp =

K∑
k=1

πpk~ηk, Σ2
p =

K∑
k=1

πpk(~ηk · ~ηTk + T2
k)− ~µp · ~µTp

Np
(2)

where ~ηk = E[~xu|Ck], T2
k = V ar[~xu|Ck]. Essentially, ~ηk and T2

k are the sufficient statis-
tics of ~sp’s, since the CLT only requires the mean and variance of the samples. As the
actual values of ~xu’s don’t contribute to the likelihood of this process, ~xu can actually
be removed, resulting in the efficient Clustering Using features with DIfferent levels
of Aggregation (CUDIA) model as shown in Figure 2. The full generative process for
CUDIA is as follows:

For ~sp in Ds,
Sample ~πp ∼ Dirichlet(~α).
Sample ~sp ∼ N (~µp,Σ

2
p),

– where ~µp =
∑K
k=1 πpk~ηk and Σ2

p =
∑K
k=1

πpk(~ηk·~ηTk +T2
k)−~µp·~µT

p

Np
.

For ~xo in Dpx,
Sample ~z ∼Multinomial(~πp).
Sample ~xo ∼

∏K
k=1 p(~xo|~θk)zk .

~π is sampled from a Dirichlet distribution parametrized by ~α, and observed sample
mean statistics ~s is generated from a Normal distribution parametrized by a mixture of
true means ~η’s and a covariance Σ2. ~z’s in each partition are sampled from a Multino-
mial distribution parametrized by ~π, which is specific to the partition, and correspond-
ing ~xo’s are sampled from a distribution

∏K
k=1 p(~xo|~θk)zk , where the suitable form of

p(~xo|~θk) depends on the properties of the variable ~xo’s. For conciseness, the remaining
sections of this paper will denote ~xo as ~x.

4. INFERENCE
From the generative process, the likelihood function of the CUDIA model is given by:

p(x, s|~η, ~θ, ~α) =
∑
z

∫
π

P∏
p=1

p(~sp|~πp, ~η)p(~πp|~α)

Np∏
i=1

K∏
k=1

p(~xi|~θk)zikp(~zi|~πp)dπ (3)

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: August 2012.



CUDIA: Probabilistic Cross-level Imputation using Individual Auxiliary Information 39:7

Fig. 3. Graphical Model of CUDIA.

The posterior distribution of the hidden variables, ~π’s and ~z’s, is as follows:

p(π, z|~η, ~θ, ~α,x, s) =
p(x, s,π, z|~η, ~θ, ~α)

p(x, s|~η, ~θ, ~α)
. (4)

The key inferential problem is how to calculate this posterior distribution. A generic
EM algorithm [Dempster et al. 1976] cannot be applied, since the normalization con-
stant of its posterior distribution in Equation (4) is intractable. Collapsed Gibbs sam-
pling [Liu 1994] also cannot be applied because ~π cannot be integrated out due to
non-conjugacy between ~s and ~π in p(x, s,π, z|~η, ~θ, ~α). In this case, the model can be
learned using either variational methods or Gibbs sampling approaches, and this pa-
per follows the latter alternative. Nevertheless, naı̈ve Gibbs sampling approaches are
computationally inefficient, thus this paper employs an approximated Gibbs sampling
approach, which can be applied when the dimension of ~x is small. The model parameter
estimation follows the MCEM algorithm [Booth and Hovert 1999] using this approxi-
mation technique.

4.1. E-step: Gibbs Sampling
In the CUDIA model, the latent variables are ~π and ~z. So we have:

p(x, s,π, z|~η, ~θ, ~α) =

P∏
p=1

p(~sp|~πp, ~η)p(~πp|~α)

Np∏
i=1

K∏
k=1

p(~xi|~θk)zikp(~zi|~πp). (5)

For each partition p, the Gibbs sampling is performed as follows:

~π(j+1)
p ∼ p(~π|~z(j)1 , ~z

(j)
2 , ..., ~z

(j)
Np
, ~sp, ~η, ~α) (6)

~z
(j+1)
i ∼ p(~z|~π(j+1)

p , ~xi, ~θ). (7)

However, sampling ~π is problematic as Equation (6) is not a trivial distribution. In-
stead of sampling directly from Equation (6), Metropolis-Hastings (MH) algorithm
can be used with a proposal density Dirichlet(~α). This algorithm is described in Al-
gorithm 1.

Sampling from a Dirchlet distribution might be computationally heavy in some pro-
gramming languages such as Numpy in Python2. As an alternative, the prior distribu-
tion of ~π can be replaced by a Logistic Normal distribution or a Uniform distribution

2In Numpy, a Dirichlet sample is generated from multiple gamma distributions.
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ALGORITHM 1: MH Algorithm using Dirichlet proposal density.

Input: Initial value ~π(0)
p

Output: Gibbs sample ~π(IMax)
p

index = 0;
repeat

~π
(new)
p ∼ Dir(~α);
ζ ∼ Uniform(0, 1);
Set n(z(j)·k ) as the count of z(j)·k = 1;
g(~π

(new)
p , ~π

(index)
p ) ← (p(~sp|~π(new)

p , ~η)p(~π
(new)
p |~α)2)/(p(~sp|~π(index)

p , ~η)p(~π
(index)
p |~α)2);

Threshold ← g(~π
(new)
p , ~π

(j)
p )

∏K
k (π

(new)
pk /π

(index)
pk )n(z

(j)
·k );

if ζ < Threshold then ~π
(index+1)
p ← ~π

(new)
p , else ~π(index+1)

p ← ~π
(index)
p ;

until index < IMax;

ALGORITHM 2: Gibbs sampling E-Step

Input: x, s, ~η, ~θ, ~α
Output: π, z
index = 0;
repeat

Sample π(index)
p using Algorithm 1;

Set E[zk|π(index)
p ,x] ∝ p(x|~θk)π(index)

pk ;
Set n(z·k)← E[zk|π(index)

p ,x];
until index < NGibbs;
Set E[zk|x] ∝

∑NGibbs
j=1 E[z

(j)
k |π

(j)
p ,x];

Set ~πp ∝
∑
E[~z|x];

by modifying the CUDIA model, so that we can adopt a different proposal density
function according to the modified model. In our empirical evaluation, different prior
distributions showed marginal differences in their performances. Even though this
MH algorithm inside the Gibbs sampling becomes inefficient when dealing with large
datasets, the sampling step of ~z’s can be avoided given a large enough size of Np for
low dimensional ~x’s.

The overall idea of this approximation is as follows: If ~x is generated from an
exponential family distribution, p(zk|~x, π) is continuous with respect to ~x, so that
p(~z|~x, ~π) ≈ p(~z|~x + d~x, ~π). Consider a ball of radius r > 0 centered at ~xc, Br(~xc),
such that p(~z|~xc, ~π) ≈ p(~z|~x, ~π), where ~x is in the ball. If the number of ~x’s that are
in the ball is large enough, then n(z·k) in the ball can be approximated as n(z·k) ≈
|Br(~xc)|E[zk|πp, ~xc] ≈

∑
~x∈Br(~xc)E[zk|πp, ~x]. This idea can be effectively applied when

Np is large and a low dimensional ~x is given, even better when ~x is a discrete vari-
able. Assuming partitional balls over Dpx, n(z·k) in the partition p can be approximated
as

∑Np

i=1E[zk|πp, ~xi]. Letting the number of Gibbs samples be NGibbs, the algorithm is
described in Algorithm 2.

The last line of the algorithm is derived by using the Partition Theorem of condi-
tional expectation [Grimmett and Stirzaker 2001]. As a result, the actual sampling
process occurs only in MH sampling (Algorithm 1). In this paper, we used a burning
period of 10 samples, and NGibbs ≈ 50 to 100 [Agarwal and Chen 2009]. Our empirical
results show that with this small number of samples, the algorithm converges with
reasonable speed.
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4.2. M-step: Parameter Estimation

The model parameters are ~α, ~θ and ~η. Maximization on ~α and ~θ can be easily per-
formed and won’t be discussed in this paper. ~η∗ and T∗ can be obtained by alternating
the maximization steps on ~η and T respectively. However, if we assume T2

k = δ2kI,
the maximization step on ~η can be simplified. To simplify the notation, the following
matrices are defined:

Si = [s1i, s2i, ..., sPi]
T , W = diag(N1, N2, ..., NP ), H = [~η1, ~η2, ..., ~ηK ]T (8)

Π̂ = [~̂π1, ~̂π2, ..., ~̂πP ]T , where ~̂πp =

∑NGibbs

i=1 ~π
(i)
p

NGibbs
(9)

(10)

Note that

H·i =

 η1i
η2i
...
ηKi

 , Π̂ =

 π̂11 π̂12 ... π̂1K
π̂21 π̂22 ... π̂2K
... ... ... ...
π̂P1 π̂P2 ... π̂PK

 . (11)

As ~s is normally distributed in CUDIA, the relationship between Si and H·i in the
CUDIA model can be described as:

Si ≈ Π̂ ·H·i (12)

However, each ~sp has a different variance, thus the solution of ‘weighted linear regres-
sion’ can be applied to get the optimal H∗·i:

H∗·i = (Π̂TWΠ̂)−1Π̂TWSi. (13)

Note that rank(Π̂TWΠ̂) = rank(Π̂) = K w.p. 1 if P > K. However, mean values (Π̂)
are susceptible to outliers from the Gibbs sampling. To ensure a more stable solution,
regularization techniques can be incorporated. For example, if a Ridge penalty is used,
then H becomes:

H∗·i = (Π̂TWΠ̂ + λI)−1Π̂TWSi. (14)

The entire inference algorithm is described in Algorithm 3.

ALGORITHM 3: Gibbs CUDIA EM algorithm
Input: x, s

Output: ~η, ~θ, ~α
index = 0;
repeat

(E-Step) Algorithm 2;
(M-Step) Learn ~α and ~θ;
H∗·i = (Π̂TWΠ̂ + λI)−1Π̂TWSi;

until Convergence;

4.3. Deterministic Hard Clustering
The CUDIA model leads to an intuitive deterministic hard clustering algorithm. Start-
ing from the log-likelihood of CUDIA, the hard clustering objective function is obtained
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as (see Appendix A for details):

min
z,~µ,~η

∑
p

{
∑
k,np

znpk ‖ ~xnp
− ~µk ‖2}+ β ‖ ~sp −

∑
k

∑
np
znpk

Np
~ηk ‖2 (15)

= min
z,~µ,~η

∑
p,k,np

znpk ‖ ~xnp
− ~µk ‖2 +

β

KNp
‖ ~sp −

∑
k

π̂pk~ηk ‖2 (16)

where π̂pk =

∑
np
znpk

Np
and β is a parameter that determines weights on the group aver-

age statistics. Local minima of this objective function can be found by alternating min-
imization steps between z and (~µ, ~η) as in Algorithm 4. One iteration of this algorithm

ALGORITHM 4: Deterministic CUDIA Algorithm
Input: x, s

Output: ~η, ~θ,π, z
repeat

(Assignment Step)
k∗ = argmin

k
‖ ~xnp − ~µk ‖2 −2(~sp −HT ~̂πp)

T ~ηk(
β

KNp
);

if k = k∗ then znpk ← 1, else znpk ← 0;
(Update Step)
~µk ←

∑
n

(znk~xn)/Nk, ~πp ←
∑
np

~znp/Np;

H·i ← (Π̂TWΠ̂ + λI)−1Π̂TWSi;
until Convergence;

costs Θ(KN). For a fixed number of iterations I, the overall complexity is therefore
Θ(KNI), which is linear in all relevant factors. The complexity of this algorithm is the
same as the “k-means” algorithm, promising its scalability to massive datasets. More-
over, this algorithm can be used as an initialization step for the probabilistic algorithm
(Algorithm 3), which in turn will reduce the total running time.

The squared loss function in the deterministic algorithm is appropriate for an ad-
ditive Gaussian model. Our approach can however be generalized to any exponential
family distribution (of which the Gaussian is a specific example) by exploiting the
bijection property between Exponential family and the family of loss functions repre-
sented by Bregman divergences [Banerjee et al. 2005]. Given two vectors ~x and ~µ, the
Bregman divergence is defined as:

dφ(~x, ~µ) = φ(~x)− φ(~µ)− 〈~x− ~µ,∇φ(~µ)〉 (17)

where φ(·) is a differentiable convex function and∇φ(~µ) represents the gradient vector
of φ evaluated at ~µ. Although the Bregman divergence possesses many other interest-
ing properties, this paper focuses on its bijective relationship to the Exponential family
distribution.

This bijective relation can be exploited when clustering data points cannot be appro-
priately modeled using the Gaussian distribution, as in the Bregman Hard/Soft Clus-
tering algorithms [Banerjee et al. 2005]. Table I shows the relationship between spe-
cific Bregman divergences and their corresponding Exponential family distributions.
The results in [Banerjee et al. 2005] state that minimizing the negative log-likelihood
is the same as minimizing the corresponding expected Bregman divergence. For exam-
ple, if clustering data points are generated by a mixture of Gaussian distributions, the
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Table I. Bregman divergence and Exponential family.

Distribution p(x; θ) µ φ(~µ) dφ(~x, ~µ)

1-D Gaussian 1√
2πσ2

exp(− (x−a)2
2σ2 ) a 1

2σ2 µ
2 1

2σ2 (x− µ)2

d-D Gaussian 1√
(2πσ2)d

exp(− ‖~x−~a‖
2

2σ2 ) ~a 1
2σ2 ‖ ~µ ‖2 1

2σ2 ‖ ~x− ~µ ‖2

1-D Exponential λexp(−λx) 1/λ µ log µ− µ x log ( x
µ
)− (x− µ)

d-D Multinomial N !∏d
j=1 xj !

∏d
j=1 q

xj
j [Nqj ]

d−1
j=1

∑d
j=1 µj log

µj

M

∑d
j=1 xj log

xj
µj

maximum likelihood parameters can be obtained by minimizing the squared loss func-
tion, which is the corresponding Bregman divergence for Gaussian distributions. Using
this bijection and adopting the idea from the Bregman Hard Clustering algorithm, the
deterministic algorithm of CUDIA can be extended by modifying the assignment step
of Algorithm 4 as follows:

— Assignment Step
znpk∗ ← 1, if

k∗ = arg min
k

dφ(~xnp
, ~µk)− 2(~sp −HT ~̂πp)

T ~ηk(
β

KNp
) (18)

znpk∗ ← 0, otherwise.

φ can be chosen based on the distribution of ~x and the update step remains the same.
Note that ~sp follows a Gaussian distribution according to the Central Limit Theo-
rem regardless of the underlying distribution of ~xu’s. Thus, the second term in Equa-
tion (18) remains the same, but the first term is changed to capture various Exponen-
tial distributions. The update step remains the same as in Algorithm 4, since a unique
minimizer of a Bregman divergence is given by its mean (see Proposition 1 in [Banerjee
et al. 2005]).

This extended algorithm captures various distributions while maintaining the orig-
inal complexity. Furthermore, the linkage between Bregman divergences and the Ex-
ponential family distributions enables probabilistic interpretations on the resultant
clustering assignments as in the Bregman Soft Clustering algorithm. Perhaps the most
useful case is when the vectors represent probability distributions, in which case the
KL-divergence (another special case of Bregman divergences), is the appropriate loss
function to use.

5. IMPUTATION
After all the parameters of the CUDIA model are learned, the model allows us to im-
pute the unobserved features ~xu’s at the individual level. Given the observed features
and learned parameters, the imputation is as follows:

p(~xu|~xo, ~πp) =
∑
k

p(~xu, zk|~xo, ~πp) =
∑
k

p(~xu, zk, ~xo, ~πp)

p(~xo)
(19)

=
∑
k

p(~xu|zk)p(zk|~xo, ~πp). (20)

Equation (20) provides the exact imputation formula for any p(~xu|zk), depending on
the form of the cluster-conditional pdf of the unobserved features. For example, if ~xu|zk
is generated from an Exponential family distribution with a mean ~ηk and a covariance
δ2I, the imputation formula obtained is:

~̂xu ←
K∑
k=1

~ηkE[zk|~xo, ~πp]. (21)
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This imputation method also can be applied to the deterministic algorithm. The
bijective relationship between Bregman divergence and Exponential family yields a
soft cluster assignment as follows:

E[zk|~xo, ~πp] =
πpkexp(−dφ(~xo, ~µk))∑
l πplexp(−dφ(~xo, ~µl))

. (22)

For example, if ~xo’s are generated from a mixture of Gaussians, which means dφ(~x, ~µ) =
1

2σ2 ‖ ~x− ~µ ‖2, then Equation (22) becomes:

E[zk|~xo, ~πp] ∝ πpkexp(−‖ ~xo − ~µk ‖
2

2σ2
). (23)

As another example, if ~xo’s are generated from a mixture of d-D multinomial distribu-
tions, using the bijective relationship, we get dφ(~x, ~µ) =

∑d
j=1 xj log

xj

µj
(KL-divergence).

Then, Equation (22) becomes:

E[zk|~xo, ~πp] ∝ πpk
d∏
j=1

(
xoj
µkj

)xoj . (24)

Thus, the deterministic algorithm provides not only the cluster centroids/assignments,
but also the basic imputation framework on the unobserved features, which in turn can
be used for preliminary tests for the model’s applicability.

The imputation formula, Equation (21), calculates an unbiased estimate for ~xu.
Moreover, the variance of the imputation is inversely proportional to the size of the
data. The detailed properties of this imputation are derived and explained in Ap-
pendix B.

5.1. Extension to Different Aggregation Levels
In this section, we show how CUDIA can be applied to data that have differently ag-
gregated variables, by considering the case when two variables aggregated at two dif-
ferent levels. The extension from two variables/levels to more will be clearer when we
fully describe the process.

We presume that these two variables are present at individual-level, namely ~xau and
~xbu, but not observed at individual-level. Thus, the underlying “complete” dataset is
represented as Dx = {(~xo, ~xau, ~xbu)1, (~xo, ~x

a
u, ~x

b
u)2, ..., (~xo, ~x

a
u, ~x

b
u)N}. For each unobserved

variable, we have different partitionings, Pa and Pb where Pa 6= Pb. Then, aggregated
variables, ~spa and ~tpb , are derived from their corresponding partitionings:

~spa =
1

Npa

N∑
i=1

~xaui1(~xa
ui∈D

pa
x )

and ~tpb =
1

Npb

N∑
i=1

~xbui1(~xb
ui∈D

pb
x )
.

As in the CUDIA process, a probabilistic generative process can be used to model the
observed variables ~xo, ~spa , and ~tpb ; however, the resultant generative process would
involve necessarily a deeper hierarchy structure, and its extension to non-nested par-
titionings would be also problematic.

In lieu of building more complex probabilistic models, we introduce two simple ap-
proaches, which are easily extensible to more number of different aggregation levels.
The first approach is a brute-force parallel application of the CUDIA imputation. In
this approach, each aggregated variable is paired with the individual-level variable(s)
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~xo, and then the CUDIA imputation is applied to each pair of variables:

~̂xau ← CUDIA-Imputation(~xo, ~spa)

~̂xbu ← CUDIA-Imputation(~xo,~tpb)

However, this approach ignores information between ~spa and ~tpb , which may be useful
in some cases. To utilize such information, we suggest the second approach, which se-
quentially imputes individual-level variables. In the second approach, one aggregated
variable is firstly paired with the individual-level variable, then its individual-level
value is estimated using the CUDIA imputation. This imputed variable can be fur-
ther utilized as another (estimated) individual-level variable when imputing the other
aggregated variable:

~̂xau ← CUDIA-Imputation(~xo, ~spa)

~̂xbu ← CUDIA-Imputation((~xo, ~̂x
a
u),~tpb)

These two approaches can be easily implemented from the original CUDIA algorithm
with minor modification, thus we primarily focus on the common partitioning case
throughout. Note that the performance of these two approaches, and other possible
extensions need more thorough analysis, and we leave these for our future work.

6. EXPERIMENTAL RESULTS
In this section, we provide two kinds of experimental results. (i) First, imputation
quality of the CUDIA model is assessed using a simulated mixture of Gaussians data.
(ii) Then, its applicability to predictive modeling3 is discussed using the data from the
Behavioral Risk Factor Surveillance System (BRFSS).

6.1. Imputation Quality
We demonstrate CUDIA’s properties for imputation using a simulated dataset. The
dataset is generated by a mixture of three 2-D Gaussians (K = 3) as shown in Fig-
ure 4(a). We generated 2000 samples, then partitioned into ten groups according to
the randomly generated mixture coefficients (Π). Thus, P = 10 and Np = 200 ∀p. The
mixture coefficients are:

Π =

 π1,1 π1,2 π1,3
π2,1 π2,2 π2,3
... ... ...
π10,1 π10,2 π10,3

 =

 0.166 0.023 0.811
0.270 0.387 0.343
... ... ...

0.580 0.174 0.246

 . (25)

From this dataset, we assume the first column (x-axis column) is the auxiliary
individual-level information, and the second column (y-axis column) is aggregated
within each partition. If the unobserved individual-level second column is imputed
by its corresponding aggregated value i.e. everyone in the same partition shares the
same feature value, then the resultant dataset is as in Figure 4(b). We can observe
that this naı̈ve imputation scheme does not reflect the underlying heterogeneous dis-
tributions. Next, we run our CUDIA model over these individual- and aggregate-level
datasets to discover the underlying mixture distributions. Figure 4(c) shows the CU-
DIA imputation based on Equation (21). The CUDIA imputation captures the hidden
underlying mixture distributions, and the imputation follows the mean statistics of
each intrinsic cluster. Figure 5 shows the Mean Squared Error (MSE) between the
true and the imputed data points. The CUDIA imputation achieves lower MSE as well
as lower variance compared to the naı̈ve imputation.

3Targets are chosen arbitrarily to illustrate the applicability of the CUDIA framework.
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Fig. 4. (a) Simulated dataset with the individual level data (x-axis) and the true individual values (y-
axis) for the aggregate data (left). (b) Direct imputation using the aggregate level data (center). (c) CUDIA
imputation (right). Each partition is represented by a different color.

Fig. 5. Imputation accuracy (Mean Squared Error) on the simulated dataset.

6.2. BRFSS dataset
In this section, we provide the experimental results using a real world dataset in var-
ious settings.

Dataset description. We demonstrate the proposed method using the BRFSS 2009
dataset. BRFSS (Behavioral Risk Factor Surveillance System) 4 is the world’s largest
telephone health survey since 1984, tracking health conditions and risk behaviors in
the United States. The data are collected monthly in all 50+ states in the United
States. The dataset contains information on a variety of diseases like diabetes, hy-
pertension, cancer, asthma, HIV etc, and in this paper, we mainly focus on diabetes
rather than other diseases 5. The 2009 dataset contains more than 400,000 records
and 405 variables and the diabetic (positive class) ratio is 12%. Empty and less in-
formative columns are dropped and we finally chose six variables to perform our ex-
periments. The selected variables are: Age, Body Mass Index (BMI), Education level,
Income level, Hypertension and Hyper-cholesterol.

In many cases, revealing personal disease records or medical conditions can be prob-
lematic, or even cause traumatic situations e.g. HIV. Rather than having the raw indi-
vidual disease records, suppose the data is provided at aggregate level such as state-
level or county-level summaries. The aggregation level we chose in this paper is the
US census division as shown in Figure 6. For each division, the important feature dis-
tributions are described in Figure 7. Although the distributions are slightly different
across each division, we can observe that they do not reflect the true clusters of the
individual-level features.

4http://www.cdc.gov/brfss/
5Targets are chosen arbitrarily to illustrate the applicability of the CUDIA framework.
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Fig. 6. Census Regions and Divisions of the United States. This picture is adopted from http://www.eia.gov
/emeu/reps/maps/us census.html.

Fig. 7. BRFSS dataset description for each division. (a) Age (left), (b) BMI (center) and (c) Diabetes (right).

6.3. Aggregated Target
In this section, we focus on diabetes records that are aggregated at the US division
level as in Figure 7(c). We use (i) Age, (ii) BMI, (iii) Education level and (iv) In-
come level as the individual-level features and the aggregated diabetes ratio as the
aggregate-level features. This individual-level dataset along with the division-level ag-
gregated diabetes records are given as the inputs to the CUDIA model. Although the
individual-level features are numeric values, their values are grouped ranging from
three to six levels. To prevent the singular variance problem in the EM algorithm,
their values are perturbed with a negligible Uniform noise before the learning process.
After all the parameters in the CUDIA model are learned, the hidden individual-level
diabetic condition (diabetes or healthy) is imputed based on the underlying distribu-
tion. Note that the imputation formula produces a probabilistic estimate of how he/she
is likely to have diabetes. Hence the imputation quality can be measured by Receiver
Operating Characteristic (ROC) curve and Area Under ROC (AUROC) values. Figure 8
shows the ROC curves and the AUROC values from the aggregated diabetes dataset,
ranging from K = 3 to K = 9. We compare the performance of CUDIA with the base
model, which makes everyone in the same division share the corresponding average
diabetic rate. We can observe that all CUDIA models outperforms the base model in
ROC space.

The CUDIA model provides another valuable information about the data, which is
the underlying distribution. Table II shows the learned parameters from the model.
Noticeably, Cluster 7 exhibits a high risk for diabetes. Their profiles can be described
as “higher age”, “obese” and “middle-class”, where this relationship between obesity
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Fig. 8. Results from the aggregated diabetes dataset. (a) ROC curves (left) and (b) AUROC values (right).

Table II. θ and η values from the aggregated diabetes dataset.

Cluster Index Age (θ1) BMI (θ2) Education (θ1) Income (θ4) Diabetes (η)
1 3.904 2.015 2.516 4.999 0.065
2 4.639 1.000 2.602 2.767 0.105
3 4.136 1.790 4.000 4.999 0.068
4 2.909 2.000 2.726 3.389 0.121
5 4.689 2.000 2.635 3.126 0.135
6 4.270 1.999 2.261 1.002 0.124
7 4.534 2.999 2.480 2.617 0.233
8 6.000 2.000 2.617 3.015 0.119
9 4.936 2.000 0.997 2.001 0.126

Fig. 9. Predictive modeling using the CUDIA framework.

and diabetes coincides with the medical research literature [Steppan et al. 2011]. On
the other hand, Cluster 3 shows a lower risk, and their profiles can be summarized as
“slim”, “high education” and “high level income”. Note that these cluster parameters
are learned without accessing the individual diabetes information.

6.4. Aggregated Features
In this section, we consider a different setting based on the same dataset, in which
the target variable is available at individual level, but other important features are
masked due to privacy or legal issues. In this case, we can impute the masked features
using the CUDIA model, then propagate its results to various predictive modeling
algorithms. Figure 9 describes the main idea of this approach.

In this setting, Age and BMI are the individual features, Hypertension and High-
cholesterol are the masked features and Diabetic condition is the target. The masked
features are aggregated using the US census division mapping, and the target is only
used in the predictive modeling i.e. the target is not used before the predictive model-
ing. As the formulated problem is a binary prediction problem, we can use any binary
classifier such as SVM, Logistic regression, decision tree, Naı̈ve Bayes, etc. If a regres-
sion problem is formulated for this setting, one can use other regression techniques
such as Lasso and Ridge regression [Park and Ghosh 2011], [Park and Ghosh 2012].
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Table III. θ and η values from the aggregated features dataset.

Cluster Index Age (θ1) BMI (θ2) Hypertension (η1) High-cholesterol (η2)
1 2.999 1.999 0.374 0.405
2 3.000 2.000 0.380 0.415
3 4.569 1.000 0.199 0.354
4 3.999 1.999 0.271 0.438
5 5.999 1.999 0.437 0.541
6 5.999 2.000 0.395 0.396
7 5.000 1.999 0.408 0.397
8 4.486 2.999 0.647 0.504
9 1.860 1.999 0.384 0.413

In this paper, we demonstrate this predictive modeling framework using a Logistic
regression family, decision trees, Random Forests, and SVM.

Table III shows the estimated parameters when K = 9 from the dataset. The people
belonging to Cluster 8 have higher hypertension risk as well as high-cholesterol risk.
Their observed individual features are centered at the “higher age” and “obese” cen-
troid [Carmelli et al. 1994]. On the other hand, the people from Cluster 3 have lower
hypertension risk while their ages are comparably high. But interestingly, their BMI’s
are very low, and this supports the result. For the rest of the predictive modeling tasks,
we used K = 9 and λ = 0.1, where λ is in Equation (14).

As in Section 6.3, the aggregated variables are estimated at individual-level using
the CUDIA imputation framework. These imputed variables now form individual-level
predictors, together with the two individual-level variables, Age and BMI. This newly
created dataset, namely the CUDIA dataset, can be plugged into various predictive
models for diabetes. On the other hand, without the CUDIA imputation, the best way
to utilize the aggregated variables is to view them as the individual-level representa-
tives, and we name this dataset as the baseline dataset. These two datasets along with
the “complete” dataset (the ground truth individual-level variables) will be compared
in various predictive models. We expect the CUDIA dataset would result in better pre-
diction than the baseline dataset, as the CUDIA imputed variables will be closer to
the true individual-level values than the coarse baseline variables. Figure 10 shows
the imputation quality of the CUDIA imputed features as well as the baseline vari-
ables. Note that the original hypertension and high-cholesterol variables are binary
variables at individual-level, while the CUDIA imputation results in numeric esti-
mates, which are basically weighted averages of cluster centroids in Table III. These
numeric estimates are better aligned with the underlying true individual-level values,
and we measured AUROC’s for different values of K ’s as well as the baseline. As can
be seen, the aggregated variables (the baseline) across nine Census Divisions show al-
most no predictive power on their original individual-level values, resulting in nearly
0.5 AUROC values. On the other hand, the CUDIA imputed variables tend to follow
the original individual-level values, even with very small K ’s.

6.4.1. Logistic regression with aggregated features. In some cases, the relationship be-
tween the aggregated features and the target might be of primary research interest. If
we have available individual side information (in this case, age and BMI) along with
the aggregated features, we can use either the CUDIA imputed values or the aggregate
values (baseline approach). The Logistic regression equation is given as:

p(Diabetes) ∼ logit(βHyper(Hypertension) + βChol(Cholesterol) + βConst). (26)

Figure 11 shows the Logistic regression results from three different kinds of
datasets: (i) Baseline dataset (direct aggregate variable imputation), (ii) Complete
dataset (full individual observation) and (iii) CUDIA dataset (CUDIA imputation). In
Figure 11(a), we can observe that the coefficients from the CUDIA dataset mimics the
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Fig. 10. ROC charts for Hyper-tension (left) and High-cholesterol (right) imputed features. The CUDIA
imputed features are closer to the ground truth than the baseline features (aggregated values).

Fig. 11. Results from the Logistic regression only with the masked variables. (a) Coefficients (β) (left), (b)
Average Log-likelihood on the test sets (right).

coefficients of the complete dataset quite well. 5-fold cross validation is performed and
the average log-likelihood values of the hold-out samples are recorded. Figure 11(b)
shows that the CUDIA dataset outperforms the baseline dataset, while it performs
slightly worse than the complete dataset.

6.4.2. Logistic regression with L1 constraints. The rest of the experiments use a combi-
nation of the individual- and the aggregate-level features. The dependent variables
are two individual variables (Age and BMI) and two aggregate variables (Hyperten-
sion and High-cholesterol). Unfortunately, many features in the BRFSS dataset are
interdependent such as “Age” and “Income level”, “BMI” and “Hypertension”, etc. This
property becomes even worse when the interdependent numeric values are grouped
into a few number of bins, as in the BRFSS dataset. This type of problems can be al-
leviated if we adopt shrinkage methods, also known as regularizers such as L1 or L2
[Hastie et al. 2009]. In this paper, we demonstrate two widely used regularizers, L1
and L2.

The L1 regularizer is known to generate a sparser solution compared to a normal
regression [Cawley et al. 2006], which can be regarded as an automatic feature se-
lection technique. Figure 12 shows the results from the L1 Logistic regression. From
Figure 12(a), we can observe that the hypertension affects the most in both the com-
plete and the CUDIA datasets, but not in the baseline dataset. The coefficients for the
aggregate variables from the baseline dataset are actually zeroed out due to the effect
of the L1 regularizer. Furthermore, the average log-likelihood values from 5-cv show
that the CUDIA imputation is more effective in this predictive task than the baseline
imputation.
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Fig. 12. Results from the Logistic regression with L1 constraints. (a) Coefficients (β) (left), (b) Average
Log-likelihood on the test sets (right).

Fig. 13. Results from the Logistic regression with L2 constraints. (a) Coefficients (β) (left), (b) Average
Log-likelihood on the test sets (right).

Fig. 14. Results from the Decision trees. (a) BRFSS dataset (left), (b) BRFSS and KFF datasets (right).

6.4.3. Logistic regression with L2 constraints. The results obtained on applying an L2 con-
straints (Ridge regression) are shown in Figure 13. Unlike the L1 case, all the coeffi-
cients have non-zero values in Figure 13(a). Note that the coefficients from the com-
plete and the CUDIA datasets have very similar weights. Again, from Figure 13(b), we
observe that the CUDIA imputation is more effective than the baseline dataset.

6.4.4. Decision Tree. Decision trees are recursive rule based classifiers. We demon-
strate the impact of CUDIA using two kinds of decision trees based respectively on:
(i) Gini criterion [Breiman 1984] and (ii) Entropy criterion [Quinlan 1993]. We used
the decision tree package from KNIME6, and the Minimum Description Length (MDL)
principle is used for pruning.

Figure 14(a) shows the results from the decision trees. The performance is measured
using Area under Receiver Operating Characteristic (AUROC) curve in both cases.
Surprisingly, the CUDIA imputation recorded almost the same performance as the
complete dataset. Originally, the CUDIA model is designed to model the underlying

6http://www.knime.org
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Fig. 15. Results from SVM (left) and Random Forests (right). Average AUROC’s from five runs of 5-fold
cross validation are presented.

Fig. 16. Measured AUROC Results from various classifiers. Average AUROC’s from five runs of 5-fold cross
validation are presented. We used e1071 for SVM, randomForest for Random Forests, glmnet for L1 and
L2 logistic regressions, and rpart for decision trees in R packages. The presented results are based on the
default settings of the packages except minor parameter changes. Note that our primary objective is to
check the improvement through the CUDIA imputation against the baseline dataset, not to compare the
performance of the classification algorithms. We remark that the best performance of each algorithm might
be different from these results.

distribution, then the individual values are imputed utilizing the learned conditional
distributions. As the recursive decision tree algorithms more focus on the conditional
distributions between the target and the features than the individual values them-
selves, the CUDIA model shows its strength especially in decision tree algorithms.

6.4.5. Support Vector Machine and Random Forests. We provide two more demonstra-
tive examples of the CUDIA imputation framework using Support Vector Machine
(SVM) and Random Forests.7 Figure 15 shows the results from both SVM and Random
Forests. We used linear kernel for the SVM classifier, and the default setting for the
rest of the parameters. As can be seen, the CUDIA imputed dataset provides better
classification results than the baseline datasets in both experiments, and it performs
even better than the complete dataset in the Random Forests example.

6.4.6. Performance Analysis. Figure 16 shows the performance comparison between the
baseline dataset and the CUDIA imputed dataset across various classifiers. The ex-
perimental results from SVM, decision trees, and Random Forests show significant
performance improvement using the CUDIA imputed dataset, contrary to the slight
improvement in the logistic regression experiments. We contemplate two possible ex-
planations for this kind of results. First, the two CUIDA-imputed features, hyperten-
sion and high-cholesterol, turn out to be rather strongly correlated with the individual-

7We used e1071 and randomForest R packages for SVM and Random Forests, respectively.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: August 2012.



CUDIA: Probabilistic Cross-level Imputation using Individual Auxiliary Information 39:21

level BMI feature, violating the feature independence assumption of linear models.
Although the imputed features are correlated with the original features, these im-
puted features are based on underlying clusters, providing richer information about
the dataset. Therefore, classifiers resistant to feature dependencies, such as SVM and
decision trees, may be able to produce better predictive performance using this addi-
tional information. Second, the hypertension and high-cholesterol features are origi-
nally binary features, but the CUDIA-imputation results in real-valued estimates at
individual-level, which can be interpreted as probabilistic estimates of having hyper-
tension and high-cholesterol. In decision trees, these numeric features provide larger
freedom of splitting rules differing a cutting threshold, while binary features can re-
sult in only two-way splits. In a case of datasets with aggregated binary features, the
CUDIA imputation may provide higher degree of freedom in decision rules, as long as
the numeric estimates are close to the features. Thus, the CUDIA imputation not only
helps to reconstruct the individual values of the aggregated features, but also supports
the predictive modeling using the imputed features.

6.5. Aggregate Features from a Difference Source: Multi-source example
In this section, we demonstrate a multi-source integration example using CUDIA.
We use the BRFSS dataset as the individual-level information and the Kaiser Fam-
ily Foundation dataset as the aggregate-level information. The Kaiser Family Foun-
dation (KFF) is a non-profit, private foundation, which focuses on the major health-
care issues facing the nation. Statehelthfacts.org is a project of KFF, which provides
various health-related statistics for all 50 states in the US. From the dataset, we se-
lected two state-level summaries: (i) Average Fruit/Vegetable Consumption and (ii)
Average Heart Disease Rate. The state-level summaries are weighted by the BRFSS
sample selection bias, then averaged to make the US divisional statistics. Thus, we
have Age and BMI as the individual-level data from the BRFSS dataset, and the ad-
justed Fruit/Vegetable Consumption and Heart Disease Rate as the aggregate-level
data from the KFF dataset.

Figure 14(b) shows the results from the decision trees when the individual Diabetic
condition is set as the target. We compare the performance of the CUDIA imputa-
tion with two other datasets: (i) without using the aggregate information i.e. only the
BRFSS dataset and (ii) with division-level direct imputation (Base model). We used
the same decision trees as in the previous experiment. The CUDIA dataset exhibits
the best performance among the approaches considered.

The distributions of the imputed variables are shown in Figure 17. Note that we
do not have the ground truth individual information for the KFF dataset. Although
we cannot measure the imputation accuracy, we can check the quality of the results
through the distributions. From Figure 17(a), we can observe that higher risk groups
for heart disease contain more people with higher age and higher BMI. Moreover, fruits
and vegetables are consumed more by people with lower BMI.

7. CONCLUDING REMARKS
In this paper, aggregated statistics over certain partitions are utilized to identify clus-
ters and impute features that are observed only as aggregated values. The imputed
features are further used in predictive modeling, leading to improved performance.
The experiments provided in this paper are illustrative of the generality of the pro-
posed framework and its applicability to several healthcare related datasets in which
individual records are often not available, and different information sources reflect
different types and levels of aggregation.

In the CUDIA framework, the aggregate data do not need to be the actual average
of the underlying individual-level data. The CLT approximation in CUDIA provides
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Fig. 17. Distributions of Imputed Features. (a) Heart Disease Rate (left), (b) Fruit and Vegetable Consump-
tion (right). Age and BMI are jittered to visualize.

flexibility in this and many other practical settings. For example, in the UK census,
some aggregate data are calculated using a 10% sample to maintain confidentiality.
The observed statistics are not the same as the true sample average, thus the direct
application of the model of Figure 2(b) is no longer valid. However, the difference be-
tween the sub-sampled average and the true sample average can be modeled using a
Normal distribution, which fits the key assumption of the CUDIA approximation. As
another example, to maintain confidentiality or privacy, a popular technique is to add
noise to the true values. Additive Laplace or Gaussian noise are known to guarantee
(ε, δ)-differential privacy [Dwork 2006] under certain assumptions [Dwork et al. 2006],
[Dwork et al. 2006]. Adding a Gaussian noise exactly fits the assumption in the CUDIA
model, so that the CUDIA model becomes no longer an approximation in this case.

CUDIA is quite scalable, and in particular, the deterministic hard clustering version
can be readily applied to massive datasets. Furthermore, the square loss function on
~xo can be generalized to all Bregman divergences, or equivalently, one can cater to
any noise function from the exponential family of probability distributions [Banerjee
et al. 2005]. One restriction of the current model is that the number of clusters (K)
cannot be more than the number of partitions (P ) specified by the data provider. This
is why we had to stop at K = 9 for several of the results even though the performances
were improving with increasing K. For the aggregate variables from different parti-
tions, the CUDIA framework can be applied in either parallel or sequential way by
dividing the problem with having one aggregate variable per each, and we leave the
implementation and evaluation of these approaches as our future work.
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A. HARD CLUSTERING DERIVATION
The log-likelihood of the CUDIA model is given by:

log p(x,s, z|π, ~η, ~θ, ~α) = log

P∏
p=1

p(~sp|~πp, ~η)

Np∏
i=1

K∏
k=1

p(~xi|~θk)zikp(~zi|~πp) (27)

=

P∑
p=1

log p(~sp|~πp, ~η) +

P∑
p=1

Np∑
i=1

K∑
k=1

zik log(πpkp(~xi|~θk)) (28)

=
∑
p

log p(~sp|~πp, ~η) +
∑
p,i,k

zik(log πpk + log p(~xi|~θk)), (29)

where π is treated as a model parameter.
p(~sp|~πp, ~η) is a Gaussian distribution according to the Central Limit Theorem, where

its mean and variance are ~µp and Σ2
p, respectively. Suppose p(~xi|~θk) is a Gaussian

distribution with a mean ~µk and a diagonal covariance matricx εI, and Σ2
p has a form

of ε
β I. Then, the log-likelihood becomes:

= −
∑
p

β ‖ ~sp − ~µp ‖2

ε
−

∑
p,i,k

zik
‖ ~xi − ~µk ‖2

ε
− const. (30)

∝ −
∑
p

β ‖ ~sp − ~µp ‖2 −
∑
p,i,k

zik ‖ ~xi − ~µk ‖2 (31)

Note that the maximum likelihood estimator of ~µp is given as
∑
k

∑
np
znpk

Np
~ηk. By re-

placing ~µp with its maximum likelihood estimator and changing the sign of the log-
likelihood, we get an approximate deterministic clustering objective function as fol-
lows:

min
z,~µ,~η

∑
p

{
∑
k,np

znpk ‖ ~xnp
− ~µk ‖2}+ β ‖ ~sp −

∑
k

∑
np
znpk

Np
~ηk ‖2 . (32)

A local minimum of Equation (32) can be obtained by alternating the minimization
steps between (i) z and (ii) ~µ, ~η. This alternating minimization mechanism directly
leads to Algorithm 4.

B. PROPERTIES OF THE CUDIA IMPUTATION
In this section, we show the basic properties of the CUDIA imputation, including the
bias and variance of this imputation.

c© 2012 ACM 0000-0003/2012/08-ART39 $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000
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B.1. Unbiasedness of x̂u
Using (i) the law of iterated expectations and (ii) linearity of expectation,

E[x̂u] = E[

K∑
k=1

ηkE[zk|~xo, ~πp]] =

K∑
k=1

ηkE[E[zk|~xo, ~πp]] =

K∑
k=1

ηkE[zk] = E[xu]. (33)

The expectation of the estimated x̂u is the same as the expectation of the unobserved
xu. Thus, the imputation formula provides unbiased estimators for the xu’s. This prop-
erty holds regardless of the distribution of xu.

B.2. Variance of η
Recall the observed sample statistics (sample average) of a given partition p is:

sp ∼ N (µp, σ
2
p) (34)

µp =

K∑
k=1

πpkηk (35)

σ2
p =

∑K
k=1 πpk(η2k + τ2k ) − µ2

p

Np
∝ 1

Np
. (36)

πpk represents the mixing proportion of the kth component in the partition p. The lin-
earity of expectation naturally leads to Equation (35). From the properties of mixture
distributions, the variance of ~xu in the partition p is given by:

V ar[xu|xu ∈ partition p] =

K∑
k=1

πpk(η2k + τ2k ) − µ2
p. (37)

Applying the Central Limit Theorem, we get Equation (36).
Suppose all the parameters of the CUDIA model are learned correctly, which means

the log-likelihood reaches the global optimum. However, the sample means we used to
learn the model are inherently noisy based on the Central Limit Theorem. This results
in the noisy estimation of η’s regardless of the learning methods used. As Equation (13)
is the optimal solution in this setting, if all the parameters are learned correctly, then
Equation (13) should also hold. Equation (13) gives another interesting interpretation,
if we view S as “dependent variables” and Π as “independent variables” in a Linear
regression formulation.

THEOREM B.1. If all the parameters are learned correctly and Np = M, ∀p, then
(a) η̂ is normally distributed.
(b) The means and variances are given by

E[η̂k] = ηk (38)

V ar[η̂k] ∝ 1

M
(39)

Cov[η̂i, η̂j ] ∝
1

M
, where i 6= j and 0 < i, j < K. (40)

PROOF. From Equation (13),

E[H∗] = E[(ΠTΠ)−1ΠTS] = E[(ΠTΠ)−1ΠT (ΠH + ε)]

= E[H] + E[(ΠTΠ)−1ΠT ε] = E[H] + E[E[(ΠTΠ)−1ΠT ε|Π]]

= E[H] + E[(ΠTΠ)−1ΠTE[ε|Π]] = E[H].
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This proves Equation (38) in the result (b). Moreover, since S is normally distributed,
a linear combination of S is also normal. Thus, H, which is a linear combination of S,
is normal.

The estimator H∗ can be written as:

H∗ = H + (ΠTΠ)−1ΠT ε. (41)

Thus, the variance of H∗ is the same as the variance of (ΠTΠ)−1ΠT ε. Let Qπ =
(ΠTΠ)−1ΠT . Then,

V ar[H∗] = QπΣ2
εQ

T
π ,where Σ2

ε =

 σ2
1 0 ... 0

0 σ2
2 ... 0

... ... ... ...
0 0 ... σ2

P

 and Qπ ≡

 q11 q12 ... q1P
q21 q22 ... q2P
... ... ... ...
qK1 qK2 ... qKP

 .

(42)
Then,

V ar[ηk] =

P∑
p=1

q2kpσ
2
p =

P∑
p=1

q2kp

∑K
k=1 πpk(η2k + τ2k ) − µ2

p

Np
(43)

=

∑P
p=1 q

2
kp{

∑K
k=1 πpk(η2k + τ2k ) − µ2

p}
M

∝ 1

M
. (44)

Moreover,

Cov[ηi, ηj ] =

P∑
p=1

qipqjpσ
2
p =

∑P
p=1 qipqjp{

∑K
k=1 πpk(η2k + τ2k ) − µ2

p}
M

∝ 1

M
. (45)

This proves Theorem (B.1).

B.3. Variance of x̂u
The estimated x̂u is a linear combination of η̂’s. Theorem (B.1) naturally leads to the
next theorem.

THEOREM B.2. If x̂u =
∑K
k=1 η̂kE[zk|~xo, ~πp], then

V ar[x̂u] ∝ 1

M
. (46)

PROOF. Let ak = E[zk|~xo, ~πp] to simplify the notation. Then,

V ar[x̂u] = V ar[

K∑
k=1

akη̂k] =

K∑
k=1

a2kV ar[η̂k] +
∑
i 6=j

aiajCov[η̂i, η̂j ] ∝
1

M
. (47)

The last line of the equation comes from Theorem (B.1). This proves Theorem (B.2).

LEMMA B.3. The mean squared error, MSE(x̂u), is inversely proportional to the
size of the aggregation M .

PROOF.

MSE(x̂u) = V ar[x̂u] + (Bias(x̂u, xu))2 = V ar[x̂u] ∝ 1

M
. (48)
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