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ABSTRACT
In healthcare-related studies, individual patient or hospital
data are not often publicly available due to privacy restric-
tions, legal issues or reporting norms. However, such mea-
sures may be provided at a higher or more aggregated level,
such as state-level, county-level summaries or averages over
health zones (HRR1 or HSA2). Such levels constitute parti-
tions of the underlying individual level data, which may not
match the data segments that would have been obtained if
one clustered individual-level data. Treating these aggre-
gated values as representatives for the individuals can re-
sult in the ecological fallacy. How can one run data mining
procedures on such data where different variables are avail-
able at different levels of aggregation or granularity? We
examine this problem in a clustering setting given a mix
of individual-level and (arbitrarily) aggregated-level data.
For this setting, a generative process of such data is con-
structed using a Bayesian directed graphical model. This
model is further developed to capture the properties of the
aggregated-level data using the Central Limit theorem.. The
model provides reasonable cluster centroids under certain
conditions, and is extended to estimate the masked individ-
ual values for the aggregated data. The model parameters
are learned using an approximated Gibbs sampling method,
which employs the Metropolis-Hastings algorithm efficiently.
A deterministic approximation algorithm is derived from the
model, which scales up to massive datasets. Furthermore,
the imputed features can help to improve the performance in
subsequent predictive modeling tasks. Experimental results
using data from the Dartmouth Health Atlas, CDC, and the
U.S. Census Bureau are provided to illustrate the generality
and capabilities of the proposed framework.
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1. INTRODUCTION
Despite the tremendous information explosion and avail-

ability of public-domain medical and healthcare data re-
cently (for example see www.data.gov/health), many of the
health-related features or indicators are only available at
a highly aggregated level, due to privacy concerns, report-
ing norms or legal issues [?]. In particular, routinely col-
lected administrative data sets, such as national registers,
aim to collect information on a limited number of variables
for the whole population, while survey and cohort studies
contain more detailed data from a sample of the population
[?]. Even if the individual records are available, some fea-
tures may be suppressed to protect identities of data holders.
For example, Texas Department of State Health Services
provides ‘Texas Inpatient Public Use Data File (PUDF)’,
which contains data on discharges from Texas hospitals [?],
but the ZIP code information in PUDF is suppressed or
eliminated depending on the number of patients in a given
region. As data mining algorithms should ideally be ap-
plied to individual-level data to discover valuable informa-
tion, limited access to the raw entries introduces conflict
of interests between data miners, patients and providers [?].
Several privacy preserving data mining algorithms have been
suggested to overcome this conflict [?, ?, ?, ?]. However, re-
quirements of privacy preservation are difficult to achieve for
several types of analyses, and these algorithms are typically
more complex and less capable compared to privacy-agnostic
techniques.

Many health or healthcare indicators are available at dif-
ferent aggregated levels, rather than providing an entry for
each individual. For example, average income by state, aver-
age death ratio by city, or average smoking rate by country
are available through a variety of easily accessible public



reports. Although these aggregated statistics cannot recon-
struct the underlying individual-level data, these aggregated
data can be combined with individual data to produce more
informative models. In epidemiology, it has been observed
that ecological bias from aggregate administrative data can
be alleviated by incorporating surveys of individual expo-
sures or case-control data, leading to recent attempts at in-
tegrating data at multiple levels of summarization [?, ?].

In this paper, we seek a better utilization of such aggre-
gated information for augmenting the individual-level data.
Assuming that the dataset of interest is generated by a mix-
ture model, and that the partitions that form aggregation
units (such as states or counties) contain different ratios of
the mixture components, we introduce a novel generative
process, which captures the underlying distributions using
a Bayesian directed graphical model and the Central Limit
Theorem. Despite the limited nature of given aggregated
information, our clustering algorithm provides not only rea-
sonable cluster centroids, but also imputes the unobserved
individual features. These imputed features reflect the un-
derlying distribution of the data, thus a predictive model
using these extended information shows improved perfor-
mances. As many datasets in the healthcare domain are
divided into multiple tables containing different levels of ag-
gregation (sometimes obtained from different sources), the
suggested methodology in this paper can be useful in max-
imizing the utility of such available information. Further-
more, our approach can easily be extended to situations
where different features are aggregated over various parti-
tions of the raw data records.

2. RELATED WORK
In this section, we outline three bodies of related work,

starting from traditional imputation techniques in statistics.
This is followed by ecological study techniques, where aggre-
gated and individual information are both available. Finally,
we briefly discuss various approaches that are used to make
inferences in Bayesian graphical models.

In statistics, imputation techniques are mainly used to
substitute missing values in data [?]. A once-common method
is cold-deck imputation, where a missing value is imputed
from randomly selected similar records from another dataset.
More sophisticated techniques, such as the nearest neigh-
bor imputation and the approximate Bayesian bootstrap,
have been also developed to supersede this original method.
As a special case, when geographical information is missing
in data, geo-imputation techniques are widely used, where
the imputation is taken from approximate locations derived
from associate data [?]. However, these traditional tech-
niques are based on individual-level data, and some of them
are limited in their applicabilities.

On the other hand, in ecological studies, aggregated in-
formation is usually the unit of analysis, as individual infor-
mation is usually not available due to expensive acquisition
costs or legal issues [?, ?, ?]. Although ecological stud-
ies have been used frequently across multiple domains such
as social science and healthcare analysis, the validity of the
studies is still controversial because of the difference between
ecological correlation and individual correlation [?], which is
also known as the ‘ecological fallacy’. Fortuitously, in recent
years, it has been reported that auxiliary individual level in-
formation can help to reduce the ecological fallacy [?]. In
the hierarchical related regression (HRR) framework, aux-

iliary individual information represents a small fraction of
the individual samples that constitute the aggregate infor-
mation [?, ?]. This setting is useful when acquisition costs
of getting individual data is expensive, so that the avail-
able information covers only a small portion of the entire
population. The HRR model relates the regression coeffi-
cients from both aggregate and individual data, compensat-
ing their disadvantages. This analysis has been shown to
reduce the ecological bias, but the type of the auxiliary in-
formation used in HRR is different from our setting in this
paper. The model we present in this paper assumes aux-
iliary individual information, which contains a different set
of features from provided aggregate data. We first focus on
a generative process of such data, then derive an inference
mechanism to get estimated individual values for the aggre-
gated features. From the generative process, heterogeneity
of ecological groups is naturally captured by suitable mix-
ture distributions, resulting in better imputation.

In Bayesian graphical models such as the model presented
in this paper, inferential problems pose key challenges in
most cases. The Expectation Maximization (EM) algorithm
is the most popular approach when latent variables are present
in models. However, many sophisticated models such as La-
tent Dirichlet Allocation (LDA) [?] have intractable poste-
rior distributions for latent variables. To approximate the
posterior distributions, other techniques such as variational
EM algorithm, Gibbs sampling and collapsed Gibbs sam-
pling are employed. Although their computational com-
plexities and assumptions are slightly different, their per-
formances are marginally the same [?]. In this paper, we
demonstrate an approximated Gibbs sampling approach, which
is specialized for our setting. Then we further introduce a
deterministic version, which is not only much faster but also
scalable to massive datasets.

3. CLUSTERING MODEL
We denote the set of features that are available at the

individual level, where “individual” refers to entities at the
highest resolution available, by ~xo. The features that are ob-
served only at an aggregated level are denoted by ~xu, where
u denotes ‘unobserved’ at the individual level. Thus there is
an underlying“complete”dataset (Dx = {(~xo, ~xu)1, (~xo, ~xu)2,
..., (~xo, ~xu)N}), which has all features observed. The data
provider only provides the values of observed variables though.
In addition, it specifies a set of partitions: P = {D1

x,D2
x, ...,DPx }

where
⋃P
p=1D

p
x = Dx and Dpx

⋂
Dqx = ∅ for any p, q. These

partitions specify the aggregated values provided on the un-
observed features (~xu), Ds = {~s1, ~s2, ..., ~sP }, where ~sp is de-

rived from Dx as ~sp = 1
Np

∑N
i=1 ~xui1(~xui∈D

p
x) (sample mean

within Dpx) and Np = |Dpx|. Note that in general, different
partitions (and hence levels of aggregation) may apply to
different unobserved variables. Though our approach can
be readily extended to cover such situations, in this paper
we consider a common partitioning to keep the notation and
exposition simple.

Suppose we want to find K clusters in the complete data,
denoted by {C1, C2, ..., CK}. To cater to the unobserved
data, an assumption of conditional independence is made:
p(~xo, ~xu|Ck) = p(~xo|Ck)p(~xu|Ck). Let ~πp = (p(C1|Dpx), p(C2|Dpx)
, ..., p(CK |Dpx))T = (πp1, πp2, ..., πpK)T , which represents the
mixing coefficients of the partition p. Then, to avoid a
pathological symmetry case, we assume that ~πp 6= ~πq for



Figure 1: (a) Clustering models when complete data
is available (top) and (b) when only aggregates ~s are
observed instead of ~xu (bottom).

any p, q with probability one. Let ~ξk and ~θk be the suffi-
cient statistics for the distributions p(~xu|Ck) and p(~xo|Ck)
respectively. If all data features are observed at the in-
dividual level, a LDA-like clustering model can be built
based on the conditional independence assumption as in Fig-
ure 1 (a), where ~π is sampled from a Dirichlet distribution
parametrized by ~α. Figure 1 (b) shows a modified clustering
model that accommodates the aggregated nature of the un-
observed variables. As ~xu and ~xo are independent given Ck,
they can be separated using different nodes. In the model,
~xu is not observed; rather the derived (aggregated) features
~s are observed.

Even though the model of Figure 1(b) captures the prob-
lem characteristics, it is highly inefficient and contains re-
dundant nodes. Fortunately, the complexity of the model
can be reduced by removing the unobserved nodes ~xu’s if
Np is large enough. Let ~ηk and T2

k be the mean and vari-
ance of the distribution, p(~xu|Ck). Using the linearity of
mean statistics and the Central Limit Theorem (CLT),
~sp can be approximated as being generated from a normal
distribution as follows:

~sp ∼ N (~µp,Σ
2
p) (1)

~µp =

K∑
k=1

πpk~ηk (2)

Σ2
p =

K∑
k=1

πpk(~η · ~ηT + T2
k)− ~µ · ~µT

Np
(3)

~ηk = E[~xu|Ck], T2
k = V ar[~xu|Ck]. (4)

Figure 2: Graphical Model of CUDIA.

Essentially, ~ηk and T2
k are the sufficient statistics of ~sp’s,

since the CLT only requires the mean and variance of the
samples. As the actual values of ~xu’s don’t contribute to the
likelihood of this process, ~xu can actually be removed, result-
ing in the efficient Clustering Using features with DIfferent
levels of Aggregation (CUDIA) model as shown in Figure 2.
The full generative process for CUDIA is as follows:

For ~sp in Ds,

– Sample ~πp ∼ Dirichlet(~α).

– Sample ~sp ∼ N (~µp,Σ
2
p),

where ~µp =
∑K
k=1 πpk~ηk

and Σ2
p =

∑K
k=1

πpk(~η·~ηT+T2
k)−~µ·~µ

T

Np
.

– For ~xoi in Dpx,

Sample ~zi ∼ Multinomial(~πp).

Sample ~xoi ∼
∏K
k=1 p(~xo|~θk)zik .

~π is sampled from a Dirichlet distribution parametrized
by ~α, and observed sample mean statistics ~s is generated
from a Normal distribution parametrized by a mixture of
true means ~ηs and a covariance Σ2. ~z’s in each partition
are sampled from a Multinomial distribution parametrized
by ~π, which is specific to the partition, and corresponding

~xos are sampled from a distribution
∏K
k=1 p(~xo|~θk)zk , where

the suitable form of p(~xo|~θk) depends on the properties of
the variable ~xo’s. For conciseness, the remaining sections of
this paper will denote ~xo as ~x.

4. INFERENCE
From the generative process, the likelihood function of the

CUDIA model is given by:

p(x, s|~η,T2, ~θ, ~α)

=
∑
z

∫
π

P∏
p=1

p(~sp|~πp, ~η,T2)p(~πp|~α)

Np∏
i=1

K∏
k=1

p(~xi|~θk)zikp(~zi|~πp)dπ

=

∫
π

P∏
p=1

p(~sp|~πp, ~η,T2)p(~πp|~α)

Np∏
i=1

K∏
k=1

∑
z

p(~xi|~θk)zikp(~zi|~πp)dπ.



The posterior distribution of the hidden variables, ~π’s and
~z’s, is as follows:

p(π, z|~η,T2, ~θ, ~α,x, s) =
p(x, s,π, z|~η,T2, ~θ, ~α)

p(x, s|~η,T2, ~θ, ~α)
. (5)

The key inferential problem is how to calculate this posterior
distribution. A generic EM algorithm [?] cannot be applied,
since the normalization constant of its posterior distribution
in Equation (5) is intractable. Collapsed Gibbs sampling [?]
also cannot be applied because ~π cannot be integrated out

due to non-conjugacy between ~s and ~π in p(x, s,π, z|~η, ~θ, ~α).
In this case, the model can be learned using either varia-
tional methods or Gibbs sampling approaches, and this pa-
per follows the latter alternative. Nevertheless, näıve Gibbs
sampling approaches are computationally inefficient, thus
this paper employs an approximated Gibbs sampling ap-
proach, which can be applied when the dimension of ~x is
small. The model parameter estimation follows the MCEM
algorithm [?] using this approximation technique.

4.1 E-step: Gibbs Sampling
In CUDIA, the latent variables are ~π and z. So we have:

p(x,s,π, z|~η, ~θ, ~α)

=

P∏
p=1

p(~sp|~πp, ~η)p(~πp|~α)

Np∏
i=1

K∏
k=1

p(~xi|~θk)zikp(~zi|~πp).

For each partition p, the Gibbs sampling is performed as
follows:

~π(j+1)
p ∼ p(~π|~z(j)1 , ~z

(j)
2 , ..., ~z

(j)
Np
, ~sp, ~η, ~α) (6)

~z
(j+1)
i ∼ p(~z|~π(j+1)

p , ~xi, ~θ). (7)

However, sampling ~π is problematic as Eq. (6) is not a
trivial distribution. Instead of sampling directly from Eq.
(6), Metropolis-Hastings (MH) algorithm can be used with
a proposal density Dirichlet(~α):

~π
(new)
p ∼ Dir(~α) and ζ ∼ Uniform(0, 1).

~π
(j+1)
p ← ~π

(new)
p if ζ < g(~π

(new)
p , ~π

(j)
p )

∏K
k (

π
(new)
pk

π
(j)
pk

)n(z
(j)
·k ),

where g(~π
(new)
p , ~π

(j)
p ) =

p(~sp|~π
(new)
p ,~η)p(~π

(new)
p |~α)2

p(~sp|~π
(j)
p ,~η)p(~π

(j)
p |~α)2

and

n(z
(j)
·k ) is the count of z

(j)
·k = 1.

Even though this MH algorithm inside the Gibbs sampling
becomes inefficient when dealing with large datasets, the
sampling step of ~z’s can be removed assuming a large enough
data size of Np and a small dimension of ~x.

The overall idea of this approximation is as follows: If ~x is
generated from an exponential family distribution, p(zk|~x, π)
is continuous with respect to ~x, so that p(~z|~x, ~π) ≈ p(~z|~x +
d~x, ~π). Consider a ball of radius r > 0 centered at ~xc,
Br(~x

c), such that p(~z|~xc, ~π) ≈ p(~z|~x, ~π), where ~x is in the
ball. If the number of ~x’s that are in the ball is large
enough, then n(z·k) in the ball can be approximated as
n(z·k) ≈ |Br(~xc)|E[zk|πp, ~xc] ≈

∑
~x∈Br(~xc)

E[zk|πp, ~x]. This
idea can be effectively applied when Np is large and the
dimension of ~x is small, even better when ~x is a discrete
variable. Assuming partitional balls over Dpx, n(z·k) in the

partition p can be approximated as
∑Np

i=1E[zk|πp, ~xi]. Let-
ting the number of Gibbs samples be NGibbs, the algorithm
works as follows:

For j = 1 to NGibbs,

– Sample π
(j+1)
p using MH algorithm,

where n(z
(j)
·k )←

∑Np

i=1E[zk|π(j)
p , ~xi]

– Set E[zk|π(j+1)
p , ~xi] =

p(~xi|~θk)π
(j+1)
pk∑K

k=1
p(~xi|~θk)π

(j+1)
pk

.

E[zk|~x] ∝
∑NGibbs
j=1 E[z

(j)
k |π

(j)
p , ~x].

The last line of the algorithm is derived by using the Par-
tition Theorem of conditional expectation [?]. As a result,
the actual sampling process occurs only in the MH sampling.
In this paper, we used a burning period of 10 samples, and
NGibbs ≈ 50 to 100 [?]. Experimental results show that with
this small number of samples, the algorithm converges with
reasonable speed.

4.2 M-step: Parameter Estimation
Model parameters are ~α, ~θ and ~η. Maximization on ~α

and ~θ can be easily performed and won’t be discussed in
this paper. ~η∗ and T∗ can be obtained by alternating the
maximization steps on ~η and T respectively. However, if
we assume T2

k = δ2kI, the maximization step on ~η can be
simplified. To simplify the notation, the following matrices
are defined [?] :

Si = [s1i, s2i, ..., sPi]
T (8)

Π̂ = [~̂π1, ~̂π2, ..., ~̂πP ]T , where ~̂πp =

∑NGibbs
i=1 ~π

(i)
p

NGibbs
(9)

W = diag(N1, N2, ..., NP ) (10)

H = [~η1, ~η2, ..., ~ηK ]T (11)

To help understanding, their expressive forms are given by:

Si =


s1i
s2i
...
sPi

 , H·i =


η1i
η2i
...
ηKi

 (12)

Π̂ =


π̂11 π̂12 ... π̂1K

π̂21 π̂22 ... π̂2K

... ... ... ...
π̂P1 π̂P2 ... π̂PK

 . (13)

As ~s is normally distributed in CUDIA, the relationship be-
tween Si and H·i in the CUDIA model can be described
as:

Si ≈ Π̂ ·H·i (14)

However, each ~sp has a different variance, thus the solution
of ‘weighted linear regression’ can be applied to get the op-
timal H∗·i:

H∗·i = (Π̂TWΠ̂)−1Π̂TWSi. (15)

Note that rank(Π̂TWΠ̂) = rank(Π̂) = K w.p. 1 if P > K.

However, mean values (Π̂) are susceptible to outliers from
the Gibbs sampling. To ensure the invertibility, regulariza-
tion techniques can be incorporated. For example, if a Ridge
penalty is used, then H becomes:

H∗·i = (Π̂TWΠ̂ + λMI)−1Π̂TWSi. (16)

Furthermore, the regularizer term, λM , can be utilized when
P < K, which makes CUDIA under-determined. But we
leave this to the future work.



5. DETERMINISTIC HARD CLUSTERING
The CUDIA model provides an intuitive deterministic hard

clustering algorithm. From the log-likelihood of CUDIA, the
objective function becomes:

min
z,~µ,~η

∑
p

{
∑
k,np

znpk ‖ ~xnp − ~µk ‖
2}+ β ‖ ~sp −

∑
k

∑
np
znpk

Np
~ηk ‖2

(17)

= min
z,~µ,~η

∑
p,k,np

znpk ‖ ~xnp − ~µk ‖
2 +

β

KNp
‖ ~sp −

∑
k

π̂pk~ηk ‖2

(18)

where π̂pk =

∑
np

znpk

Np
and β is a parameter that determines

weights to mean statistics. Local minima of this objective
function can be found by alternating minimization steps be-
tween z and (~µ, ~η):

• Assignment Step

znpk∗ ← 1,

if k∗ = arg min
k

‖ ~xnp−~µk ‖2 −2(~sp−HT ~̂πp)
T ~ηk( β

KNp
)

znpk∗ ← 0, otherwise.

• Update Step

~µk ←
∑
n

(znk~xn)/Nk, ~πp ←
∑
np

~znp/Np

H·i ← (Π̂TWΠ̂ + λMI)−1Π̂TWSi

One iteration of this algorithm costs Θ(KN). For a fixed
number of iterations I, the overall complexity is therefore
Θ(KNI), which is linear in all relevant factors. The com-
plexity of this algorithm is the same as k-means promising
its scalability to massive datasets. Moreover, this algorithm
can be used as an initialization step for the probabilistic
algorithm, which in turn will reduce the total running time.

The squared loss function in the deterministic algorithm is
appropriate for an additive Gaussian model. Our approach
can however be generalized to any exponential family dis-
tribution (of which the Gaussian is a specific example) by
exploiting the bijection between this family and the family
of loss functions represented by Bregman divergences [?].
Given two vectors ~x and ~µ, the Bregman divergence is de-
fined as:

dφ(~x, ~µ) = φ(~x)− φ(~µ)− 〈~x− ~µ,∇φ(~µ)〉 (19)

where φ(·) is a differentiable convex function and ∇φ(~µ)
represents the gradient vector of φ evaluated at ~µ. Although
the Bregman divergence possesses many other interesting
properties, this paper focuses on its bijective relationship to
the Exponential family distribution.

This bijective relation can be exploited when clustering
data points that cannot be appropriately modeled using the
Gaussian distribution, as in the Bregman Hard/Soft Cluster-
ing algorithms [?]. Table 1 shows the relationship between
Bregman divergences and their corresponding Exponential
family distributions. Using this bijection, the deterministic
algorithm of CUDIA can be extended as follows:

Table 1: Bregman divergence and Exponential fam-
ily.

Distribution φ(~µ) dφ(~x, ~µ)

1-D Gaussian 1
2σ2 µ

2 1
2σ2 (x− µ)2

1-D Exponential µ logµ− µ x log ( x
µ

)− (x− µ)

d-D Gaussian 1
2σ2 ‖ ~µ ‖2 1

2σ2 ‖ ~x− ~µ ‖2

d-D Multinomial
∑d
j=1 µj log

µj

M

∑d
j=1 xj log

xj
µj

• Assignment Step

znpk∗ ← 1,

if k∗ = arg min
k

dφ(~xnp , ~µk)− 2(~sp −HT ~̂πp)
T ~ηk( β

KNp
)

znpk∗ ← 0, otherwise.

where φ can be chosen based on the distribution of ~x and
the update step remains the same.

This extended algorithm captures various distributions
while maintaining the original complexity. Furthermore, the
linkage between the Bregman divergence and the Exponen-
tial family distributions enables probabilistic interpretations
on the resultant clustering assignments as in the Bregman
Soft Clustering algorithm. Perhaps the most useful case
is when the vectors represent probability distributions, in
which case the KL-divergence (another special case of Breg-
man divergences), is the appropriate loss function to use.

6. IMPUTATION
After all the parameters of the CUDIA model are learned,

the model allows us to impute the unobserved features ~xu’s
at the individual level. Given the observed features and
learned parameters, the imputation is as follows:

p(~xu|~xo, ~πp) =
∑
k

p(~xu, zk|~xo, ~πp) (20)

=
∑
k

p(~xu, zk, ~xo, ~πp)

p(~xo)
(21)

=
∑
k

p(~xu|zk, ~xo, ~πp)p(zk|~xo, ~πp)p(~xo, ~πp)
p(~xo, ~πp)

(22)

=
∑
k

p(~xu|zk)p(zk|~xo, ~πp). (23)

The exact imputation formula depends on the pdf of the un-
observed features (p(~xu|zk)). For example, if ~xu is generated
from a Gaussian distribution with mean ~ηk, the imputation
formula obtained is:

~̂xu ←
K∑
k=1

~ηkE[zk|~xo, ~πp] (24)

where the covariance of ~xu is assumed to be δ2I. This im-
putation method also can be applied to the deterministic
algorithm. The bijective relationship between Bregman di-
vergence and Exponential family yields a soft cluster assign-
ment as follows:

E[zk|~xo, ~πp] ∝
exp(−dφ(~xo, ~µk))∑
l exp(−dφ(~xo, ~µl))

πpk. (25)



Figure 3: CUDIA utilizes the aggregated informa-
tion, and generates the imputed individual value for
the aggregated features. The resultant information
can be used in various predictive modeling settings.

Thus, the deterministic algorithm provides not only the clus-
ter centroids/assignments, but also the basic imputation
framework on the unobserved features, which in turn can
be used for preliminary tests for the model’s applicability.

7. EXPERIMENTAL RESULTS
In this section, we provide two kinds of experimental re-

sults. (a) First, imputation quality of the CUDIA model is
assessed using Old Faithful data and a simulated mixture
of Gaussians data. (b) Then, its applicability to predic-
tive modeling3 is discussed using data from the Dartmouth
Health Atlas, CDC and the Census Bureau. Depending on
the nature of the predictor and the data source, averaged
values are provided at hospital, county, HRR/HSA or state
levels. Thus “individual” will refer to either a single hospital
or a single county as these are at the finest granularity level
in the corresponding studies. The CUDIA model is used to
impute the aggregated features at the individual-level, and
its results are compared to predictive modeling using only
higher level data. The workflow of the CUDIA framework
is described in Figure 3.

7.1 Imputation Qualities
Before going through the regression analyses using the

CUDIA model, we present simple experiments to indicate
the usefulness of the imputation based on CUDIA. The Old
Faithful dataset consists of two features, ‘duration’ and ‘in-
terval’. To fit our purpose, the dataset is partitioned into 7
groups, and the average values of the ‘interval’ for each par-
tition are used as sp (thus, ‘duration’: xo, ‘interval’: xu).
The CUDIA model is used to impute x̂u at individual level
in this setting. Figure 4 shows the results with different λ’s,
where K is set as 2 in the CUDIA model. As the value
of λM (Ridge penalty) increases, the imputed features tend
to be near to zero. The exact determination of λM and K
might be difficult, as there is no universal criterion for the
optimal K and λM . In our framework, λM and K will be
determined through cross-validation in predictive modeling
tasks. The baseline imputation model uses the averaged ‘in-
terval’ for each partition as its individual feature. Figure 5
shows the mean squared errors (MSE) for both models, one
using the baseline and the other using the CUDIA model.
The imputation based on the CUDIA model clearly exhibits
reduced MSE.

Another example is provided using a simulated mixture of
Gaussians data. 960 data points are generated from a mix-

3Targets are chosen arbitrarily to illustrate the applicability
of the CUDIA framework.

Figure 4: Old Faithful dataset. The original dataset
is plotted using black ‘+’. The imputed features
with various λM ’s are shown in different colors. All
features are standardized centered at zero.

Figure 5: Imputation Accuracy on Old Faithful
dataset. Vertical axis indicates MSE with respect
to the original feature values.

ture of four two-dimensional Gaussian distributions, then
they are partitioned into 8 partitions. The first column
entries of the data are preserved, while the other column
information is aggregated. Figure 6 shows both the result
from the CUDIA imputation and the baseline imputation.
Apparently, the model captures the underlying distribution,
even though some information is only given in an aggregated
format.

7.2 Dartmouth Health Atlas: Case 1
The Dartmouth Health Atlas dataset [?] is composed of

several tables with different levels of aggregation. For ex-
ample, the number of beds in a hospital can be accessed at
the hospital-level, whereas the medical/surgical discharge
rates can only be obtained at State/HRR/HSA levels. Al-
though the number of beds is strongly related with the med-
ical/surgical discharge rates [?], this information cannot be
directly used as they are aggregated at a different level. Ta-
ble 2 describes the subset of the Dartmouth data used in
this experiment. Only data from the 5 most populous states
(CA, FL, IL, NY, TX) was used so as to have a higher
value of number of hospitals per state. For this subset, the
“complete data” would have consisted of five variables at the
hospital-level, of which two are actually available only at the



Figure 6: Mixture of Gaussians. Red ‘+’ denotes the
complete data, and blue ‘+’ indicates the imputed
data: (a) CUDIA imputation (top), (b) Baseline im-
putation (bottom). CUDIA captures the underlying
distribution.

state level. The CUDIA model can be used to impute the
unobserved features (~xu).

Ridge regression is used to perform predictive modeling
on three kinds of datasets: 1) ‘hospital-level’ dataset alone,
2) imputed complete dataset using ‘state-level’ summaries
and 3) imputed dataset using the CUDIA model, then 5-
fold CV is performed. Note that LASSO or other regression
techniques can be used in this framework, and Ridge re-
gression is just a choice in this paper. Furthermore, if a
predictive modeling task is a classification task, then other
classification algorithms such as Decision Trees, SVM and
Logistic regression can be used depending on their perfor-
mances. One fold is used for testing, and the remaining folds
are again divided into training and validation sets (80/20).
‘λ’ (in Ridge regression) is learned for each run. Each run
has different λ values. Table 3 shows the results. K = 5
gives the best R2 value among all the alternatives. Table 4
shows the coefficients of Linear regression when K = 5. The

Table 2: Dataset Description. Target is not in-
cluded when performing the imputation. The top
5 biggest population states are selected to maintain
large enough Np. (Case 1)

Hospital-level
1 Hospital beds(Target)
2 Home health agency

visits per decedent
3 Percent of deaths

occurring in hospital

State-level
1 Medical discharge rate
2 Surgical discharge rate

Table 3: Regression Results on Dartmouth datasets.
R2s over 5-fold cv are listed. As K < P , K > 5 is not
an option.

Dataset Case 1 Case 2 Case 3
No Imputation 0.549 0.551 0.654

(±0.023) (±0.029) (±0.053)
State-level Imputation 0.558 0.585 0.662

(±0.020) (±0.045) (±0.043)
CUDIA Imp. (K = 2) 0.551 0.524 0.682

(±0.030) (±0.032) (±0.056)
CUDIA Imp. (K = 3) 0.553 0.547 0.685

(±0.022) (±0.029) (±0.057)
CUDIA Imp. (K = 4) 0.578 0.598 0.688

(±0.028) (±0.029) (±0.057)
CUDIA Imp. (K = 5) 0.597 0.601 0.689

(±0.027) (±0.030) (±0.057)

imputed medical discharge rate is positively correlated with
the number of beds in a hospital.

Figure 7 shows the imputed ‘Medical discharge rate’ with
respect to ‘Percent of deaths occurring in hospital’ when
K = 5. The imputed features shows the highly non-linear
relationship to the fully observed features, as the imputa-
tion is based on distinct cluster centroids. This non-linear
imputation captures non-linear relationships among features
in real-life complex datasets.

7.3 Dartmouth + External Source: Case 2
State-level summaries of health-related indicators can be

obtained from various external sources. For example, the
Center for Disease Control and Prevention (CDC) publishes
annual state-level health statistics, that covers aging, cancer,
diabetes, etc. In this experiment, the Dartmouth dataset is
used with an external dataset from StateMaster.com, which

Table 4: Coefficients of Linear regression when K =
5. All features are standardized. (Case 1)

Independent Variable Coefficient
Home health agency visits per decedent 0.276
Percent of deaths occurring in hospital 0.646

Medical discharge rate 0.618
Surgical discharge rate -0.057



Figure 7: Imputed Dartmouth Dataset at Hospital-
level (K = 5). Cluster centroids are plotted using
red dots. Horizontal axis shows ‘Percent of death
occurring in hospital’ and vertical axis indicates the
imputed ‘Medical discharge rate’ at hospital-level.
All features are standardized. (Case 1)

Table 5: Coefficients of Linear regression using the
external source when K = 5. All features are stan-
dardized. (Case 2)

Independent Variable Coefficient
Home health agency visits per decedent 0.249
Percent of death occurring in hospital 0.359

Healthcare spending 0.280
Admissions 0.177

Adult physical disabilities -0.051

provides multiple state-level statistics for free. The hospital-
level Dartmouth dataset from the previous experiment is
used as is. The state-level dataset is replaced with the ex-
ternal dataset, which has state-level 1) healthcare spending,
2) hospital admissions and 3) adult physical disabilities in-
formation. All these features are not available in the Dart-
mouth data. As in the previous experiment, three datasets
are formed. Table 3 shows the R2 results using 5-fold CV.
Imputation using the CUDIA model leads to a 9% increase
in R2 value compared to the base model without imputa-
tion. Table 5 shows the coefficients of Linear regression
when K = 5. The imputed healthcare spending exhibits
the strongest correlation with hospital spending, as one may
expect.

7.4 Dartmouth + External Source: Case 3
In this experiment, Medicare part-A reimbursement at

HSA-level is predicted based on Medicare part-B reimburse-
ment and an additional external information. In the Dart-
mouth dataset, ‘Selected Medicare Reimbursement’ table
contains the columns of Medicare reimbursement part-A and
part-B at HSA-level. Although Medicare part-A is closely
related to part-B, additional features, such as income or
education levels, can be incorporated not only improving
the performance of the regression but also providing richer

Table 6: Coefficients of Linear regression using the
external source when K = 4. All features are stan-
dardized. (Case 3)

Independent Variable Coefficient
Medicare Part-B 0.611

Income per capita -0.189
Healthcare spending -0.080

Education level (Bachelor or higher) -0.209

Table 7: Coefficients of Linear regression on CDC
diabetes dataset when K = 5. All features are stan-
dardized. ‘Obesity rate’ is set as a target.

Independent Variable Coefficient
Diabetes 0.027

Physical inactivity 1.00
Income per capita -0.234

Healthcare spending 0.352
Education level (Bachelor or higher) 0.139

interpretations. The external state-level features used in
this experiment are 1) income per capita, 2) total health-
care spending and 3) education level (ratio of bachelors or
higher). The experiment is performed using three datasets,
which are prepared as in the previous experiments. Table 3
shows the results. Table 6 exhibits the coefficients of Linear
regression when K = 4. The imputed ‘education level’ and
Medicare Part-A are negatively correlated.

7.5 CDC Diabetes Dataset
The Center for Disease Control and Prevention (CDC)

[?] provides county-level estimates of 1) obesity, 2) diabetes
and 3) physical inactivity. In this experiment, we predict
the county-level obesity rate using the other features in the
CDC dataset and additional state-level features. The state-
level features used in this experiment are the same as in the
previous experiment (Dartmouth Case 3). The top 5 biggest
states are used, as some smaller states have very few coun-
ties. Table 8 shows the R2 results. The imputed dataset
using the CUDIA model gives the best result. The state-
level imputed dataset yields a poorer result than the dataset
with no imputation. This indicates that the uncertainty in
the state-level imputation of the added variables over-rode
any extra benefits that these variables could have provided.
Table 7 depicts the coefficients when K = 5. While the im-
puted ‘income per capita’ at county-level shows a negative
correlation, both imputed ‘healthcare spending’ and ‘educa-
tion level’ are positively correlated with the target (obesity
rate at county-level).

7.6 Census Bureau Health Insurance Dataset
The U.S. Census Bureau [?] provides county-level esti-

mates of insured population ratio by income levels. Income
levels are divided into three overlapping groups: 1) all in-
come levels, 2) at or below 200% of poverty threshold and 3)
at or below 250% of poverty threshold. Suppose we want to
see which other factors affect propensity of poor people to
buy healthcare insurance at the county level. The state-level



Table 8: Regression Results on CDC Diabetes and
Census Bureau Dataset. R2s over 5-fold cv are
listed.

Dataset CDC Diabetes Census Bureau

No Imputation 0.408 0.512
(±0.050) (±0.048)

State-level Imputation 0.398 0.504
(±0.051) (±0.049)

CUDIA Imp. (K = 2) 0.408 0.513
(±0.047) (±0.048)

CUDIA Imp. (K = 3) 0.405 0.513
(±0.052) (±0.049)

CUDIA Imp. (K = 4) 0.422 0.510
(±0.047) (±0.048)

CUDIA Imp. (K = 5) 0.426 0.520
(±0.043) (±0.043)

Table 9: Coefficients of Linear regression on Census
Bureau dataset when K = 5. All features are stan-
dardized. ‘Percent insured for the below 200% of
poverty’ is set as a target.

Independent Variable Coefficient
Percent insured for all income levels 2.10

Income per capita -0.436
Healthcare spending 1.227

Education level (Bachelor or higher) -2.524

dataset in the previous experiment is used to determine if
other factors play a role. Table 8 shows the regression results
using the CUDIA model and the coefficients when K = 5
are described in Table 9. ‘Income per capita’ and ‘educa-
tion level’ are negatively correlated with the target (percent
insured for the below 200% of poverty group). This result
indicates that the imputed county-level summaries for both
income per capita and education level implicitly inform us of
the sizes of poverty group at county-level. Moreover, the im-
puted healthcare spending at county-level exhibits a positive
relationship. Thus these imputed features provide a richer
interpretation of the predictive model while simultaneously
improving the prediction accuracy.

8. CONCLUDING REMARKS
In this paper, aggregated statistics over certain partitions

are utilized to identify clusters and impute features that are
observed only as more aggregated values. The imputed fea-
tures are further used in predictive modeling (Ridge regres-
sion in this paper), leading to improved R2 values. The ex-
periments provided in this paper are illustrative of the gen-
erality of the propsed framework and its applicability to sev-
eral healthcare related datasets in which individual records
are often not available, and different information sources
reflect different types and levels of aggregation. Empirical
studies on larger and richer datasets are forthcoming.

CUDIA is quite scalable, and in particular, the determin-
istic hard clustering version of the CUDIA model can be
readily applied to massive datasets. Furthermore, the square

loss function on ~xo can be generalized to Bregman diver-
gence, or equivalently, one can cater to any noise function
from the exponential family of probability distributions [?].
One restriction of the current model is that the number of
clusters (K) cannot be more than the number of partitions
specified by the data provider (P). This is why we had to
stop at K=5 for several of the results even though the R2

values were improving with with increasing K. Adding more
partitions, e.g., incorporating data from more than 5 states,
should reflect in further improvements in the results.

~πp = (p(C1|partition p), ..., p(CK |partition p))T

= (πp1, ..., πpK)T
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