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Chapter 1

A Survey of Consensus Clustering

Joydeep Ghosh and Ayan Acharya

Department of ECE, University of Texas at Austin

Abstract

This chapter describes the problem of combining multiple partitionings of a set of objects into a single consolidated

clustering without accessing the features or algorithms that determine these partitionings – popularly known as the

problem of “consensus clustering”. We illustrate different algorithms for solving the consensus clustering problem.

The notion of dissimilarity between a pair of clustering solutions plays a key role in designing any cluster ensemble

algorithm and a summary of such dissimilarity measures is also provided. We also cover recent efforts on combining

classifier and clustering ensembles, leading to new approaches for semi-supervised learning and transfer learning.

Finally, we describe several applications of consensus clustering.

1.1 Introduction

The design of multiple classifier systems to solve difficult classification problems, using tech-

niques such as bagging, boosting and output combining [57, 65, 40, 38], has resulted in some

of the most notable advances in classifier design over the past two decades. A popular ap-
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2 CHAPTER 1. A SURVEY OF CONSENSUS CLUSTERING

proach is to train multiple “base” classifiers, whose outputs are combined to form a classifier

ensemble. A survey of such ensemble techniques — including applications of them to many

difficult real-world problems such as remote sensing, person recognition, one vs. all recogni-

tion, and medicine — can be found in [54]. Concurrently, analytical frameworks have been

developed that quantify the improvements in classification results due to combining multiple

models [64]. The extensive literature on the subject has shown that the ensemble created

from independent, diversified classifiers, is usually more accurate as well as more reliable

than its individual components, i.e., the base classifiers.

The demonstrated success of classifier ensembles provides a direct motivation to study

effective ways of combining multiple clustering solutions as well. This chapter covers the

theory, design and application of cluster ensembles, which combine multiple “base cluster-

ings” of the same set of objects into a single consolidated clustering. Each base clustering

refers to a grouping of the same set of objects or its transformed (or perturbed) version

using a suitable clustering algorithm. The consolidated clustering is often referred to as the

consensus solution. At first glance, this problem sounds similar to the problem of designing

classifier ensembles. However, combining multiple clusterings poses additional challenges.

First, the number of clusters produced may differ across the different base solutions [7]. The

appropriate number of clusters in the consensus is also not known in advance and may de-

pend on the scale at which the data is inspected. Moreover, cluster labels are symbolic and

thus aligning cluster labels across different solutions requires solving a potentially difficult

correspondence problem. Also, in the typical formulation,1 the original data used to yield

the base solutions are not available to the consensus mechanism, which has only access to

the sets of cluster labels. In some schemes, one does have control on how the base clusterings

are produced [23], while in others even this is not granted in order to allow applications in-

volving knowledge reuse [59], as described later. Despite these added complications, cluster

ensembles are inviting since typically, the variations in quality across a variety of clustering

algorithms applied to a specific dataset tends to be more than the typical variation in accu-

racies returned by a collection of reasonable classifiers. This suggests that cluster ensembles

may achieve greater improvements over the base solutions, when compared with ensembles

1In this paper, we shall not consider approaches where the feature values of the original data or of the cluster representatives
are available to the consensus mechanism, e.g. [32]
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of classifiers [26].

In fact, the potential motivations for using cluster ensembles are much broader than those

for using classification or regression ensembles, where one is primarily interested in improving

predictive accuracy. These reasons include:

(a) Improved Quality of Solution

Just as ensemble learning has been proved to be more useful compared to single-model

solutions for classification and regression problems, one may expect that cluster ensem-

bles will improve the quality of results as compared to a single clustering solution. It

has been shown that using cluster ensembles leads to more accurate results on average

as the ensemble approach takes into account the biases of individual solutions [41, 33].

(b) Robust Clustering

It is well known that the popular clustering algorithms often fail spectacularly for

certain datasets that do not match well with the modeling assumptions [35]. A cluster

ensemble approach can provide a “meta” clustering model that is much more robust

in the sense of being able to provide good results across a very wide range of datasets.

As an example, by using an ensemble that includes approaches such as k-means, SOM

and DBSCAN that are typically better suited to low-dimensional metric spaces, as

well as base clusterers designed for high dimensional sparse spaces (spherical k-means,

Jaccard based graph clustering, etc.), one can perform well across a wide range of data

dimensionality [59]. Authors in [56] present several empirical results on the robustness

of the results in document clustering by using feature diversity and consensus clustering.

(c) Model Selection

Cluster ensembles provide a novel approach to the model selection problem by consid-

ering the match across the base solutions to determine the final number of clusters to

be obtained [27].

(d) Knowledge Reuse

In certain applications, domain knowledge in the form of a variety of clusterings of

the objects under consideration may already exist due to past projects. A consensus
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solution can integrate such information to get a more consolidated clustering. Several

examples are provided in [59], where such scenarios formed the main motivation for

developing a consensus clustering methodology. As another example, a categorization

of web pages based on text analysis can be enhanced by using the knowledge of topical

document hierarchies available from Yahoo! or DMOZ.

(e) Multi-view Clustering

Often the objects to be clustered have multiple aspects or “views”, and base clusterings

may be built on distinct views that involve non-identical sets of features or subsets of

data points. In marketing applications for example, customers may be segmented based

on their needs, psychographic or demographic profiles, attitudes etc. Different views can

also be obtained by considering qualitatively different distance measures, an aspect that

was exploited in clustering multifaceted proteins to multiple functional groups in [6].

Consensus clustering can be effectively used to combine all such clusterings into a single

consolidated partition. Strehl & Ghosh [59] illustrated empirically the utility of cluster

ensembles in two orthogonal scenarios,

• Feature Distributed Clustering (FDC): different base clusterings are built by se-

lecting different subsets of the features but utilizing all the data points.

• Object Distributed Clustering (ODC): base clusterings are constructed by selecting

different subsets of the data points but utilizing all the features.

Fern & Brodley [20] proposed multiple random projections of the data onto subspaces

followed by clustering of project data and subsequent aggregation of clustering results

as a strategy for high dimensional clustering. They showed that such method performs

better than applying PCA and clustering in the reduced feature space.

(f) Distributed Computing

In certain situations, data is inherently distributed and it is not possible to first collect

the entire data at a central site due to privacy/ownership issues or computational,

bandwidth and storage costs [49]. An ensemble can be used in situations where each

clusterer has access to only a subset of the features of each object, as well as where each

clusterer has access to only a subset of the objects [27], [59].
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The problem of combining multiple clusterings can be viewed as a special case of the more

general problem of comparison and consensus of data “classifications”, studied in the pattern

recognition and related application communities in the 70’s and 80’s. In this literature,

“classification” was used in a broad sense to include clusterings, unrooted trees, graphs,

etc, and problem-specific formulations were made (see [50] for a broad, more conceptual

coverage). For example, in the building of phylogenetic trees, it is important to get a strict

consensus solution, wherein two objects occur in the same consensus partition if and only

if they occur together in all individual clusterings [15], typically resulting in a consensus

solution at a much coarser resolution than the individual solutions. A quick overview with

pointers to such literature is given by Ayad and Kamel [7].

This chapter is organized as follows. In Section 1.2, we formulate the cluster ensemble

problem. In Section 1.3, different measures for comparing a pair of clustering solutions are

introduced. Details of different cluster ensembles algorithms are presented in Section 1.4.

In Section 1.5, a summary of recent works on combining classifier and cluster ensembles is

illustrated. Finally, the applications of cluster ensembles are provided in Section 1.6.

1.2 The Cluster Ensemble Problem

We denote a vector by a bold faced letter and a scalar variable or a set in normal font. We

start by considering r base clusterings of a data set X = {xi}ni=1 with the qth clustering

containing k(q) clusters. The most straightforward representation of the qth clustering is

λ(q) = {C`|` = 1, 2, ..., k(q) and C` ⊆ X}. Here, each clustering is denoted by a collection

of subsets (not necessarily disjoint) of the original dataset. For hard partitional clustering

(clustering where each object is assigned to a single cluster only), the qth clustering can

alternatively be represented by a label vector λ(q) ∈ Zn+. In this representation, each object

is assigned some cluster label and 0 is used if the corresponding object was not available to

that clusterer. The third possible way of representation of an individual clustering is by the

binary membership indicator matrix Hq ∈ {0, 1}1×k(q) which is defined as Hq = {hqi`|h
q
i` ∈

{0, 1} ∀xi, C`, λ(q)}. For partitional clustering, we additionally have
k(q)∑
`=1

hqi` = 1 ∀xi ∈ X .
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A consensus function Γ is defined as a function Zn×r+ → Zn++ mapping a set of clusterings

to an integrated clustering Γ : λ(q)|q ∈ {1, 2, ....., r} → λ̂. For conciseness, we shall denote

the set of clusterings {λ(q)}rq=1 that is available to the consensus mechanism by Λ. Moreover,

the results of any hard clustering2 of n objects can be represented as a binary, symmetric

n × n co-association matrix, with an entry being 1 if the corresponding objects are in the

same cluster and 0 otherwise. For the qth base clustering, this matrix is denoted by S(q) and

is given by

S
(q)
ij =

 1 (i, j) ∈ C`(λ(q)) for some ` ∈ {1, 2, ..., k(q)}

0 otherwise
(1.1)

Broadly speaking, there are two main approaches to obtaining a consensus solution and

determining its quality. One can postulate a probability model that determines the labeling

of the individual solutions, given the true consensus labels, and then solve a maximum

likelihood formulation to return the consensus [63, 67]. Alternately, one can directly seek a

consensus clustering that agrees the most with the original clusterings. The second approach

requires a way of measuring the similarity between two clusterings, for example to evaluate

how close the consensus solution is to each base solution. These measuring indices will be

discussed in more details in Section 1.3. For now, let φ(λ(a), λ(b)) represent a similarity index

between two clustering solutions λ(a) and λ(b). One can express the average normalized

similarity measure between a set of r labelings, Λ, and a single consensus labeling λ̂, by:

φ(Λ, λ̂) =
1

r

r∑
q=1

φ(λ(q), λ̂). (1.2)

This serves as the objective function in certain cluster ensemble formulations, where the goal

is to find the combined clustering λ̂ with k̂ clusters such that φ(Λ, λ̂) is maximized. It turns

out though that this objective is intractable, so heuristic approaches have to be resorted to.

2This definition is also valid for overlapping clustering.
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Table 1.1: Contingency Table Explaining Similarity Measurement of Clustering Solutions
C1

(b) C2
(b) · · · Ck(b) (b) sum

C1
(a) n11 n12 · · · n1k(b) n1

(a)

C2
(a) n21 n22 · · · n2k(b) n2

(a)

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
Ck(a) (a) nk(a)1 nk(a)2 · · · nk(a)k(b) nk(a)

(a)

sum n1
(b) n2

(b) · · · nk(b)
(b) n

1.3 Measuring Similarity Between Clustering Solutions

Since no ground truth is available for clustering problems, cluster ensemble algorithms in-

stead aim to maximize some similarity measure between the consensus clustering and each

of the base clustering solutions. Two of the most desirable properties of such similarity

measures are:

• The index should be normalized for easy interpretation and comparison across solutions

with varying number of clusters.

• The expected value of the index between pairs of independent clusterings should be

constant (and preferably zero indicating no similarity). The utility of such a property

will be clarified later in this section.

Below, we present different indices and show how these indices are modified to achieve zero

expected value of the same. The general rule for any “adjustment for chance” is as follows:

adjusted index =
index - Expected-index

Max-index - Expected-index
, (1.3)

where Expected-index is calculated according to a permutation model [42]. In such a model,

cluster labels are assumed to be generated randomly subject to the constraints of a fixed

number of clusters and a fixed number of points in each cluster. Max-index is the maximum

value the index can take.
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Now let us discuss two key approaches for measuring the similarity of two clustering

solutions [53]. The first approach is based on counting the number of pairs in agreement

or in disagreement in two clustering solutions. The second approach uses concepts from

information theory.

(a) Pair Counting Based Measures: Measures of this type are built on counting the

number of pairs of points on which two candidate clustering solutions agree or disagree.

More formally, suppose we have two candidate clusterings λ(a) = {C(a)
h |h = 1, 2, ..., k(a)}

and λ(b) = {C`(b)|` = 1, 2, ..., k(b)}. Let n
(a)
h be the number of objects in cluster C

(a)
h and

n
(b)
l be the number of objects in cluster C

(b)
l . Table 1.3 is a contingency table that shows

the overlap between different clusters of these clusterings, where nh` = |C(a)
h ∩C

(b)
` |. The

most well-known index of this class is the Rand Index (RI) which is a normalized

measure of number of agreements between two candidate solutions and is defined as:

φ(RI)(λ(a), λ(b)) =
∑
h`

 n
(a)
h`

2

 /
1

2
(Sa + Sb). (1.4)

Expected value of RI, however, is not constant. This led Hubert & Arabie [34] to

propose the Adjusted Rand Index (ARI) to correct for a zero baseline. ARI, according

to the general strategy of correcting for chance, is defined as follows:

φ(ARI)(λ(a), λ(b)) =

∑
h`

 nh`

2

− SaSb/
 n

2


1
2
(Sa + Sb)− SaSb/

 n

2

 (1.5)

where Sa =
∑
h

 n
(a)
h

2

and Sb =
∑
`

 n
(b)
`

2

. The second term in both numera-

tor and denominator adjusts for the expected number of overlaps that will occur “by

chance”. Values of RI lie between 0 and 1. However, values of ARI can be negative

which is of no practical interest. ARI is 1 when the two candidate clustering solutions

match exactly and is 0 when the index value equals its expected value.
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In [5], the authors mention as many as 22 different indices of this class. Subsequent

work [69] shows that after correction for chance, some of these indices become equiv-

alent. However, ARI remains the most popular index of this class. Very recently, a

probabilistic version of Rand Index (PRI – [13]) has been proposed in which the agree-

ments and disagreements of the pairs of data points are weighted according to their

occurrence by chance.

(b) Information Theoretic Based Measures:

There are numerous information theory based measures in the literature [53]. We discuss

only two of them here and show how they can be corrected for occurrence by chance.

(a) Normalized Mutual Information (NMI)

Strehl & Ghosh [59] proposed NMI to measure the similarity between two candi-

date clusterings. The entropy associated with clustering λ(a) isH(λ(a)) = −
∑

h

n
(a)
h

n
log(

n
(a)
h

n
)

and that with clustering λ(b) is H(λ(b)) = −
∑

`

n
(b)
`

n
log(

n
(b)
`

n
). Similarly, the joint

entropy of λ(a) and λ(b) is defined as, H(λ(a), λ(b)) = −
∑

h,`
nh`

n
log(nh`

n
). Now, the

NMI between λ(a)and λ(b) is defined as:

φ(NMI)(λ(a), λ(b)) =
I(λ(a), λ(b))√
H(λ(a))H(λ(b))

(1.6)

Here, I(λ(a), λ(b)) = H(λ(a)) +H(λ(b))−H(λ(a), λ(b)) is the mutual information be-

tween two clusterings λ(a) and λ(b) ([8]), which is normalized by the geometric mean

of H(λ(a)) and H(λ(b)) to compute the NMI. It should be noted that I(λ(a), λ(b))

is non-negative and has no upper bound. φ(NMI)(λ(a), λ(b)), on the other hand, lies

between 0 and 1 and is suitable for easier interpretation and comparisons.

(b) Variation of Information (VI)

VI is another information theoretic distance measure proposed for cluster validation

[46, 47], and is defined as follows:

φ(V I)(λ(a), λ(b)) = H(λ(a)) +H(λ(b))− 2I(λ(a), λ(b)) (1.7)

It turns out that VI is a metric. But its original definition is not consistent if

data sets of different sizes and clusterings with different number of clusters are
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considered. Therefore, several normalized versions of VI have been proposed. The

one proposed by [39] takes the following form:

φ(NVI1)(λ(a), λ(b)) = 1− I(λ(a), λ(b))

max{H(λ(a)), H(λ(b))}
, (1.8)

which again is a metric. However, the one proposed by Wu et. al. [71] is not a

metric and takes the following form:

φ(NVI2)(λ(a), λ(b)) = 1− 2I(λ(a), λ(b))

H(λ(a)) +H(λ(b))
. (1.9)

Both of these measures lie between 0 and 1. Note that one could also define

a distance measure from NMI just by taking its 1-complement. However, such

distance measure is not a metric.

Vinh et. al. [53] empirically showed that like RI, the information theoretic based

indices do not attain any constant baseline. The problem is more severe when the

number of clusters is comparable to number of data points. With increase in number of

clusters, the expected values of the indices either increase (for NMI) or decrease (for

VI). Therefore, if one needs to make a decision based on the observed values of the

indices, on average, a clustering solution with more (or less for VI) number of clusters

will unjustifiably be preferred.

Therefore, following the generalized suggestion for correction by chance given in Eq.

1.3, Vinh et. al. [53] proposed to correct these measures with the expected value of

the mutual information of the solutions and empirically showed the invariance of the

modified measures w.r.t the number of clusters. The expression for the expected value

of the mutual information under the permutation model is given by:

E[I(Sa, Sb)] =
∑
h`

min{n(a)
h +n

(b)
` }∑

nh`=max{n(a)
h +n

(b)
` −n,0}

nh`
n

log(
nh`n

n
(a)
h n

(b)
`

) (1.10)

.
n

(a)
h !n

(b)
` !(n− n(a)

h )!(n− n(b)
` )!

nh`!n!(n
(a)
h − nh`)!(n

(b)
` − nh`)!(n− n

(a)
h − n

(b)
` + nh`)!
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However, if the ratio of number of data points and the number of clusters is more than

100 for both solutions, empirical studies show that E[I(Sa, Sb)] is fairly close to zero and

hence no adjustment for chance is necessary. Unfortunately, with such adjustment for

chance, none of the distances measures is a metric anymore. Therefore, depending on

the applications, one needs to make a choice between the metric property and the zero

baseline property. We would also like to point out that in a recent paper [48], attempt

has been made to understand the geometry of partitionings. In particular, the equiv-

alence among some other distance measures like Hamming distance, mis-classification

error distance and, χ2 distance has been established under fairly mild assumptions,

thereby opening a new direction of research where the cluster ensemble algorithms can

possibly be designed to directly optimize some of these distance measures.

1.4 Cluster Ensemble Algorithms

Cluster ensemble methods are now presented under three categories: i) probabilistic ap-

proaches, ii) approaches based on co-association and iii) direct and other heuristic methods.

1.4.1 Probabilistic Approaches to Cluster Ensembles

The two basic probabilistic models for solving cluster ensembles are described in this sub-

section.

A Mixture Model for Cluster Ensembles (MMCE)

In a typical mixture model [12] approach to clustering, such as fitting the data using a mixture

of Gaussians, there are k̂ mixture components, one for each cluster. A component-specific

parametric distribution is used to model the distribution of data attributed to a specific

component. Such an approach can be applied to form the consensus decision if the number

of consensus clusters is specified. This immediately yields the pioneering approach taken
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in [63]. We describe it in a bit more detail as this work is essential to build an understanding

of later works [67, 68].

In the basic mixture model of cluster ensembles [63], each object xi is represented by

yi = Λ(xi), i.e, the labels provided by the base clusterings. We assume that there are k̂

consensus clusters each of which is indexed by ˆ̀. Corresponding to each consensus cluster

ˆ̀ and each base clustering q, we have a multinomial distribution β
(q)
ˆ̀ of dimension k(q).

Therefore, a sample from this distribution is a cluster label corresponding to the qth base

clustering. The underlying generative process is assumed as follows:

For ith data point xi,

(a) Choose zi = Iˆ̀ such that ˆ̀∼ multinomial(θ). Here Iˆ̀ is a probability vector of dimen-

sion k(q) with only the ˆ̀th component being 1, and θ is a multinomial distribution of

dimension k̂.

(b) For the qth base clustering of ith data point, choose the base clustering result yiq = ` ∼
multinomial(β

(q)
ˆ̀ ).

These probabilistic assumptions give rise to a simple maximum log-likelihood problem that

can be solved using the Expectation Maximization algorithm. This model also takes care of

the missing labels in a natural way.

Bayesian Cluster Ensembles (BCE)

A Bayesian version of the multinomial mixture model described above was subsequently

proposed by Wang et al [67]. As in the simple mixture model, we assume k̂ consensus clusters

with β
(q)
ˆ̀ being the multinomial distribution corresponding to each consensus cluster ˆ̀ and

each base clustering q. The complete generative process for this model is as follows:

For ith data point xi,

(a) Choose θi ∼ Dirichlet(α) where θi is a multinomial distribution with dimension k̂.
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Figure 1.1: Graphical Model for MMCE Figure 1.2: Graphical Model for BCE

(b) For the qth base clustering:

(a) Choose ziq = Iˆ̀ such that ˆ̀∼ multinomial(θi). Iˆ̀ is a probability vector of dimen-

sion k̂ with only ˆ̀th component being 1.

(b) Choose the base clustering result yiq = ` ∼ multinomial(β
(q)
ˆ̀ ).

So, given the model parameters (α, β = {β(q)
ˆ̀ }), the joint distribution of latent and

observed variables {yi, zi,θi} is given by,

p(yi, zi,θi|α, β) = p(θi|α)
r∏

q=1,∃yiq

p(ziq = Iˆ̀|θi)p(yiq|β(q)
ˆ̀ ) (1.11)

where ∃yiq implies that there exists a qth base clustering result for yi. The marginals

p(yi|α, β) can further be calculated by integrating over the hidden variables {zi,θi}. The

authors used variational EM and Gibb’s sampling for inference and parameter estimation.

The graphical model corresponding to this Bayesian version is given in figure 1.2. To high-

light the difference between Bayesian cluster ensembles and the mixture model for cluster

ensembles, the graphical model corresponding to the latter is also shown alongside in figure

1.1.
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Figure 1.3: Graphical Model for NPBCE

Non-Parametric Bayesian Cluster Ensembles (NPBCE)

Recently, a non-parametric version of Bayesian cluster ensemble (NPBCE) has been pro-

posed in [68] which allows the number of consensus clusters to adapt with data. The stick-

breaking construction of the generative process of this model is described below. The authors

use a truncated stick breaking construction of the Dirichlet process with truncation enforced

at k̂. If k̂ is made sufficiently large, the resulting Dirichlet Process (Truncated) closely

approximates a Dirichlet Process.

(a) Generate vˆ̀∼ Beta(1, α) ∀ˆ̀∈ {1, 2, · · · , k̂}. Let θˆ̀ = vˆ̀

∏ˆ̀−1
j=1(1− vj).

(b) For each base clustering (indexed by q), generate β
(q)
ˆ̀ ∼ G

(q)
0 ∀ˆ̀∈ {1, 2, · · · , k̂} where

G
(q)
0 is a symmetric Dirichlet distribution of dimension k(q).

(c) For ith data point xi, generate zi ∼ multinomial(θ). zi is an indicator vector of dimen-

sion k̂ with only one component being unity and others being zero.

(d) For the qth base clustering of ith data point, generate the base clustering result yiq =

` ∼ multinomial(β
(q)
ˆ̀ ).

One should note that NPBCE does not allow multiple base clustering solutions of a given

data point to be generated from more than one consensus cluster. Therefore, the model is

more restrictive compared to BCE and is really a non-parametric version of MMCE. The
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graphical model shown in Fig. 1.3 illustrates this difference more clearly. It should be

noted that although all of the generative models presented above were used only with hard

partitional clustering, they could be used for overlapping clustering as well.

1.4.2 Pairwise Similarity Based Approaches

In pairwise similarity based approaches, one takes the weighted average of all r co-association

matrices to form an ensemble co-association matrix S which is given as follows,

S =
1

r

r∑
q=1

wqS
(q). (1.12)

Here wq specifies the weight assigned to the qth base clustering. This ensemble co-association

matrix captures the fraction of times a pair of data points is placed in the same cluster

across the r base clusterings. The matrix can now be viewed as a similarity matrix (with

a corresponding similarity graph) to be used by the consensus mechanism for creating the

consensus clusters. This matrix is different from the similarity matrix Ŝ that we obtain from

the consensus solution λ̂. We will explain the difference in detail in section 1.4.2.

Note that the co-association matrix size is itself quadratic in n, which thus forms a lower

bound on computational complexity as well as memory requirements, inherently handicap-

ping such a technique for applications to very large datasets. However, it is independent of

the dimensionality of the data.

Methods based on Ensemble Co-association Matrix

The Cluster-based Similarity Partitioning Algorithm (CSPA) [59] used METIS [36] to par-

tition the induced consensus similarity graph. METIS was chosen for its scalability and

because it tries to enforce comparable sized clusters. This added constraint is desirable in

several application domains [60]; however, if the data is actually labeled with imbalanced

classes, then it can lower the match between cluster and class labels. Assuming quasi-
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linear graph clustering, the worst case complexity for this algorithm is O(n2kr). Punera &

Ghosh [55] later proposed a soft version of CSPA, i.e. one that works on soft base clus-

terings. Al-Razgan & Domeniconi [4] proposed an alternative way of obtaining non-binary

co-association matrices when given access to the raw data.

The Evidence Accumulation approach [23] obtains individual co-association matrices by

random initializations of the k -means algorithm, causing some variation in the base cluster

solutions. This algorithm is used with a much higher value of k than the range finally

desired. The ensemble co-association matrix is then formed, each entry of which signifies

the relative co-occurrence of two data points in the same cluster. A minimum spanning

tree (MST) algorithm (also called the single-link or nearest neighbor hierarchical clustering

algorithm) is then applied on the ensemble co-association matrix. This allows one to obtain

non-convex shaped clusters. Essentially, this approach assumes the designer has access to

the raw data, and the consensus mechanism is used to get a more robust solution than what

can be achieved by directly applying MST to the raw data.

A related approach was taken by Monti et al [51], where the perturbations in the base

clustering were achieved by re-sampling. Any of bootstrapping, data sub-sampling or feature

sub-sampling can be used as a re-sampling scheme. If either of the first two options are

selected, then it is possible that certain objects will be missing in a given base clustering.

Hence when collating the r base co-association matrices, the (i, j)th entry needs to be divided

by the number of solutions that included both objects rather than by a fixed r. This work also

incorporated a model selection procedure as follows: The consensus co-association matrix

is formed multiple times. The number of clusters is kept at ki for each base clustering

during the ith experiment, but this number is changed from one experiment to another. A

measurement termed as consensus distribution describes how the elements of a consensus

matrix are distributed within the 0-1 range. The extent to which the consensus matrix is

skewed towards a binary matrix denotes how good the base clusterings match one another.

This enables one to choose the most appropriate number of consensus clusters k̂. Once k̂ is

chosen, the corresponding ensemble co-association matrix is fed to a hierarchical clustering

algorithm with average linkage. Agglomeration of clusters is stopped when k̂ branches are

left.
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The Iterative Pairwise Consensus (IPC) Algorithm [52] essentially applies model-based

k-means [75] to the ensemble co-association matrix S. The consensus clustering solution

λ̂ = {C`}k̂`=1 is initialized to some solution, after which a re-assignment of points is carried

out based on the current configuration of λ̂. The point xi gets assigned to cluster C`, if xi

has maximum average similarity with the points belonging to cluster C`. Then the consensus

solution is updated, and the cycle starts again.

However, both Mirkin [50] and Li et al [45] showed that the problem of consensus cluster-

ing can be framed in a different way than what has been discussed so far. In these works, the

distance d(λ(q1), λ(q2)) between two clusterings λ(q1) and λ(q2) is defined as the number of pairs

of objects that are placed in the same cluster in one of λ(q1) or λ(q2) and in different cluster

in the other, essentially considering the (unadjusted) Rand Index. Using this definition, the

consensus clustering problem is formulated as,

arg min
λ̂
J = arg min

λ̂

1

r

r∑
q=1

d(λ(q), λ̂) (1.13)

= arg min
Ŝ

1

r

r∑
q=1

wq
∑
i<j

[S
(q)
ij − Ŝij]2

Mirkin ([50], section 5.3.4, p. 260) further proved that the consensus clustering according

to criterion (1.18) is equivalent to clustering over the ensemble co-association matrix by

subtracting a “soft” and “uniform” threshold from each of the different consensus clusters.

This soft threshold, in fact, serves as a tool to balance cluster sizes in the final clustering. The

subtracted threshold has also been used in [62] for consensus clustering of gene-expression

data.

In [66], consensus clustering result is obtained by minimizing a weighted sum of the

Bregman divergence [9] between the consensus partition and the input partitions wrt their

co-association matrices. In addition, the authors also show how to generalize their framework

in order to incorporate must-link and cannot-link constraints between objects.
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Note that the optimization problem in (1.18) is over the domain of Ŝ. The difference

between the matrices S and Ŝ lies in the way the optimization problem is posed. If opti-

mization is performed with cluster labels only (as illustrated in section 1.4.3), there is no

guarantee of achieving the optimum value Ŝ = S. However, if we are optimizing over the

domain of the co-association matrix we can achieve this optimum value in theory.

Relating Consensus Clustering to other Optimization Formulations

The co-association representation of clustering has been used to relate consensus clustering

with two other well-known problems.

(a) Consensus Clustering as Non-Negative Matrix Factorization (NNMF)

Li et al ([45], [44]), using the same objective function as mentioned in (1.18), showed that

the problem of consensus clustering can be reduced to an NNMF problem. Assuming

Uij = Ŝij to be a solution to this optimization problem. we can rewrite (1.18) as,

arg min
U

n∑
i,j=1

(Sij − Uij)2 = arg min
U
‖S − U‖2

F (1.14)

where the matrix norm is the Frobenius norm. This problem formulation is similar to the

NNMF formulation [43] and can be solved using an iterative update procedure. In [29],

the cost function J used in equation (1.18) was further modified via normalization to

make it consistent with data sets with different number of data points (n) and different

number of base clusterings (r).

(b) Consensus Clustering as Correlation Clustering

Gionis et al [28] showed that a certain formulation of consensus clustering is a special

case of correlation clustering. Suppose we have a data set X and some kind of dissim-

ilarity measurement (distance) between every pair of points in X . This dissimilarity

measure is denoted by dij ∈ [0, 1]∀xi,xj ∈ X . The objective of correlation clustering
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[11] is to find a partition λ̂ such that:

λ̂ = arg min
λ

d(λ)

= arg min
λ

 ∑
(i, j) : λ(xi) = λ(xj)

dij +
∑

(i, j) : λ(xi) 6= λ(xj)

(1− dij)

 (1.15)

In the above equation, λ(xi) is the cluster label imposed by λ on xi. The co-association

view of the cluster ensemble problem reduces to correlation clustering if the distance

dij is defined as dij = 1
r
|{λ(q) : λ(q)(xi) 6= λ(q)(xj)}| ∀ i, j.

1.4.3 Direct Approaches using Cluster Labels

Several consensus mechanisms take only the cluster labels provided by the base clusterings

as input, and try to optimize an objective function such as (1.16), without computing the

co-association matrix.

Graph Partitioning

In addition to CSPA, Strehl & Ghosh [59] proposed two direct approaches to cluster ensem-

bles: Hyper Graph Partitioning Algorithm (HGPA) which clusters the objects based on their

cluster memberships, and Meta Clustering Algorithm (MCLA), which groups the clusters

based on which objects are contained in them. HGPA considers a graph with each object

being a vertex. A cluster in any base clustering is represented by a hyper-edge connecting

the member vertices. The hyper-graph clustering package HMETIS (Karypis et al [37]) was

used as it gives quality clusterings and is very scalable. As with CSPA, employing a graph

clustering algorithm adds a constraint that favors clusterings of comparable size. Though

HGPA is fast with a worst case complexity of O(nkr), it suffers from an additional prob-

lem: if all members of a base cluster are not assigned the same cluster in the consensus

solution, the corresponding hyper-edge is broken and incurs a constant penalty; however it
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cannot distinguish between a situation where only one object was clustered differently and

one where several objects were allocated to other groups. Due to this issue, HGPA is often

not competitive in terms of cluster quality.

MCLA first forms a meta-graph with a vertex for each base cluster. The edge weights

of this graph are proportional to the similarity between vertices, computed using the binary

Jaccard measure (number of elements in common divided by the total number of distinct

elements). Since the base clusterings are partitional, this results in an r-partite graph. The

meta-graph is then partitioned into k balanced meta-clusters. Each meta-cluster, there-

fore, contains approximately r vertices. Finally, each object is assigned to its most closely

associated meta-cluster. Ties are broken randomly. The worst case complexity is O(nk2r2).

Noting that CSPA and MCLA consider either the similarity of objects or similarity of

clusters only, a Hybrid Bipartite Graph Formulation (HBGF) was proposed in [18]. A

bipartite graph models both data points and clusters as vertices, wherein an edge exists

only between a cluster vertex and a object vertex if the latter is a member of the former.

Either METIS or other multi-way spectral clustering methods are used to partition this

bipartite graph. The corresponding soft versions of CSPA, MCLA and HBGF have also

been developed by Punera & Ghosh [55]. It should be noted that all of CSPA, MCLA and

HGPA were compared with one other using the NMI measure in [59].

Cumulative Voting

The concept of cumulative voting was first introduced in [17] where the authors used bagging

to improve the accuracy of clustering procedure. Once clustering is done on a bootstrapped

sample, the cluster correspondence problem is solved using iterative re-labeling via Hungarian

algorithm. Clustering on each bootstrapped sample gives some votes corresponding to each

data point and cluster label pair which, in aggregate, decides the final cluster assignment.

A similar approach was adopted in [7]. Each base clustering in this contribution is thought

of as providing a soft or probabilistic vote on which clusters in the consensus solution its data

points should belong to. These votes are then gathered across the base solutions and thresh-
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olded to determine the membership of each object to the consensus clusters. Again, this

requires a mapping function from the base clusterings to a stochastic one. An information-

theoretic criterion based on the information bottleneck principle was used in [7] for this

purpose. The mean of all the stochastic clusterings then yields the consensus partition. This

approach is able to cater to a range of “k” in the base clusterings, is fast as it avoids the

quadratic time/space complexity of forming a co-association matrix, and has shown good

empirical results as well. Noting that the information bottleneck solutions can be obtained

as a special case of Bregman clustering [9], it should be possible to recast this approach as

a probabilistic one.

A variety of heuristic search procedures have also been suggested to hunt for a suitable

consensus solution. These include a genetic algorithm formulation [74] and one using a

multi-ant colony [72]. These approaches tend to be computationally expensive and the lack

of extensive comparisons with the methods covered in this article currently make it difficult

to assess their quality. Also, one can use several heuristics suggested in [19] to select only a

few clustering solutions from a large ensemble.

1.5 Combination of Classifier and Clustering Ensembles

Based on the success of classifier and cluster ensembles, efforts have been made recently to

combine the strength of both types of ensembles [1, 25]. Unsupervised models can provide

a variety of supplementary constraints which can be useful for improving the generalization

capability of a classifier (or a classifier ensemble), specially when labeled data is scarce. Also,

they might be useful for designing learning methods that are aware of the possible differences

between training and target distributions, thus being particularly interesting for applications

in which concept drift might take place [3, 24]. This section focuses on one such algorithm

[1, 3] named C3E (from Combination of Classification and Clustering Ensembles).

The framework described in [1, 3] is depicted in Fig. 1.4. A set of classifiers, previously

induced from a training dataset, is applied on a new target data X = {xi}ni=1, thereby

generating a set of average class probability estimates {πi}ni=1 on the instances in the target
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Figure 1.4: Overview of C3E.

data. Suppose there are k classes denoted by C = {C`}k`=1. A cluster ensemble is further

applied on the target data and a similarity matrix S is obtained from the ensemble outputs.

Each entry of this similarity matrix corresponds to the relative co-occurrence of two instances

in the same cluster [59]. The prediction from the classifier ensemble ({πi}ni=1) is then refined

with the help of the similarity matrix obtained from cluster ensemble. The refined class

assignment estimate can be represented by a set of vectors {yi}ni=1 with yi ∈ S ⊆ Rk ∀i, and

yi ∝ P̂ (C | xi) (estimated posterior class probability assignment).

The problem of combining classifiers and clusterers is then posed as an optimization

problem whose objective is to minimize J in (1.16) with respect to the set of vectors {yi}ni=1:

J =
∑
i∈X

dφ(πi,yi) + α
∑

(i,j)∈X

sijdφ(yi,yj) (1.16)

The term dφ(., .) refers to a Bregman divergence [10]. Informally, the first term in Eq.

(1.16) captures dissimilarities between the class probabilities provided by the ensemble of

classifiers and the output vectors {yi}ni=1. The second term encodes the cumulative weighted

dissimilarity between all possible pairs (yi,yj). The weights to these pairs are assigned in

proportion to the similarity values sij ∈ [0, 1] of matrix S. The coefficient α ∈ R+ controls the
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relative importance of classifier and cluster ensembles. Therefore, minimizing the objective

function over {yi}ni=1 involves combining the evidence provided by the ensembles in order to

build a more consolidated classification.

All Bregman divergences have the remarkable property that the single best (in terms of

minimizing the net loss) representative of a set of vectors, is simply the expectation of this

set (!) provided the divergence is computed with this representative as the second argument

of dφ(·, ·) — see Theorem 1 in [1] (originally from [10]) for further reference. Unfortunately,

this simple form of the optimal solution is not valid if the variable to be optimized occurs as

the first argument. In that case, however, one can work in the (Legendre) dual space, where

the optimal solution has a simple form. Re-examination of Eq. (1.16) reveals that the yi’s to

be minimized over occur both as first and second arguments of a Bregman divergence. Hence

optimization over {yi}ni=1 is not available in closed form. This problem is circumvented by

creating two copies for each yi — the left copy, y
(l)
i , and the right copy, y

(r)
i . The left (right)

copies are used whenever the variables are encountered in the first (second) argument of

the Bregman divergences. In what follows, it will be clear that the right and left copies are

updated iteratively, and an additional soft constraint is used to ensure that the two copies of

a variable remain “close enough” during the updates. With this modification, the following

objective is minimized:

J(y(l),y(r)) =

[
n∑
i=1

dφ(πi,y
(r)
i ) + α

n∑
i,j=1

sijdφ(y
(l)
i ,y

(r)
j ) + λ

n∑
i=1

dφ(y
(l)
i ,y

(r)
i )

]
, (1.17)

where, y(l) =
(
y

(l)
i

)n
i=1
∈ Sn and y(r) =

(
y

(r)
i

)n
i=1
∈ Sn.

To solve the optimization problem in an efficient way, first {y(l)
i }ni=1 and {y(r)

i }ni=1 \ {y
(r)
j }

are kept fixed, and minimize the objective w.r.t. y
(r)
j only. The associated optimization

problem can, therefore, be written as:

min
y
(r)
j

[
dφ(π

(r)
j ,y

(r)
j ) + α

∑
i(l)∈X

si(l)j(r)dφ(y
(l)
i ,y

(r)
j ) + λ

(r)
j dφ(y

(l)
j ,y

(r)
j )

]
, (1.18)

where λ
(r)
j is the corresponding penalty parameter that is used to keep y

(r)
j and y

(l)
j close to
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each other.

From the results of Corollary 1 in [1], the unique minimizer of the optimization problem

in (1.18) is obtained as:

y
(r)
j

∗
=

π
(r)
j + γ

(r)
j

∑
i(l)∈X

δi(l)j(r)y
(l)
i + λ

(r)
j y

(l)
j

1 + γ
(r)
j + λ

(r)
j

, (1.19)

where γ
(r)
j = α

∑
i(l)∈X si(l)j(r) and δi(l)j(r) = si(l)j(r)/

[∑
i(l)∈X si(l)j(r)

]
. The same optimization

in (1.18) is repeated over all the y
(r)
j ’s. After the right copies are updated, the objective

function is (sequentially) optimized with respect to all the y
(l)
i ’s. However, one needs to

work in the dual space now where one can get a closed form update again for the y
(l)
i ’s. The

alternating optimization w.r.t. the left and right copies leads to a guaranteed convergence

for a jointly convex Bregman divergence [2]. Additionally, a linear rate of convergence has

been proven for squared loss, KL divergence and I divergence. The authors in [2] show appli-

cations of C3E in semi-supervised and transfer learning scenarios using some standard UCI

datasets, real word text classification datasets and, remote sensing datasets. The method

has been empirically proven to leverage information from cluster ensembles, particularly in

the presence of concept drift.

1.6 Applications of Consensus Clustering

The motivation for consensus clustering has already been introduced in Section 1.1. Since

cluster ensemble improves the quality of clustering solution, it can be used for any cluster

analysis problem, e.g. image segmentation [70], bioinformatics, document retrieval [30],

automatic malware categorization [73], just to name a few. Gionis et. al. [28] showed

how clustering ensemble algorithms used to improve the robustness of clustering solution,

clustering categorical data [31] and heterogeneous data, identifying the correct number of

clusters and detecting outliers. Fischer & Joachim [22] showed how re-sampling the data

and subsequent aggregation of the clustering solutions from the sampled sets can improve
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the quality of clustering solution. Sawtooth Software (http://www.sawtoothsoftware.

com/) has commercialized some of the algorithms in [59] for applications in marketing. A

package consisting of implementations of all the algorithms in [59] is also available on http:

//strehl.com/soft.html. In this section, we briefly discuss two major application domains.

1.6.1 Gene Expression Data Analysis

Consensus clustering has been applied to microarray data to improve the quality and robust-

ness of the resulting clusters. A resampling based approach is used by Monti et. al. [51],

in which the agreement across the results obtained by executing a base clustering algorithm

on several perturbations of the original dataset is used to obtain the final clustering. Swift

et. al. [61] use a variety of clustering algorithms on the same dataset to generate different

base clustering results and try to find clusters that are consistent across all the base results

using simulated annealing. In [21] consensus clustering problem is treated as a median par-

tition problem, where the aim is to find a partitioning of the data points that minimizes

the distance to all the other partitionings. The authors propose greedy heuristic solutions

to find a local optimum. Additionally, Deodhar & Ghosh [16] used consensus clustering to

find overlapping clusters in micro-array data. In this work, two different techniques are used

to generate the consensus clustering solution from the candidate solutions. The first one

is MCLA with some adjustable threshold and the second one is soft kernelized k-means

that works on ensemble co-association matrix. In [14], gene expression time series data is

clustered at different time intervals and the solutions from different time stamps are merged

in a single solution using graph partitioning of the ensemble co-association matrix.

1.6.2 Image Segmentation

Though there exists several image segmentation algorithms, depending on the application

data, some perform better than the others and it is almost impossible to know beforehand

which one should be used. The authors in [58] used the cluster ensemble formulation to

aggregate the results of multiple segmentation algorithms like (a) Normalized Cuts, (b) En-
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Figure 1.5: Segmentation Result 1 – from [58]

ergy Minimization by Graph Cuts, and (c) Curve Evolution to generate image segmentation.

However, they found that the ensemble segmentation outperforms any individual segmen-

tation algorithm. One of such results is shown in Fig. 1.5. The first result corresponds to

Normalized Cuts, the second one is from Graph Cuts, the third and fourth ones are from

Curve Evolution, and the last one is due to the ensemble segmentation.

Figure 1.6: Segmentation Result 2 – from [58]

In another similar application, the same authors showed the utility of ensemble methods

for better visualization and interpretation of images obtained from Diffusion Tensor Imaging
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(DTI) technique. DTI images have become popular within neuroimaging because they

are useful to infer the underlying structure and organizational pattern in the body (e.g.,

neuronal pathways in the brain). To simplify the processing of such images, a number of

different measures (or channels) are calculated from the diffusion tensor image. Some of

these channels are Apparent Diffusion Coefficient (ADC), Fractional Anisotropy (FA), Mean

Diffusivity (MD), Planar anisotropy (CP) etc3. Segmentations obtained from 10 of such

channels of a brain are given in the first two rows of Fig. 1.6. The last row shows the

segmentation obtained using the ensemble strategy.

1.7 Concluding Remarks

This article first showed that cluster ensembles are beneficial in a wide variety of scenarios.

It then provided a framework for understanding many of the approaches taken so far to

design such ensembles. Even though there seems to be many different algorithms for this

problem, we showed that there are several commonalities among these approaches. The

design domain, however, is still quite rich leaving space for more efficient heuristics as well

as formulations that place additional domain constraints to yield consensus solutions that

are useful and actionable in diverse applications.
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