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Abstract— Computational prediction of genes that play roles
in human diseases remains an important but challenging task.
In this work, we formulate candidate gene prediction as a bipar-
tite ranking problem combining a task-wise ordered observation
model with a latent multitask regression function using the
matrix-variate Gaussian process (MV-GP). We then use a trace-
norm constrained variational inference approach to obtain the
bipartite ranking model variables and the parameters of the
underlying multitask regression model. We use this model to
predict candidate genes from two gene-disease association data
sets and show that our model outperforms current state-of-
the-art methods. Finally, we demonstrate the practical utility
of our method by successfully recovering well characterized
gene-disease associations hidden in our training data.

I. INTRODUCTION

Identifying genes that play roles in human diseases is
critical for developing new therapeutic approaches and im-
proving care for afflicted patients. However, despite sig-
nificant progress, the genetic architectures of many human
diseases have not been fully elucidated. This is due in part
to the large number of human genes and the high costs of
experimentally verifying the role of even a single candidate
gene in the etiology of a disease. Various computational
approaches that produce prioritized lists of candidate genes
for further experimental evaluation have been proposed as
means for reducing the search space; a fairly comprehensive
review of these methods has recently been published [1].

A key challenge in developing computational methods for
predicting candidate disease genes is that the observed re-
sponses are generally positive gene-disease associations, and
the states of the unobserved responses remain unknown; i.e.,
few, if any, published reports show that a gene is definitely
not associated with a disease. These types of problems are
known as single class or positive unlabeled (PU) learning
tasks [2]. One solution to this problem, taken by algorithms
like ProDiGe [3], is to develop a model that maximizes the
classification accuracy between the class of known (positive)
examples and the class of unknown (or unlabeled) examples
[4]. The collaborative filtering literature has also addressed
single class problems using low-rank matrix factorization
models [5]. Other recent work has approached the single
class problem as a bipartite ranking problem and developed
a model that ranks positive examples ahead of unknown
examples, based on the notion that such a model would also
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rank unobserved positive associations ahead of unobserved
negative associations [2].

Here, we describe a novel method of predicting candidate
disease genes that treats the problem as a bipartite ranking
task. We develop a model that combines a latent multitask
regression function with task-wise ordered observation vari-
ables. We employ a non-parametric matrix-variate Gaussian
process (MV-GP) prior for the multitask regression and pro-
pose a novel trace constrained variational inference approach
that imposes useful low rank structure on the multitask
regression. Treating the problem as a bipartite ranking task
fulfills the scientific need for an accurately ranked list of
potential candidate genes for a given disease [3], [6], while
low rank structure induces significant correlations among
predictions for different diseases, which matches empirical
observations that similar diseases often have similar genetic
architectures [7], [8].

This paper is organized as follows. We first describe
two curated gene-disease data sets used to predict novel
gene-disease associations; we also describe a gene-gene
interaction network and a disease relationship graph used
by our model to capture similarities among genes and
diseases, respectively, and to improve the quality of our
predictions. We then briefly introduce our generative model
and the variational inference approach we use to train it.
We use several information retrieval metrics to evaluate our
model’s performance, and with such measures, our method
significantly outperforms ProDiGe [3], which to the best of
our knowledge, represents the state-of-the-art in this field.
Finally, we discuss some predictions made by our model to
show its utility in producing leads for experimental validation
and suggest areas where our model might be improved.

II. MATERIALS AND METHODS

A. Data Sets

We train and evaluate our models using two sets of gene-
disease association data curated from the literature. The
first, which we call the OMIM data set, is based on the
Online Mendelian Inheritance in Man (OMIM) database and
is representative of the candidate gene prediction task for
monogenic or near monogenic diseases, i.e., diseases caused
by only one or at most a few genes. The data matrix contains
a total of M = 3,210 diseases, N = 13,614 genes, and
T = 3,636 known associations (data density of 0.0083%).
We note that the extreme sparsity of this data set makes the
prediction problem extremely difficult.

The second dataset, which we call the Medline data set,
is a much larger data set and is representative of predicting



candidate genes for both monogenic as well as polygenic
diseases, i.e., diseases caused by the interactions of tens or
even hundreds of genes. The set of genes in this data set
is defined using the NCBI ENTREZ Gene database [9], and
the set of diseases is defined using the “Disease” branch
of the NIH Medical Subject Headings (MeSH) ontology
[10]. We extract co-citations of these genes and diseases
from the PubMed/Medline database [11] to identify positive
gene-disease associations. This resulting data set contains a
total of of M = 4,496 diseases, N = 21,243 genes, and
T = 250,190 known associations (data density of 0.26%).

We use information about biological interactions among
genes and known relationships among diseases to improve
the accuracy of our model, since similar diseases very often
have similar genetic causes. We derive our gene networks
from the HumanNet database [12], a genome-wide functional
network of human genes constructed using multiple lines
of evidence.For both the OMIM and Medline data sets, our
gene-gene interaction network contains a total of 433,224
links. Our disease network is derived from the term hierar-
chy established in the 2011 release of the MeSH ontology.
The disease network for the Medline data set contains a total
of 13,922 links. However, because we do not have a direct
mapping of OMIM diseases to MeSH terms, we do not use
a disease network for the OMIM data set.

B. Model

We treat the problem of predicting candidate disease gene
as a bipartite ranking task. Ranking refers to the task of
learning an ordering for a set of items, in this case, the
association between a disease and a set of genes. In the
bipartite ranking setting, the items are drawn from two sets,
known as the positive set and the negative set, and the task is
to learn an ordering that places the positive items ahead of the
negative items [13], [14]. Because our observed only contain
known (i.e., positive) associations, we follow the method
used by ProDiGe [3] and randomly sample the gene-disease
association matrices to generate “negative” observations.

The data thus consist of a small set of known gene-disease
associations and a large set of unknowns. Let M 3 m denote
the set of diseases, and N 3 n denote the set of genes. These
are collected into a set T 3 m,n. Let ym,n ∈ [+1,−1] be
the label for the mth disease gene and the nth gene pair,
and let Tm = {n | (m,n) ∈ T} be the set of labeled genes
for the mth disease. The set of known gene links for disease
m is given by D+

m = {(n ∈ Tm | ym,n = +1}, and the set
of sampled unknowns is denoted by the set D−m = {n ∈
Tn | ym,n = −1}. The vector of labels for the mth disease
is given by ym ∈ [−1,+1]Tm .

We solve this ranking problem using task-wise ordered
observation variables and a latent multitask regression func-
tion with a non-parametric matrix-variate Gaussian process
(MV-GP) prior. Shown schematically in Fig. 1, our proposed
generative model for ym is

p(ym|rm) ∝
∏

l∈D+
m

∏
l′∈D−m

I[rm,l≥rm,l′ ]
. (1)

Z KM,KNKM,KN

rm,n σ2σ2

Nm

ym {D+,D−}{D+,D−}

M

Fig. 1: Plate model of generative bipartite ranking with the
latent matrix-variate Gaussian process.

where I[·] is the indicator function (I[b] = 1 if b = 1 and
I[b] = 0 otherwise). Note that p(ym|rm) is nonzero if and
only if rm satisfies the ordering defined by {D+

m,D
−
m}. It

follows that any vector rm s.t. p(ym|rm) is nonzero also
maximizes the AUC performance metric (described in the
“Model evaluation” section below).

The variables rm are generated from a Gaussian distribu-
tion rm,n ∼ N

(
zm,n, σ

2
)

with mean zm,n and variance σ2.
We couple the diseases by jointly generating the latent mean
variables from a zero mean matrix-variate Gaussian process
Z ∼ GP (0,KM,KN) with disease covariance KM and gene
covariance KN. These covariances are computed from the
disease network and the gene network, respectively [15].

We utilize a novel trace-constrained variational inference
to train the bipartite ranking model variables and the un-
derlying multitask regression model. We assume a fully
factored representation with q(r, Z) = I[r=r∗]q(Z), where
r = {rm}. The variational lower bound of the log likelihood
is thus

ln p(y|D) ≥ ln p(y|r) + EZ[ln p(r,Z)]− EZ[ln p(Z)],

where y = {ym} and r = {rm}. To enforce the low rank
constraint, we restrict our search to the space for q(Z) of
Gaussian processes q(Z) = GP (ψ, S) subject to a trace
norm constraint ‖ψ‖K,∗ ≤ C, where C is a user defined
constant. Such a trace norm constraint is known to encourage
low rank of matrix valued variables [16], [17].

The combined inference is solved by alternating optimiza-
tion for q(Z) and r∗. The proposed model is trained to
estimate bipartite ranking scores for each task and the under-
lying multitask latent regression distribution. Item rankings
are predicted by sorting the expected noise-free scores of the
trained model E[zm,n|D] = ψ(m,n).

C. Model evaluation

Because of time and monetary constraints, only a small
set of the top-ranked predicted genes are viable candidates
for experimental validation. Hence, we evaluate our model
using the following metrics, which focus on behavior at the
top of a ranked list [18]:
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Fig. 2: Average precision (left) and recall (right) for various
models using the OMIM data set. “MV-GP” refers to the full-
rank model without the trace norm constraint, and “Const.
MV-GP” refers to the low-rank model obtained by using the
trace norm constraint.

TABLE I: AUC and MAP means (std. dev.) for various
models using the OMIM data set

Const. MV-GP MV-GP ProDiGe
AUC 0.654 (0.029) 0.686 (0.016) 0.524 (0.018)
MAP100 0.041 (0.002) 0.001 (0.001) 0.001 (0.000)

1) Area under the receiver operating characteristic (ROC)
curve (AUC): measures the overall ranking perfor-
mance of the model.

2) The precision at k ∈ {1, 2, . . . , 100}: measures what
fraction of the top k predicted genes are known to be
associated with a given disease.

3) The recall at k ∈ {1, 2, . . . , 100}: measures what
fraction of the known associated genes are retrieved
within the top k predicted genes

4) Mean average precision at k = 100 (MAP100): com-
puted as the mean (over all diseases) of the average
precision at k = 100. The average precision for a
single disease is given as:

AP@k =

∑k
l=1 I[~gl=1]P@l

min(Gm, k)

In addition to these metrics, we examine cases where
well known gene-disease associations were removed from
the training set but retained in the testing set to see if our
method is able to correctly place such associations at the top
of the candidate gene list.

We generate five training sets by randomly sampling a
small fraction of the known associations (positives) in each
of the OMIM and Medline data sets. The remaining known
associations for each set are then used as a testing set for
model evaluation. The average of each metric over these
training sets is used evaluate model performance.

III. RESULTS

We train two variants of our model: the first a full-
rank MV-GP model without the trace norm constraint, and
the second a low-rank MV-GP model obtained using the
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Fig. 3: Average precision (left) and recall (right) for various
models using the Medline data set. “MV-GP” refers to
the full-rank model without the trace norm constraint, and
“Const. MV-GP” refers to the low-rank model obtained by
using the trace norm constraint.

TABLE II: AUC and MAP means (std. dev.) for various
models using the Medline data set

Const. MV-GP MV-GP ProDiGe
AUC 0.793 (0.002) 0.687 (0.002) 0.716 (0.001)
MAP100 0.042 (0.003) 0.009 (0.001) 0.003 (0.000)

trace norm constraint. We compare the performance of our
models to ProDiGe, which ranks candidate disease genes
using multitask support vector machines trained with ker-
nels derived from the gene and disease networks. We use
ProDiGe as our “gold standard” benchmark because it con-
sistently outperforms other approaches, including distance-
based learning methods like Endeavour [19], [20] and label
propagation methods like PRINCE [21], and this paper’s
short format precludes a more extensive comparison of the
various methods described in [1].

Results from both the OMIM (Fig. 2 and Table I) and
Medline (Fig. 3 and Table II) show that the trace-norm
constrained model performs significantly better than both the
full-rank MV-GP and ProDiGe, which supports the effec-
tiveness of trace regularization and low-rank approximations
for this type of single class problem. The usefulness of the
correlations among diseases induced by the disease network
and the low-rank structure is evident in the Medline data
set results where the training data consisted of an average of
fewer than 3 known associations out of a possible 13,614 per
disease. The much poorer performance of all models on the
OMIM data set is attributable to various factors, including the
lack of a disease network, the greater sparsity of the data,
and the challenge of trying to predict only a few (usually
< 5) positive candidate genes per disease.

Further, as Table III shows, our model is able to correctly
identify several extensively studied and experimentally vali-
dated gene-disease associations that were missing in various
training sets but present in the corresponding testing sets.
Moreover, our method consistently ranks these associations
highly, which is of practical importance as researchers purs-
ing candidate disease genes for experimental validation are
unlikely to look beyond the top several predictions.



TABLE III: Examples of known disease genes in the Medline
data set correctly identified in testing by the trace norm
constrained MV-GP model

Disease Gene Rank Description
Alzheimer’s APOE 16 Lipoprotein component [22]
Asthma CD14 10 Immune receptor [23]
High cholesterol APOE 3 Lipoprotein component [24]
High cholesterol APOB 14 Lipoprotein component [25]
Prostate cancer CRP 2 Inflammation marker [26]
Prostate cancer VEGFA 9 Vascular growth factor [27]

IV. CONCLUSION

This paper presents the candidate gene prediction as a
bipartite ranking problem that can be molded by combining
a trace norm constrained matrix-variate Gaussian process
(MV-GP) with per-task (i.e., per-disease) ordered observation
variables. We showed that the trace norm constraint leads
to a low rank model that captures the similar genetic un-
derpinnings of similar diseases. We applied this model to
gene-disease association data sets derived from the OMIM
and PubMed/Medline databases and demonstrated that our
model is a significant improvement over the reasonably
strong ProDiGe baseline model. Finally, we highlighted the
capability of our model in identifying viable candidate genes
for further experimental validation.

We plan to expand this work by exploring other regular-
ization methods for the basic MV-GP model. We also intend
to improve on the quality of our candidate gene predictions
by refining the data sets and models to handle potentially
unreliable reports of gene-disease associations and by incor-
porating other sources of gene-gene interaction and disease
similarity data. Finally, we will also explore approaches that
avoid “popularity effects”, where by frequently studied genes
and genes in network hubs are given unusually high rankings.
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