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CUDIA: Probabilistic Cross-level Imputation using Individual Side
Information

Yubin Park, The University of Texas at Austin
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Due to privacy or legal issues, aggregate data publication is a common practice in healthcare and medi-
cal research. However, to find out valuable individual level relationships from the aggregate data, many
data mining algorithms suffer from the aggregation bias and the information loss, or require rather strict
assumptions, which are usually unverifiable. Furthermore, even if individual level data are available, as
many healthcare studies are performed with a pre-specified goal, a limited scope of variables constraints
the range of the research focus. How can one run data mining procedures on such data where different vari-
ables are available at different levels of aggregation or granularity? In this paper, we seek a better utilization
of variably aggregate datasets, which are possibly from different sources. By modeling the generative pro-
cess of such datasets using a Bayesian directed graphical model, we propose a novel “cross-level” imputation
technique. The imputation is based on the underlying data distribution and shown to be unbiased. This im-
putation can be further utilized in a subsequent predictive modeling, showing improved performances than
just imputing the aggregate information as it is. Experimental results using a simulated dataset and the
Behavioral Risk Factor Surveillance System (BRFSS) dataset are provided to illustrate the generality and
capabilities of the proposed framework.
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1. INTRODUCTION
Aggregate data publication, such as state or county summaries, is a common prac-
tice in healthcare and medical studies, as individual record publication might infringe
privacy or legal issues. Specifically, revealing someone’s disease or medical condition
records might cause a severe traumatic situation when the information reflects a
conflicting social perception such as STD or HIV. In this case, the aggregate data
publication alleviates such risks, while providing a overall description about data.
Due to this reason, many of the health-related features and indicators are publicly
available at a highly aggregated level (for example see http://www.data.gov/health or
http://www.cdc.gov/datastatistics/). However, the aggregation process damages a sig-
nificant amount of individual information. If a data mining goal is not to observe or
discover global or regional interactions, many data mining algorithms suffer from the
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aggregation bias (also known as the ecological bias) or the lost information. Several
statistical methods and assumptions have been suggested to make “cross-level infer-
ence” overcoming this issues [Achen and Shively 1995], [King 1997], but their validity
and effectiveness are still controversial [Freedman 1999].

Aggregate variables in healthcare studies are not only the problem that hinders data
mining research. Many of healthcare related surveys are designed with a specific pre-
defined purpose, so that the variables in one dataset are limited in their scope. Design-
ing another set of survey is inappropriate in many cases due to the cost and temporal
dynamics. Combining multiple datasets from different sources can be a solution in this
case, but in general, their aggregation levels differ in their sizes or populations. In par-
ticular, routinely collected administrative data sets, such as national registers, aim to
collect information on a limited number of variables for the whole population, while
survey and cohort studies contain more detailed data from a sample of the population.
As many health or healthcare indicators are available at different aggregated levels
rather than providing an entry for each individual, a proper utilization of such data is
crucial to facilitate healthcare data mining research without any extra cost.

Suppose two datasets from possibly different sources are available for research,
where their aggregation levels are also different. By referring the dataset with a finer
granularity as an individual level dataset, the other dataset becomes an aggregate
level dataset. In this paper, we seek a better utilization of such aggregated informa-
tion for augmenting the individual-level data. Assuming that the dataset of interest
is generated by a mixture model, and that the partitions that form aggregation units
(such as states or counties) contain different ratios of the mixture components, we
introduce a novel generative process, which captures the underlying distributions us-
ing a Bayesian directed graphical model and the Central Limit Theorem. Despite the
limited nature of given aggregated information, our clustering algorithm provides not
only reasonable cluster centroids, but also imputes the unobserved individual features.
These “cross-level” imputed features reflect the underlying distribution of the data,
thus a subsequent predictive model using these extended information shows improved
performances. As many datasets in the healthcare domain are divided into multiple
tables containing different levels of aggregation (sometimes obtained from different
sources), the suggested methodology in this paper can be useful in maximizing the
utility of such available information. Even further, for multiple datasets with multiple
aggregation levels, our approach can be applied recursively to maximize the granular-
ities of the datasets.

The rest of the paper is organized as follows: We begin by reviewing traditional sta-
tistical imputation techniques, ecological studies, and various inference mechanisms
that will be used extensively in our approach in Section 2. In Section 3, we approach
the problem by modeling the data generation process, which is essentially how the
aggregate data are created. We start from a generic Bayesian clustering model, then
step-by-step, we impose additional constraints and transform the simple model into
our approach to exactly describe the problem setting. After presenting the final model,
its model parameter estimation technique is explained in Section 4. Due to the com-
plexity of the model, a new approximate MCEM algorithm is developed, which is com-
putationally efficient than a generic MCEM technique. Moreover, a deterministic algo-
rithm, which can be used as a parameter initialization method, is derived as a valu-
able artifact of our probabilistic approach. Using the learned model parameters, in
Section 4, we propose a “cross-level imputation” formula, which basically enables us to
estimate the masked individual values for the aggregate features. The imputation is
shown to be a“unbiased” estimator, and it statistical properties are analyzed in detail.
Experimental verification of the proposed model is followed in Section 6 using a sim-
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ulated dataset and the Behavioral Risk Factor Surveillance System (BRFSS) dataset.
Finally, we discuss the limitation and the future work in Section 7.

2. RELATED WORK
In this section, we present three bodies of related work, starting from traditional impu-
tation techniques in statistics. This is followed by ecological study techniques, where
aggregated and individual information are both available. Finally, we briefly discuss
various approaches that are used to make inferences in Bayesian graphical models.

Imputation techniques in statistics. In statistics, imputation techniques are mainly
used to substitute missing values in data. A once-common method is cold-deck impu-
tation, where a missing value is imputed from randomly selected similar records from
another dataset. More sophisticated techniques, such as the nearest neighbor imputa-
tion and the approximate Bayesian bootstrap, have been also developed to supersede
this original method. As a special case, when geographical information is missing in
data, geo-imputation technique is widely used, where the imputation is taken from ap-
proximate locations derived from associate data [Henry and Boscoe 2008]. Regression
estimation [Tabachnick and Fidel 2001] is another widely used imputation technique
in statistics. In the regression estimation, the variable with missing data is treated
as the dependent variable, while the other variables are treated as the independent
variables. A normal regression is performed based on this setting, then the regression
results for the missing values are imputed. Nevertheless, the regression estimation as-
sumes enough number of individual samples, which is not the case in our setting. On
the other hand, if missing values are rather sparse, a Bootstrap technique can be used
to improve a subsequent predictive modeling performance [Brownstone and Valletta
2001]. However, these traditional techniques are based on individual level data, and
some of them are limited in their applicabilities.

Ecological study. In ecological studies, aggregated information is usually the unit of
analysis, as individual information is usually not available due to expensive acquisi-
tion costs or legal issues. Although ecological studies have been used frequently across
multiple domains such as social science and healthcare analysis, the validity of the
studies is still controversial because of the difference between ecological correlation
and individual correlation [Robinson 1950], which is also known as the “ecological fal-
lacy”. Most of the controversial ecological analyses were based on ecological regression,
which uses the Goodman’s “constancy assumption” [Goodman 1953], [Goodman 1959],
[King 1997]. The constancy assumption states that behavior within an ecological group
doesn’t depend on the group specific characteristics. However, in general, the constancy
assumption doesn’t hold because regional and contextual effects on ecological groups
cannot be overlooked, and one ecological group is rarely homogeneous in its behavior.

Ecological regression analysis based on the constancy assumption is vulnerable from
“confounding” and “aggregation bias”. Traditionally, the aggregation bias has been
tackled in two ways: a) assuming a quadratic model rather than a linear model, b)
calculating interval estimates for unobserved individual features rather than point es-
timates. In the first method, a quadratic model is obtained by relaxing the constancy
assumption [Achen and Shively 1995]. In this framework, an individual in a specific
ecological group is no longer independent from the group, and this relationship is spec-
ified by a linear model, resulting in a quadratic model at aggregation level. However,
the added assumption is not verifiable in most of the cases as in the original ecolog-
ical regression, and the interpretation of the results becomes harder. In the second
method, unobserved individual features are bounded satisfying aggregated informa-
tion constraints. This technique is also known as ‘the method of bounds’ [Duncan and
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Davis 1953]. But the bounds are too broad to be informative in practice, and are rather
used as a sanity check tool.

Despite its theoretical instability, ecological analyses will continue to be used be-
ing benefited from easier access to the aggregate data [Freedman 1999]. Fortuitously,
in recent years, it has been reported that auxiliary individual level information can
help to reduce the ecological fallacy [Wakefield and Salway 2001]. In the hierarchi-
cal related regression (HRR) framework, auxiliary individual information represents
a small fraction of the individual samples that constitute the aggregate information
[Jackson et al. 2008], [Jackson et al. 2009]. This setting is useful when acquisition
costs of getting individual data is expensive, so that the available information covers
only a small portion of the entire population. The HRR model relates the regression co-
efficients from both aggregate and individual data, compensating their disadvantages.
This analysis has been shown to reduce the ecological bias, but the type of the aux-
iliary information used in HRR is different from our setting in this paper. The model
we present in this paper assumes auxiliary individual information, which contains a
different set of features from provided aggregate data. We first focus on a generative
process of such data, then derive an inference mechanism to get estimated individ-
ual values for the aggregated features. From the generative process, heterogeneity of
ecological groups is naturally captured by suitable mixture distributions, resulting in
better imputation. Note that, individual and aggregate level are defined relatively to
each other.

Inference algorithms in Bayesian Graphical Models. In Bayesian graphical models
such as the model presented in this paper, inferential problems pose key challenges
in most cases. EM algorithm is the most popular approach when latent variables are
present in models. However, many sophisticated models such as LDA [Blei et al. 2003]
have intractable posterior distributions for latent variables. To approximate the poste-
rior distributions, other techniques such as variational EM algorithm, Gibbs sampling
and collapsed Gibbs sampling have been proposed. Although their computational com-
plexities and assumptions are slightly different, their performances are marginally
the same [Asuncion et al. 2009]. In this paper, we demonstrate an approximated Gibbs
sampling approach, which is specialized for our setting. Then we further introduce its
deterministic algorithm, which is not only much faster but also scalable to massive
datasets.

3. CLUSTERING MODEL
We denote the set of features that are available at the individual level by ~xo, where
“individual” refers to entities at the highest resolution available. The features that
are observed only at an aggregated level are denoted by ~xu, where u denotes ‘un-
observed’ at the individual level. Thus there is an underlying “complete” dataset,
Dx = {(~xo, ~xu)1, (~xo, ~xu)2, ..., (~xo, ~xu)N}, which has all features observed. The data
provider only provides the values of observed variables though. In addition, it spec-
ifies a set of partitions: P = {D1

x,D2
x, ...,DPx }, where

⋃P
p=1Dpx = Dx and Dpx

⋂
Dqx = ∅

for any distinct p, q. These partitions specify the aggregated values provided on the
unobserved features (~xu), Ds = {~s1, ~s2, ..., ~sP }, where ~sp is derived from Dx as ~sp =
1
Np

∑N
i=1 ~xui1(~xui∈Dp

x) (sample mean withinDpx) andNp = |Dpx|. Note that in general, dif-
ferent partitions (and hence levels of aggregation) may apply to different unobserved
variables. Though our approach can be readily extended to cover such situations, and
in this paper we consider a common partitioning to keep the notation and exposition
simple.
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Fig. 1. (a) Clustering models when complete data is available (left) and (b) when only aggregates ~s are
observed instead of ~xu (right).

Suppose we want to find K clusters in the complete data, denoted by {C1, C2, ..., CK}.
Note that the clusters are based on the full features (~xo, ~xu), while the partitions
are arbitrary, so that the partitions don’t match with the intrinsic clusters. To
cater to the unobserved data, an assumption of conditional independence is made:
p(~xo, ~xu|Ck) = p(~xo|Ck)p(~xu|Ck) for any Ck. Let ~πp = (p(C1|Dpx), p(C2|Dpx), ..., p(CK |Dpx))T =
(πp1, πp2, ..., πpK)T , which represents the mixing coefficients of the partition p. Then, to
avoid a pathological symmetry case, we assume that ~πp 6= ~πq for any distinct p, q with
probability one. Let ~ξk and ~θk be the sufficient statistics for the distributions p(~xu|Ck)
and p(~xo|Ck) respectively. If all data features are observed at the individual level, a
LDA-like clustering model can be built based on the conditional independence assump-
tion as in Figure 1 (a), where ~π is sampled from a Dirichlet distribution parametrized
by ~α. As ~xu and ~xo are independent given Ck, they can be separated using different
nodes. Figure 1 (b) shows a modified clustering model that accommodates the aggre-
gated nature of the unobserved variables. In the model, ~xu is not observed; rather the
derived (aggregated) features ~s are observed.

Even though the model of Figure 1(b) captures the problem characteristics, it is
highly inefficient and contains redundant nodes. Fortunately, the complexity of the
model can be reduced by removing the unobserved nodes ~xu’s if Np is large enough. Let
~ηk and T2

k be the mean and variance of the distribution, p(~xu|Ck). Using the linearity
of mean statistics and the Central Limit Theorem (CLT), ~sp can be approximated as
being generated from a normal distribution as follows:

~sp ∼ N (~µp,Σ
2
p) (1)

~µp =

K∑
k=1

πpk~ηk (2)

Σ2
p =

K∑
k=1

πpk(~η · ~ηT + T2
k)− ~µ · ~µT

Np
(3)

~ηk = E[~xu|Ck], T2
k = V ar[~xu|Ck]. (4)

Essentially, ~ηk and T2
k are the sufficient statistics of ~sp’s, since the CLT only requires

the mean and variance of the samples. As the actual values of ~xu’s don’t contribute
to the likelihood of this process, ~xu can actually be removed, resulting in the effi-
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Fig. 2. Graphical Model of CUDIA.

cient Clustering Using features with DIfferent levels of Aggregation (CUDIA) model
as shown in Figure 2. The full generative process for CUDIA is as follows:

For ~sp in Ds,
Sample ~πp ∼ Dirichlet(~α).
Sample ~sp ∼ N (~µp,Σ

2
p), where ~µp =

∑K
k=1 πpk~ηk and Σ2

p =
∑K
k=1

πpk(~η·~ηT+T2
k)−~µ·~µ

T

Np
.

For ~xo in Dpx,
Sample ~z ∼Multinomial(~πp).
Sample ~xo ∼

∏K
k=1 p(~xo|~θk)zk .

~π is sampled from a Dirichlet distribution parametrized by ~α, and observed sample
mean statistics ~s is generated from a Normal distribution parametrized by a mixture of
true means ~η’s and a covariance Σ2. ~z’s in each partition are sampled from a Multino-
mial distribution parametrized by ~π, which is specific to the partition, and correspond-
ing ~xo’s are sampled from a distribution

∏K
k=1 p(~xo|~θk)zk , where the suitable form of

p(~xo|~θk) depends on the properties of the variable ~xo’s. For conciseness, the remaining
sections of this paper will denote ~xo as ~x.

4. INFERENCE
From the generative process, the likelihood function of the CUDIA model is given by:

p(x, s|~η, ~θ, ~α) (5)

=
∑
z

∫
π

P∏
p=1

p(~sp|~πp, ~η)p(~πp|~α)

Np∏
i=1

K∏
k=1

p(~xi|~θk)zikp(~zi|~πp)dπ (6)

=

∫
π

P∏
p=1

p(~sp|~πp, ~η)p(~πp|~α)

Np∏
i=1

K∏
k=1

∑
z

p(~xi|~θk)zikp(~zi|~πp)dπ. (7)

The posterior distribution of the hidden variables, ~π’s and ~z’s, is as follows:

p(π, z|~η, ~θ, ~α,x, s) =
p(x, s,π, z|~η, ~θ, ~α)

p(x, s|~η, ~θ, ~α)
. (8)
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The key inferential problem is how to calculate this posterior distribution. However,
a generic EM algorithm [Dempster et al. 1977] cannot be applied, since the normal-
ization constant of its posterior distribution in Equation (8) is intractable. Collapsed
Gibbs sampling [Liu 1994] also cannot be applied because ~π cannot be integrated out
due to non-conjugacy between ~s and ~π in p(x, s,π, z|~η, ~θ, ~α). In this case, the model can
be learned using either variational methods or Gibbs sampling approaches, and this
paper follows the latter alternative. Nevertheless, naı̈ve Gibbs sampling approaches
are computationally inefficient, thus this paper employs an approximated Gibbs sam-
pling approach, which can be applied when the dimension of ~x is small. The model
parameter estimation follows the MCEM algorithm [Booth and Hovert 1999] using
this approximation technique.

4.1. E-step: Gibbs Sampling
In the CUDIA model, the latent variables are ~π and ~z. So we have:

p(x,s,π, z|~η, ~θ, ~α)

=

P∏
p=1

p(~sp|~πp, ~η)p(~πp|~α)

Np∏
i=1

K∏
k=1

p(~xi|~θk)zikp(~zi|~πp).

For each partition p, the Gibbs sampling is performed as follows:

~π(j+1)
p ∼ p(~π|~z(j)1 , ~z

(j)
2 , ..., ~z

(j)
Np
, ~sp, ~η, ~α) (9)

~z
(j+1)
i ∼ p(~z|~π(j+1)

p , ~xi, ~θ). (10)

However, sampling ~π is problematic as Eq. (9) is not a trivial distribution. Instead of
sampling directly from Eq. (9), Metropolis-Hastings (MH) algorithm can be used with
a proposal density Dirichlet(~α). This algorithm is described in Algorithm 1.

ALGORITHM 1: MH Algorithm using Dirichlet proposal density.

Input: Initial value ~π(0)
p

Output: Gibbs sample ~π(IMax)
p

index = 0;
repeat

~π
(new)
p ∼ Dir(~α);
ζ ∼ Uniform(0, 1);
Set n(z(j)·k ) as the count of z(j)·k = 1;
g(~π

(new)
p , ~π

(index)
p ) ← (p(~sp|~π(new)

p , ~η)p(~π
(new)
p |~α)2)/(p(~sp|~π(index)

p , ~η)p(~π
(index)
p |~α)2);

Threshold ← g(~π
(new)
p , ~π

(j)
p )

∏K
k (π

(new)
pk /π

(index)
pk )n(z

(j)
·k );

if ζ < Threshold then
~π
(index+1)
p ← ~π

(new)
p ;

else
~π
(index+1)
p ← ~π

(index)
p ;

end
until index < IMax;

The sampling from a Dirchlet distribution might be computationally heavy in some
programming languages. As an alternative, the prior distribution of ~π can be replaced
by a Logistic Normal distribution or a Uniform distribution by modifying the CUDIA
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model, so that we can adopt a different proposal density function according to the
modified model. In our empirical evaluation over the different prior distributions, it
showed marginal differences in their performances. Even though this MH algorithm
inside the Gibbs sampling becomes inefficient when dealing with large datasets, the
sampling step of ~z’s can be removed, when a large enough data size of Np and a small
dimension of ~x are provided.

The overall idea of this approximation is as follows: If ~x is generated from an
exponential family distribution, p(zk|~x, π) is continuous with respect to ~x, so that
p(~z|~x, ~π) ≈ p(~z|~x + d~x, ~π). Consider a ball of radius r > 0 centered at ~xc, Br(~xc),
such that p(~z|~xc, ~π) ≈ p(~z|~x, ~π), where ~x is in the ball. If the number of ~x’s that
are in the ball is large enough, then n(z·k) in the ball can be approximated as
n(z·k) ≈ |Br(~xc)|E[zk|πp, ~xc] ≈

∑
~x∈Br(~xc)E[zk|πp, ~x]. This idea can be effectively applied

when Np is large and the dimension of ~x is small, even better when ~x is a discrete vari-
able. Assuming partitional balls over Dpx, n(z·k) in the partition p can be approximated
as

∑Np

i=1E[zk|πp, ~xi]. Letting the number of Gibbs samples be NGibbs, the algorithm is
described in Algorithm 2:

ALGORITHM 2: Gibbs sampling E-Step

Input: x, s, ~η, ~θ, ~α
Output: π, z
index = 0;
repeat

Sample π(index)
p using Algorithm 1;

Set E[zk|π(index)
p ,x] ∝ p(x|~θk)π(index)

pk ;
until index < NGibbs;
Set E[zk|x] ∝

∑NGibbs
j=1 E[z

(j)
k |π

(j)
p ,x];

Set ~πp ∝
∑
E[~z|x];

The last line of the algorithm is derived by using the Partition Theorem of condi-
tional expectation [Grimmett and Stirzaker 2001]. As a result, the actual sampling
process occurs only in the MH sampling. In this paper, we used a burning period of
10 samples, and NGibbs ≈ 50 to 100 [Agarwal and Chen 2009]. Experimental results
show that with this small number of samples, the algorithm converges with reason-
able speed.

4.2. M-step: Parameter Estimation

Model parameters are ~α, ~θ and ~η. Maximization on ~α and ~θ can be easily performed
and won’t be discussed in this paper. ~η∗ and T∗ can be obtained by alternating the
maximization steps on ~η and T respectively. However, if we assume T2

k = δ2kI, the max-
imization step on ~η can be simplified. To simplify the notation, the following matrices
are defined [Wei and Tanner 1990] :

Si = [s1i, s2i, ..., sPi]
T (11)

Π̂ = [~̂π1, ~̂π2, ..., ~̂πP ]T , where ~̂πp =

∑NGibbs

i=1 ~π
(i)
p

NGibbs
(12)

W = diag(N1, N2, ..., NP ) (13)

H = [~η1, ~η2, ..., ~ηK ]T (14)

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: November 2011.



Probabilistic Cross-level Imputation using Side Information 39:9

To help understanding, their expressive forms are given by:

Si =

 s1i
s2i
...
sPi

 , H·i =

 η1i
η2i
...
ηKi

 , Π̂ =

 π̂11 π̂12 ... π̂1K
π̂21 π̂22 ... π̂2K
... ... ... ...
π̂P1 π̂P2 ... π̂PK

 . (15)

As ~s is normally distributed in CUDIA, the relationship between Si and H·i in the
CUDIA model can be described as:

Si ≈ Π̂ ·H·i (16)

However, each ~sp has a different variance, thus the solution of ‘weighted linear regres-
sion’ can be applied to get the optimal H∗·i:

H∗·i = (Π̂TWΠ̂)−1Π̂TWSi. (17)

Note that rank(Π̂TWΠ̂) = rank(Π̂) = K w.p. 1 if P > K. However, mean values
(Π̂) are susceptible to outliers from the Gibbs sampling. To ensure the invertibility,
regularization techniques can be incorporated. For example, if a Ridge penalty is used,
then H becomes:

H∗·i = (Π̂TWΠ̂ + λI)−1Π̂TWSi. (18)

Furthermore, the regularizer term, λ, can be utilized when P < K, which makes CU-
DIA under-determined. But we leave this to the future work. The entire inference
algorithm is described in Algorithm 3.

ALGORITHM 3: Gibbs CUDIA EM algorithm
Input: x, s

Output: ~η, ~θ, ~α
index = 0;
repeat

(E-Step) Algorithm 2;
(M-Step) Learn ~α and ~θ;
H∗

·i = (Π̂TWΠ̂ + λI)−1Π̂TWSi;
until Converge;

4.3. Deterministic Hard Clustering
The CUDIA model provides an intuitive deterministic hard clustering algorithm. From
the log-likelihood of CUDIA, the objective function becomes:

min
z,~µ,~η

∑
p

{
∑
k,np

znpk ‖ ~xnp
− ~µk ‖2}+ β ‖ ~sp −

∑
k

∑
np
znpk

Np
~ηk ‖2 (19)

= min
z,~µ,~η

∑
p,k,np

znpk ‖ ~xnp − ~µk ‖2 +
β

KNp
‖ ~sp −

∑
k

π̂pk~ηk ‖2 (20)

where π̂pk =

∑
np
znpk

Np
and β is a parameter that determines weights to mean statistics.

Local minima of this objective function can be found by alternating minimization steps
between z and (~µ, ~η) as in Algorithm 4. One iteration of this algorithm costs Θ(KN).
For a fixed number of iterations I, the overall complexity is therefore Θ(KNI), which is
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ALGORITHM 4: Deterministic CUDIA Algorithm
Input: x, s

Output: ~η, ~θ,π, z
repeat

(Assignment Step)
k∗ = argmin

k
‖ ~xnp − ~µk ‖2 −2(~sp −HT ~̂πp)

T ~ηk(
β

KNp
);

if k = k∗ then
znpk ← 1;

else
znpk ← 0;

end
(Update Step)
~µk ←

∑
n

(znk~xn)/Nk, ~πp ←
∑
np

~znp/Np;

H·i ← (Π̂TWΠ̂ + λMI)−1Π̂TWSi;
until Converge;

linear in all relevant factors. The complexity of this algorithm is the same as k-means
promising its scalability to massive datasets. Moreover, this algorithm can be used as
an initialization step for the probabilistic algorithm, which in turn will reduce the total
running time.

The squared loss function in the deterministic algorithm is appropriate for an ad-
ditive Gaussian model. Our approach can however be generalized to any exponential
family distribution (of which the Gaussian is a specific example) by exploiting the bi-
jection between this family and the family of loss functions represented by Bregman
divergences [Banerjee et al. 2005]. Given two vectors ~x and ~µ, the Bregman divergence
is defined as:

dφ(~x, ~µ) = φ(~x)− φ(~µ)− 〈~x− ~µ,∇φ(~µ)〉 (21)

where φ(·) is a differentiable convex function and∇φ(~µ) represents the gradient vector
of φ evaluated at ~µ. Although the Bregman divergence possesses many other interest-
ing properties, this paper focuses on its bijective relationship to the Exponential family
distribution.

This bijective relation can be exploited when clustering data points that cannot be
appropriately modeled using the Gaussian distribution, as in the Bregman Hard/Soft
Clustering algorithms [Banerjee et al. 2005]. Table I shows the relationship between
Bregman divergences and their corresponding Exponential family distributions. Using
this bijection, the deterministic algorithm of CUDIA can be extended as follows:

— Assignment Step
znpk∗ ← 1, if k∗ = arg min

k
dφ(~xnp , ~µk)− 2(~sp −HT ~̂πp)

T ~ηk( β
KNp

)

znpk∗ ← 0, otherwise.

φ can be chosen based on the distribution of ~x and the update step remains the same.
This extended algorithm captures various distributions while maintaining the orig-

inal complexity. Furthermore, the linkage between the Bregman divergence and the
Exponential family distributions enables probabilistic interpretations on the resultant
clustering assignments as in the Bregman Soft Clustering algorithm. Perhaps the most
useful case is when the vectors represent probability distributions, in which case the
KL-divergence (another special case of Bregman divergences), is the appropriate loss
function to use.
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Table I. Bregman divergence and Exponential family.

Distribution φ(~µ) dφ(~x, ~µ)

1-D Gaussian 1
2σ2 µ

2 1
2σ2 (x− µ)2

1-D Exponential µ logµ− µ x log ( x
µ
)− (x− µ)

d-D Gaussian 1
2σ2 ‖ ~µ ‖2 1

2σ2 ‖ ~x− ~µ ‖2

d-D Multinomial
∑d
j=1 µj log

µj

M

∑d
j=1 xj log

xj
µj

Table II. An example of the CUDIA Imputation. The imputed values are personalized according
to the individual observations.

Indiv. level Aggr. level CUDIA imputation
~x1 = (6, 2)T ~s1 = (0.09826, 0.01024)T ~̂xu,1|~x1 = (−0.0082, 0.0280)T
~x2 = (3, 3)T ~s1 = (0.09826, 0.01024)T ~̂xu,2|~x2 = (0.1491, 0.0779)T

~x3 = (4, 3)T ~s1 = (0.09826, 0.01024)T ~̂xu,3|~x3 = (0.1420, 0.0768)T

... ...
~xN−1 = (6, 2)T ~sP = (−0.02818,−0.03053)T ~̂xu,N−1|~xN−1 = (−0.0082, 0.0280)T
~xN = (2, 1)T ~sP = (−0.02818,−0.03053)T ~̂xu,N |~xN = (−0.1186,−0.0725)T

5. IMPUTATION
After all the parameters of the CUDIA model are learned, the model allows us to im-
pute the unobserved features ~xu’s at the individual level. Given the observed features
and learned parameters, the imputation is as follows:

p(~xu|~xo, ~πp) =
∑
k

p(~xu, zk|~xo, ~πp) =
∑
k

p(~xu, zk, ~xo, ~πp)

p(~xo)
(22)

=
∑
k

p(~xu|zk, ~xo, ~πp)p(zk|~xo, ~πp)p(~xo, ~πp)
p(~xo, ~πp)

(23)

=
∑
k

p(~xu|zk)p(zk|~xo, ~πp). (24)

The exact imputation formula depends on the pdf of the unobserved features (p(~xu|zk)).
For example, if ~xu is generated from a Gaussian distribution with mean ~ηk, the impu-
tation formula obtained is:

~̂xu ←
K∑
k=1

~ηkE[zk|~xo, ~πp] (25)

where the covariance of ~xu is assumed to be δ2I. Table II shows an example of this
imputation method. Based on the observed individual values, the model finds an ap-
propriate cluster assignment, then performs a personalized imputation. The numbers
in Table II is based on the BRFSS dataset, which will be detailed in Section 6.

This imputation method also can be applied to the deterministic algorithm. The
bijective relationship between Bregman divergence and Exponential family yields a
soft cluster assignment as follows:

E[zk|~xo, ~πp] ∝
exp(−dφ(~xo, ~µk))∑
l exp(−dφ(~xo, ~µl))

πpk. (26)

Thus, the deterministic algorithm provides not only the cluster centroids/assignments,
but also the basic imputation framework on the unobserved features, which in turn can
be used for preliminary tests for the model’s applicability.
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5.1. Unbiasedness of x̂u
Using (i) the law of iterated expectations and (ii) linearity of expectation,

E[x̂u] = E[

K∑
k=1

ηkE[zk|~xo, ~πp]] =

K∑
k=1

ηkE[E[zk|~xo, ~πp]] (27)

=

K∑
k=1

ηkE[zk] = E[xu]. (28)

The expectation of the estimated x̂u is the same as the expectation of the unobserved
xu. Thus, the imputation formula provides unbiased estimators for the xu’s. This prop-
erty holds regardless of the distribution of xu, as we have not used any of its property.

5.2. Variance of η
Recall the observed sample statistics (sample average) of a given partition p is:

sp ∼ N (µp, σ
2
p) (29)

µp =

K∑
k=1

πpkηk (30)

σ2
p =

∑K
k=1 πpk(η2k + τ2k ) − µ2

p

Np
∝ 1

Np
. (31)

πpk represents the mixing proportion of the kth component in the partition p. The lin-
earity of expectation naturally leads to Equation (30). From the properties of mixture
distributions, the variance of ~xu in the partition p is given by:

V ar[xu|xu ∈ partition p] =

K∑
k=1

πpk(η2k + τ2k ) − µ2
p. (32)

Applying the Central Limit Theorem, we get Equation (31).
Suppose all the parameters of the CUDIA model is learned correctly, which means

the log-likelihood reached the global optimum. However, the sample means we used
to learn the model is inherently noisy based on the Central Limit Theorem. This re-
sults in the noisy estimation of η’s regardless of learning methods. As Equation (17)
is the optimal solution in this setting, if all the parameters are learned correctly, then
Equation (17) should also hold. Equation (17) gives another interesting interpretation,
if we view S as “dependent variables” and Π as “independent variables” in a Linear
regression.

THEOREM 5.1. If all the parameters are learned correctly and Np = M, ∀p, then
(a) η̂ is normally distributed.
(b) The mean and variance are given by

E[η̂k] = ηk (33)

V ar[η̂k] ∝ 1

M
(34)

Cov[η̂i, η̂j ] ∝
1

M
, where i 6= j and 0 < i, j < K. (35)
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PROOF. From Eqaution (17),

E[H∗] = E[(ΠTΠ)−1ΠTS] = E[(ΠTΠ)−1ΠT (ΠH + ε)]

= E[H] + E[(ΠTΠ)−1ΠT ε] = E[H] + E[E[(ΠTΠ)−1ΠT ε|Π]]

= E[H] + E[(ΠTΠ)−1ΠTE[ε|Π]] = E[H].

This proves Equation (33) in the result (b). Moreover, since S is normally distributed,
a linear combination of S is also normal. Thus, H, which is a linear combination of S,
is normal.

The estimator H∗ can be written as:

H∗ = H + (ΠTΠ)−1ΠT ε. (36)

Thus, the variance of H∗ is the same as the variance of (ΠTΠ)−1ΠT ε. Let Qπ =
(ΠTΠ)−1ΠT . Then,

V ar[H∗] = QπΣ2
εQ

T
π ,where Σ2

ε =

 σ2
1 0 ... 0

0 σ2
2 ... 0

... ... ... ...
0 0 ... σ2

P

 and Qπ ≡

 q11 q12 ... q1P
q21 q22 ... q2P
... ... ... ...
qK1 qK2 ... qKP

 .

(37)
Then,

V ar[ηk] =

P∑
p=1

q2kpσ
2
p =

P∑
p=1

q2kp

∑K
k=1 πpk(η2k + τ2k ) − µ2

p

Np
(38)

=

∑P
p=1 q

2
kp{

∑K
k=1 πpk(η2k + τ2k ) − µ2

p}
M

∝ 1

M
. (39)

Moreover,

Cov[ηi, ηj ] =

P∑
p=1

qipqjpσ
2
p =

∑P
p=1 qipqjp{

∑K
k=1 πpk(η2k + τ2k ) − µ2

p}
M

∝ 1

M
. (40)

This proves Theorem (5.1).

5.3. Variance of x̂u
The estimated x̂u is a linear combination of η̂’s. Theorem (5.1) naturally leads to the
next theorem.

THEOREM 5.2. If x̂u =
∑K
k=1 η̂kE[zk|~xo, ~πp], then

V ar[x̂u] ∝ 1

M
. (41)

PROOF. Let ak = E[zk|~xo, ~πp] to simplify the notation. Then,

V ar[x̂u] = V ar[

K∑
k=1

akη̂k] =

K∑
k=1

a2kV ar[η̂k] +
∑
i 6=j

aiajCov[η̂i, η̂j ] ∝
1

M
. (42)

The last line of the equation comes from Theorem (5.1). This proves Theorem (5.2).

LEMMA 5.3. The mean squared error,MSE(x̂u), is inversely proportional to the size
of the aggregation M .
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PROOF.

MSE(x̂u) = V ar[x̂u] + (Bias(x̂u, xu))2 = V ar[x̂u] ∝ 1

M
. (43)

Surprisingly, the bigger the size of the aggregation M , the more accurate the esti-
mate of x̂u. However, if we assume a finite number of samples, say N , then there is a
critical size of M , beyond that, the estimate doesn’t get better.

LEMMA 5.4. If M > N/K, then the CUDIA model becomes under-determined.

PROOF. The CUDIA model assumes P > K, where P = N/M .

6. EXPERIMENTAL RESULTS
In this section, we provide two kinds of experimental results. (a) First, imputation
quality of the CUDIA model is assessed using a simulated mixture of Gaussians data.
(b) Then, its applicability to predictive modeling1 is discussed using the data from the
Behavioral Risk Factor Surveillance System (BRFSS).

6.1. Imputation Quality
We demonstrate the CUDIA imputation using a simulated datasets. Two 2-D Gaus-
sians are used as mixture components, which are centered at (−0.5,−0.5) and (0.5, 0.5)
respectively, both having the same covariance matrix 0.07I. With these two Gaussians,
we follow the CUDIA generative process. First, the Dirichlet prior parameters are
given as ~α = (1, 1) to make each partition to have almost equal amount of clusters. For
each partition, a mixing coefficient vector ~π is drawn from the Dirichlet prior, where
M = Np, ∀p. We generated total 960 random samples (N ) from the CUDIA generative
model, and the aggregation size M is 160. The x-axis values are regarded as individual
level data points and the y-axis values are aggregated. After generating the datasets,
the masked y-axis values (xu in CUDIA) are imputed using the CUDIA imputation
algorithm.

Figure 3(a) shows the complete dataset, where the y-axis values are not aggregated
yet. When given this kind of multi-level datasets, a typical imputation method is to
make everyone in the same partition share the same feature values, which is es-
sentially the average statistics. Figure 3(b) describes this naı̈ve imputation, and the
CUDIA imputation is shown in Figure 3(c). We can observe that the CUDIA model
captures the underlying distribution of the generative model without accessing the
masked individual data points. Figure 4 shows the Mean Squared Error (MSE) be-
tween the true and the imputed data points. The CUDIA imputation achieves the
lower MSE simultaneously having the lower variance compared to the naı̈ve imputa-
tion.

6.2. BRFSS dataset
In this section, we provide the experimental results using the real world dataset in
various settings.

Dataset description. We demonstrate the proposed method using the BRFSS 2009
dataset. BRFSS (Behavioral Risk Factor Surveillance System) 2 is the world’s largest
telephone health survey since 1984, tracking health conditions and risk behaviors in
the United States. The data are collected monthly in all 50+ states in the United

1Targets are chosen arbitrarily to illustrate the applicability of the CUDIA framework.
2http://www.cdc.gov/brfss/
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Fig. 4. Imputation accuracy (Mean Squared Error) on the simulated dataset.

States. The dataset contains information on a variety of diseases like diabetes, hy-
pertension, cancer, asthma, HIV etc, and in this paper, we mainly focus on diabetes
rather than other diseases 3. The 2009 dataset contains more than 400,000 records
and 405 variables and the diabetic (positive class) ratio is 12%. Empty columns and
little informative columns are dropped and 22 predictors are finally chosen, including
Hypertension, Body Mass Index (BMI), age, education, income, etc. The aggregation
level we chose in this paper is the US census division as shown in Figure 5. For each
division, the important feature distributions are described in Figure 6. Although the
distributions are slightly different from each division, we can observe that they do not
reflect the true clusters of the features.

6.3. Aggregated Target
In many cases, revealing personal disease records can be problematic, or even cause
traumatic situations e.g. HIV. Rather than the individual disease records, suppose the
data is provided at aggregate level such as state-level or county-level summaries. In
this paper, we focus on diabetes records that are aggregated at the US division level

3Targets are chosen arbitrarily to illustrate the applicability of the CUDIA framework.
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Fig. 5. Census Regions and Divisions of the United States. This picture is adopted from http://www.eia.gov
/emeu/reps/maps/us census.html.
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Fig. 6. BRFSS dataset description for each division. (a) Age (left), (b) BMI (center) and (c) Diabetes (right).

as in Figure 6(c). Then, (i) Age, (ii) BMI, (iii) Education level and (iv) Income level are
provided as the individual level features. This individual level dataset along with the
division-level aggregated diabetes records are given as the inputs to the CUDIA model.
Although the individual level four features represent numeric values, their values are
grouped ranging from 3 to 6 levels. To prevent the singular variance problem in the
EM algorithm, their values are perturbed with a Uniform noise before the learning
process. After all the parameters in the CUDIA model are converged, the estimate for
the masked variable, diabetes, is individually imputed. Since the masked variable is a
binary feature, the imputation quality can be measured as follows:

Average Log-likelihood =
1

|T |

|T |∑
i=1

log t̂tii (1− t̂i)1−ti , (44)

where t is the original target value, t̂ is the CUDIA imputed value and |T | represents
the total number of the data points.

Figure 7 shows the results with varying λ and K in the model. In Figure 7(b), the lift
is calculated based on the performance of the naı̈ve imputation method, which imputes
all the same values in the same division. This base performance recorded −0.3532
average log-likelihood. From the figure, we can observe that the CUDIA imputation
outperforms the naı̈ve imputation. Although the performance increases asK increases,
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Table III. θ and η values from the aggregated diabetes dataset.

Cluster Index Age (θ1) BMI (θ2) Education (θ1) Income (θ4) Diabetes (η)
1 3.904 2.015 2.516 4.999 0.065
2 4.639 1.000 2.602 2.767 0.105
3 4.136 1.790 4.000 4.999 0.068
4 2.909 2.000 2.726 3.389 0.121
5 4.689 2.000 2.635 3.126 0.135
6 4.270 1.999 2.261 1.002 0.124
7 4.534 2.999 2.480 2.617 0.233
8 6.000 2.000 2.617 3.015 0.119
9 4.936 2.000 0.997 2.001 0.126

we cannot test the cases when K > 9 since these cases make Equation (17) to be under-
determined.

The CUDIA model provides another valuable information about the data, the under-
lying distribution. Table III shows the learned parameters from the model. Noticeably,
Cluster 7 exhibits a high risk diabetes. Their profiles can be described as “higher age”,
“obese” and “middle-class”, where this relationship between obesity and diabetes co-
incides with the medical research [Steppan et al. 2011]. On the other hand, Cluster
3 shows a lower risk, and their profiles can be summarized as “slim”, “high educa-
tion” and “high level income”. Note that these cluster parameters are learned without
accessing the individual diabetes information.

6.4. Aggregated Features
In this section, we consider a different setting of the problem, in which the target
variable is available at individual level, but other important features are masked due
to privacy or legal issues. In this case, we can impute the masked features using the
CUDIA model, then propagate its results to predictive modeling algorithms such as
decision trees or regressions. Figure 8 describes the main idea of this approach.

We use the BRFSS dataset with the individual features (age and BMI), the masked
features (Hypertension and high-cholesterol) and the target (diabetes). The masked
features are aggregated using the US census division mapping, and the target is only
used in the predictive modeling. As the formulated problem is a binary prediction
problem, we can use any binary classifier such as SVM, Logistic regression, decision
tree, Naı̈ve Bayes, etc. If a regression problem is formulated from this setting, one can
use other regression techniques such as Lasso and Ridge regression [Park and Ghosh
2011], [Park and Ghosh 2012]. In this paper, we demonstrate this predictive modeling
framework using a Logistic regression family and decision trees.
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Fig. 8. Predictive modeling using the CUDIA framework.

Table IV. θ and η values from the aggregated features dataset.

Cluster Index Age (θ1) BMI (θ2) Hypertension (η1) High-cholesterol (η2)
1 2.999 1.999 0.374 0.405
2 3.000 2.000 0.380 0.415
3 4.569 1.000 0.199 0.354
4 3.999 1.999 0.271 0.438
5 5.999 1.999 0.437 0.541
6 5.999 2.000 0.395 0.396
7 5.000 1.999 0.408 0.397
8 4.486 2.999 0.647 0.504
9 1.860 1.999 0.384 0.413

Table IV shows the estimated parameters from the dataset. The people belong
to Cluster 8 have higher hypertension risk as well as high-cholesterol risk. Their
observed individual features are centered at the “higher age” and “obese” centroid
[Carmelli et al. 1994]. On the other hand, the people from Cluster 3 have lower hy-
pertension risk while their ages are comparably high. However, their BMI’s are very
low, and this explains the result. For the rest of the predictive modeling tasks, we used
K = 9 and λ = 10.0, where λ is in Equation (18).

Logistic regression only with aggregated features. In some cases, the relationship
between the aggregated features and the target might be the main research interest.
If we have available individual side information along with the aggregated features (in
this case, age and BMI), we can use either the CUDIA imputed values or the aggregate
values (baseline approach). The Logistic regression equation is given as:

Diabetes ∼ logit(βHyper(Hypertension) + βChol(Cholesterol) + βConst). (45)

Figure 9 shows the Logistic regression results from three different kinds of datasets:
(i) Baseline dataset (direct aggregate variable imputation), (ii) Complete dataset (full
individual observation) and (iii) CUDIA dataset (CUDIA imputation). In Figure 9(a),
we can observe that the coefficients from the CUDIA dataset follows the relationship
of the complete dataset. 5-fold cross validation is performed and their average log-
likelihood values are recorded. Figure 9(b) shows the CUDIA dataset outperforms the
baseline dataset, while slightly worse than the complete dataset.

Logistic regression with L1 constraints. The rest of the experiments use the combi-
nation of the individual and the aggregate values. Thus, the dependent variables are
two individual variables (age and BMI) and two aggregate variables (hypertension and
high-cholesterol). Unfortunately, many features in the BRFSS dataset are interdepen-
dent such as “age” and “income”, “BMI” and “hypertension”, etc. This property becomes
even worse when the interdependent numeric values are grouped into a few number
of bins, as in the BRFSS dataset. This type of problems can be alleviated if we adopt
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shrinkage methods, also known as regularizers such as L1 or L2 [Hastie et al. 2009].
In this paper, we demonstrate two regularizers, L1 and L2.

The L1 regularizer is known to generate a sparser solution compared to a normal
regression [Scholkopt et al. 2007], which can be regarded as an automatic feature se-
lection technique. Figure 10 shows the results from the L1 Logistic regression. From
Figure 10(a), we can observe that the hypertension affects the most in both the com-
plete and the CUDIA datasets, but not in the baseline dataset. The coefficients for
the aggregate variables from the baseline dataset are actually zeroed out due to the
L1 regularizer. Furthermore, the average log-likelihood values from 5-cv show that
the CUDIA imputation is actually effective in this predictive task than the baseline
imputation.

Logistic regression with L2 constraints. L2 constraint is another popular choice
among many regularizers. Using the same dataset by differing the regularizer, we
have the results, which is shown in Figure 11. Unlike the L1 case, all the coefficients
have non-zero values in Figure 11(a). Plus, the coefficients from the complete and the
CUDIA datasets have very similar weights to each other. Again, from Figure 11(b),
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Fig. 11. Results from the Logistic regression with L2 constraints. (a) Coefficients (β) (left), (b) Average
Log-likelihood on the test sets (right).
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Fig. 12. Results from the Decision trees. (a) Entropy criterion (left), (b) Gini criterion (right).

the CUDIA imputation is more effective in the L2 Logistic regression case than the
baseline dataset.

Decision Tree. Decision trees are recursive rule based classifiers, and we demon-
strate using two kinds of decision trees: (i) Gini criterion [Breiman 1984] and (ii) En-
tropy criterion [Quinlan 1993]. We used the decision tree package from KNIME4, and
the Minimum Description Length (MDL) principle is used in the pruning. The com-
bined dataset from the aggregate and the individual values is used as the same in the
previous experiments.

Figure 12 shows the results from the decision trees. The performances are measured
using Area under Receiver Operating Characteristic (AUROC) curve in both cases.
Surprisingly, the CUDIA imputation recorded almost the same performance as the
complete dataset. Furthermore, one experiment from the Gini criterion decision tree

4http://www.knime.org
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actually outperformed the rest of the complete dataset performances. Originally, the
CUDIA model is designed based from the underlying distribution, then the individual
values are imputed baed on the conditional distributions. As the recursive decision
tree algorithms more focus on the conditional distributions between the target and the
features, not the individual value, the CUDIA model shows its strength especially in
decision tree algorithms.

7. DISCUSSIONS
CUDIA can be viewed as an approximate graphical model of the original generative
process (Figure 1(b)). Nevertheless, in many practical settings, this approximation be-
comes a part of data publication properties.

For example, in the UK census, some aggregate data are calculated using a 10%
sample to maintain confidentiality. The observed statistics are not the same as the true
sample average, thus the direct application of the Figure 1(b) model is no longer valid.
The difference between the sub-sampled average and the true sample average can be
modeled using a Normal distribution, the key assumption of the CUDIA approxima-
tion. As another example, to maintain confidentiality or privacy, a popular technique
is to add noise to the true values. Laplace or Gaussian noise are known to protect the
(ε, δ)-differential privacy with certain assumptions [Dwork et al. 2006], [Dwork et al.
2006]. Adding a Gaussian noise exactly fits the assumption of the CUDIA model, so
that the CUDIA model becomes no longer an approximation in this case. Finally, in
many real datasets, sizes of aggregation usually range from 1,000 to 100,000 or even
more. To make the exact inference on the Figure 1(b) model, a simultaneous optimiza-
tion across the aggregation is needed, which is intractable considering the sizes of the
hidden variables.

The derivation of the CUDIA model is based on the CLT approximation and sub-
sequent removal of the unobserved random variables, ~xu’s. The CLT assumption in
CUDIA is valid in many cases at least indirectly as well as necessary due to the in-
tractability of the original model. The CUDIA model not only helps the inference to be
tractable, but also captures many practical settings in real datasets.

In this paper, aggregated statistics over certain partitions are utilized to identify
clusters and impute features that are observed only as more aggregated values. The
imputed features are further used in predictive modelings, leading to improved per-
formances. The experiments provided in this paper are illustrative of the generality
of the proposed framework and its applicability to several healthcare related datasets
in which individual records are often not available, and different information sources
reflect different types and levels of aggregation. Empirical studies on larger and richer
datasets are forthcoming.

CUDIA is quite scalable, and in particular, the deterministic hard clustering ver-
sion of the CUDIA model can be readily applied to massive datasets. Furthermore,
the square loss function on ~xo can be generalized to Bregman divergence, or equiva-
lently, one can cater to any noise function from the exponential family of probability
distributions [Banerjee et al. 2005]. One restriction of the current model is that the
number of clusters (K) cannot be more than the number of partitions specified by the
data provider (P ). This is why we had to stop at K = 9 for several of the results even
though the performances were improving with with increasing K.
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