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Semisupervised Learning of Hyperspectral Data
With Unknown Land-Cover Classes

Goo Jun and Joydeep Ghosh, Fellow, IEEE

Abstract—Both supervised and semisupervised algorithms for
hyperspectral data analysis typically assume that all unlabeled
data belong to the same set of land-cover classes that is represented
by labeled data. This is not true in general, however, since there
may be new classes in the unexplored regions within an image
or in areas that are geographically near but topographically dis-
tinct. This problem is more likely to occur when one attempts
to build classifiers that cover wider areas; such classifiers also
need to address spatial variations in acquired spectral signatures
if they are to be accurate and robust. This paper presents a
semisupervised spatially adaptive mixture model (SESSAMM) to
identify land covers from hyperspectral images in the presence
of previously unknown land-cover classes and spatial variation
of spectral responses. SESSAMM uses a nonparametric Bayesian
framework to apply spatially adaptive mechanisms to the mix-
ture model with (potentially) infinitely many components. In this
method, each component in the mixture has spatially adapted
parameters estimated by Gaussian process regression, and spatial
correlations between indicator variables are also considered. The
proposed SESSAMM algorithm is applied to hyperspectral data
from Botswana and from the DC Mall, where some classes are
present only in the unlabeled data. SESSAMM successfully dif-
ferentiates unlabeled instances of previously known classes from
unknown classes and provides better results than the standard
Dirichlet process mixture model and other alternatives.

Index Terms—Clustering, Dirichlet process mixture model
(DPMM), Gaussian process, hyperspectral imaging (HSI), remote
sensing, semisupervised learning.

I. INTRODUCTION

ADVANCES in remote sensing technologies have enabled
identification of land covers and land usage over large

geographical areas based on analysis of spectral imagery. In
particular, hyperspectral imaging provides rich spectral infor-
mation for each pixel and has been widely adopted for land-
cover identification. Automatic classification of hyperspectral
data is essential for land-cover identification problems, as a
single image may contain over a million “pixels” with hundreds
of spectral bands per pixel and covers large geographical areas,
which makes pixelwise manual labeling impractical. Training a
classifier generally requires sufficiently many labeled examples
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for each land-cover class of interest. In many cases, unlabeled
samples are readily available in large quantities, but only a
handful of land-cover labels are available due to the cost of
labeling. Consequently, several semisupervised learning algo-
rithms have been investigated for remote-sensing applications
so as to utilize both the labeled and unlabeled samples for
better classification. In semisupervised learning, however, the
learner is unaware of the true labels of unlabeled samples;
hence, it is also possible that the classifier is misinformed by the
semisupervised setup. A pioneering study on the vulnerability
of semisupervised algorithms in remote sensing applications
was conducted in [1]. Since then, there have been several works
on exploiting semisupervision, mostly focusing on improving
classification accuracy when faced with limited training data.
In contrast, the key contribution of this paper is to present
a novel approach that enables the semisupervised learning of
hyperspectral data in the presence of possibly unknown land-
cover classes, where there is not even a single example of such
classes in the training data. At the same time, this approach
accounts for the spatial variability of data to yield very good
accuracies even with limited labeled data.

Unknown land covers are possible in remotely sensed im-
ages, as the training data usually cover only a small subset of
the acquired pixels. However, semisupervised learning methods
developed for remote sensing applications typically assume
transductive settings, where the unlabeled data are considered
to have the same components as the training data and every
unlabeled instance belongs to one of the classes already known
to the learner. For example, the expectation–maximization
(EM) algorithm for a mixture of Gaussians works well when
it is applied to the test data from only known classes [2],
whose labels are only hidden and not truly unknown. Given
the existence of unknown classes, mixture models with a fixed
number of components obtained from the training data often
may be confounded by the unlabeled data. If one assumes
certain probability distributions, there are algorithms that can
be used to find the number of clusters in unlabeled data. For
example, the number of components in the mixture model could
be estimated by a simple criterion such as the Akaike infor-
mation criterion (AIC) or the Bayesian information criterion
(BIC), where the number of components is used as a penalty
term. Parametric approaches such as AIC and BIC explicitly
specify the number of components and tend to oversimplify
the problem. Such methods are also affected by inaccurate
initial settings and local minima in the case of high-dimensional
problems with many components. Recently, nonparametric
Bayesian approaches based on the Dirichlet processes have
gained popularity [3]. The Dirichlet process mixture model
(DPMM) eliminates the need for finding the number of compo-
nents explicitly by employing a mixture model with infinitely
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Fig. 1. Highly simplified view of the SESSAMM framework. Unknown k
denotes the number of components (classes). (a) Labeled data. (b) Labeled +
unlabeled. (c) Clustering with unknown k. (d) Classification.

many components, such as an infinite mixture of Gaussians [4].
The proposed semisupervised spatially adaptive mixture model
(SESSAMM) takes this nonparametric-Dirichlet-process-based
approach, because it provides the most flexible framework to
handle mixture models with unknown number of components.

Identification of novel land-cover classes over large spatial
and/or temporal extents is also challenging because the spectral
response of the same land-cover class dynamically changes
over space/time. For example, if the mean spectral signature
of a cluster of unlabeled instances is similar but not identical
to one of the known land-cover classes, it can be difficult to
determine whether the difference is due to the spatial variation
or because the unlabeled pixels belong to the previously un-
known land-cover class. Assuming a fixed global distribution
for a given class over the entire image results in larger within-
class variations, which makes it more difficult to distinguish
instances of the given class from similar classes.

In this paper, a novel semisupervised learning algorithm
to find unknown land-cover classes from hyperspectral data
is proposed by applying a spatially adaptive mixture model
with (potentially) infinitely many components. This algorithm
is called the SESSAMM. Fig. 1 shows a (highly simplified)
view of the SESSAMM framework. First, labeled examples
are assigned to their own clusters. Then, unlabeled and labeled
instances are used together to find clusters using a Dirichlet-
process-based clustering algorithm with spatial adaptation. The
clustering results from Fig. 1(c) are used to train a supervised
classifier, which classifies all unlabeled samples, as shown
in Fig. 1(d). SESSAMM can employ any classifier in the
framework; we used standard Gaussian maximum-likelihood
(ML) and spatially adaptive Gaussian process ML (GP-ML)
classifiers in this paper [5].

In SESSAMM, each mixture component employs spatially
adapted parameters estimated by Gaussian process regressions.
In a standard DPMM, the posterior distribution of a given
instance takes a fixed form that only depends on the occupation
number of each component and the concentration parameter.
Such a model is too simplistic for many applications, since it
does not take spatial correlation of class labels into account,
i.e., cannot take advantage of the fact that neighboring pixels
tend to belong to the same class. SESSAMM does not only

consider spatial variations of spectral responses but also employ
another Gaussian process to model spatial correlations among
prior probabilities of land covers.

II. RELATED WORK

Land-cover classification with hyperspectral data has been
an active area of research in recent decades [6]–[8]. Kernel-
based classification methods such as the support vector ma-
chine (SVM) have gained popularity due to the fairly high
dimensionality of the data [9]–[11], where the classifier tries
to find a decision boundary that maximizes separation between
instances belonging to different classes in an appropriately
constructed feature space. Classification algorithms are often
based on a probabilistic or generative approach, such as the
ML classifier which models each class with a multivariate
Gaussian distribution [12]. In a generative model, the number
of parameters in the model increases as the dimensionality of
data increases; hence, it suffers from the curse of dimension-
ality and from the small-sample-size problem. To overcome
such issues, a number of dimensionality reduction and fea-
ture extraction algorithms have been proposed. These include
general-purpose linear feature extraction algorithms such as
principal component analysis and Fisher’s linear discriminant
analysis (LDA) [13], as well as algorithms developed mainly
for hyperspectral data analysis such as the best-base feature
extraction [14], decision-boundary feature extraction (DBFE)
[15], and nonparametric weighted feature extraction (NWFE)
[16]. SESSAMM utilizes the best bases and Fisher’s multidi-
mensional LDA to preprocess hyperspectral data, because these
feature extraction algorithms align well with SESSAMM’s
ML classifier with multivariate Gaussian distributions. Fisher’s
LDA has been shown to perform favorably with the proposed
Gaussian process method as compared to DBFE and NWFE
[5]; hence, the same comparison is not repeated here. We
also employed the best-base feature extraction algorithm since
it exploits correlations between adjacent bands and provides
robust features when unlabeled data have different properties
from the training data [17].

Acquiring ground reference data for a large number of ex-
amples is an expensive and time-consuming task. In contrast,
unlabeled samples are easier to obtain for many problems,
including land-cover classification based on remotely sensed
data. Airborne or satellite images cover large geographical
areas, and determining the actual land-cover type can become
costly and involves much human effort, particularly in rel-
atively inaccessible areas. Semisupervised learning refers to
algorithms that exploit the unlabeled data together with the
labeled data [18]. An early investigation on the usefulness
of unlabeled data for hyperspectral data analysis has been
done by Shahshahani and Landgrebe [1], and a plethora of
semisupervised learning algorithms have been studied since
then. For example, the EM algorithm can be used with the
ML classification method to incorporate unlabeled samples
by employing a mixture-of-Gaussians model [12]. Chi and
Bruzzone presented a semisupervised SVM classification
method [19]. Jia and Richards proposed a cluster-space-based
algorithm that utilizes supervised and unsupervised methods
together [20]. Camps-Valls et al. proposed a graph-based kernel
method incorporating spatial information with spectral features
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[21], and Tuia and Camps-Valls proposed a semisupervised
method with cluster kernels [22]. Kernel-based spatiospectral
methods by Camps-Valls et al. utilize composite kernels to
encode spatiospectral information together, and our approach
utilizes spatial information in preprocessing manner to separate
spectral information from its spatial variation. Ratle et al. re-
cently proposed semisupervised neural network classifiers [23].
Li et al. proposed a semisupervised segmentation algorithm
for hyperspectral images that also utilizes active learning
[24]. Mũnoz-Marí et al. proposed a one-class SVM classifier
for a semisupervised setup [25]. None of these works can
cater to an unknown number of novel classes in the test set
without the use of an Oracle (as in active learning settings)
and also simultaneously adapt to spatial variations in class
signatures.

In remote sensing applications, it is often the case that
the classifier is trained at one location and applied to other
locations. Several classification algorithms have been pro-
posed to adapt for such dynamically changing environments.
Rajan et al. [17] proposed a knowledge-transfer framework
for the classification of spatially and temporally separated
hyperspectral data. Bruzzone and Persello developed a method
to select spatially invariant features that provides better dis-
crimination power when the classifier is applied to spatially
distant regions [26]. There also have been studies on the active
learning of hyperspectral data to minimize the required number
of labeled instances to achieve the same or better classification
accuracies [27], [28], and these active learning algorithms have
also been tested on spatially and temporally separated data sets.
Tuia et al. combined active learning with clustering to gain
information from unlabeled regions and to discover unknown
land-cover classes [29]. An active learning algorithm also ex-
ploits information from unlabeled samples, but it is different
from semisupervised learning since it requires an Oracle that
can produce true class labels of unlabeled instances. Chen et al.
applied manifold techniques to analyze nonlinear variations of
hyperspectral data [30], [31]. Kim et al. extended this manifold-
based approach with multiresolution analyses [32] and pro-
posed a spatially adaptive manifold learning algorithm for
hyperspectral data analysis in the absence of sufficient labeled
examples [33]. It has been shown that the Gaussian process
EM (GP-EM) algorithm outperforms existing semisupervised
learning algorithms for hyperspectral data [2], but it still cannot
handle the existence of unknown classes.

There are algorithms that incorporate spatial information in
a more direct way, such as stacking feature vectors from neigh-
boring pixels [34]. A vector stacking approach for hyperspec-
tral data analysis that identifies homogeneous neighborhood
pixels by maximum-cut segmentation has been proposed by
Chen et al. [35]. Image segmentation algorithms can also
utilize spatial information by assuming certain levels of spatial
continuity of land covers [36]–[38]. The results from these
approaches largely depend on the initial segmentation results.
Another possible method is majority filtering [39], where the
classified map is smoothed by 2-D low-pass filters. A popular
method that incorporates spatial dependences into a proba-
bilistic model is the Markov random field model [40]–[42].
Goovaerts [43] employed a geostatistical model wherein the ex-
istence of each land-cover class is modeled by indicator kriging
and combined with the spectral classification results. Kriging

finds the optimal linear predictor for geospatially varying quan-
tities [44], and the approach has been adopted in the form of
Gaussian processes by machine learning researchers [45].

Recently, a classification algorithm named GP-ML has been
proposed by Jun and Ghosh, where spatial variations of spectral
bands are estimated by Gaussian process regressions [5]. A
semisupervised version of GP-ML, i.e., GP-EM, has been also
proposed by the same researchers [2], where spatial variation
and semisupervised learning are addressed at the same time by
employing a mixture-of-Gaussians model [46]. However, GP-
EM assumes that all unlabeled samples belong to one of the
known classes; hence, the performance of the algorithm may
degrade significantly when there are instances from new land-
cover classes. In contrast, the proposed SESSAMM algorithm
employs a nonparametric Bayesian algorithm called the DPMM
[3] to estimate a mixture model with unknown number of
components, as in an infinite mixture of Gaussians [4]. Unlike
standard DPMM, the dependent Dirichlet process (DDP) model
[47] can capture covariate information between indicator vari-
ables and has been applied to modeling temporally dependent
topic models [48] and spatial processes [49]. SESSAMM takes
a similar approach by assuming spatially dependent posteriors
on the indicator variables.

III. BACKGROUND

A. DPMM

A Dirichlet distribution (π1, . . . , πk) ∼ Dir(α1, . . . , αk) is
a conjugate prior for a multinomial distribution and is given by

p(π1, . . . , πk|α1, . . . , αk) =
Γ(α0)∏k
j=1 Γ(αj)

k∏
i=1

παi−1
i

where πi ∈ [0, 1] and
∑k

i=1 πi = 1. αi’s are parameters of
the distribution, and Γ(·) is a gamma function. The Dirichlet
process is a random process whose sample paths are proba-
bility distributions and whose finite dimensional distributions
are Dirichlet distributions. The Dirichlet process is used to
realize random draws from distributions of distributions, and
it produces discrete set of output distributions, although the
underlying distribution might have infinitely many possibilities.
When applied to a mixture model, the Dirichlet process pro-
vides a simple way to infer a mixture model without setting the
number of components a priori.

A mixture model with k components is defined as

p(x|Θ) ∼
k∑

c=1

πcfc(x|θc)

where πc is the mixing proportion and θc is the parameter
for the cth component. A DPMM [50] assumes a prior of
symmetric Dirichlet distribution on the mixing proportion

(π1, . . . , πk) ∼ Dir
(α

k
, . . . ,

α

k

)

where alpha is a concentration parameter that determines how
uniform the mixture is distributed. With larger value of alpha,
the resulting mixture distribution tends to be more uniform and
vice versa. Let zi ∈ {1, . . . , k} be the membership variable of
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the ith instance that represents which mixture component that
the ith instance belongs to. Given fixed assignments of observed
instances, the posterior distribution zi is

p(zi = c|z−i, α) =
n−i
c + α/k

n+ α− 1

where z−i = {zj |j �= i}, n−i
c =

∑
j �=i δzc,j , and δ is a

Kronecker-delta function. Consequently, a mixture model with
infinitely many components can be derived

lim
k→∞

p(zi = c|z−i, α) =
n−i
c

n+ α− 1
∀c, n−i

c > 0

lim
k→∞

∑
c

p(zi = c|z−i, α) =
α

n+ α− 1
∀c, n−i

c = 0.

n−i
c is the number of elements belonging to the cth component

excluding the ith instance, and n−i
c > 0 means that the com-

ponent is not empty. This formulation describes a generative
model in which the prior probability of assigning an instance to
an already populated component is proportional to the number
of instances already belonging to the component and the prob-
ability of assigning the instance to a previously empty (novel)
cluster is proportional to the concentration parameter α. The
inference on the mixture model can be done by Gibbs sampling
[3], as shown in Algorithm 1. The set of parameters for each
component θc is usually estimated by defining a conjugate prior,
and a special case with a mixture of Gaussians will be explained
in the following section.

Algorithm 1 Outline of Gibbs sampling algorithm for a DPMM
with infinitely many components

Given n instances assigned to k components,
1) For each xi, 1 ≤ i ≤ n, do

a) Update parameters for each component θc with xi

removed. Remove all empty components, and update
k with the number of nonempty components.

b) Calculate the likelihood of each component

lc = f(xi|θc), c = 1, . . . , k.

c) Calculate the likelihood of an unpopulated component
lk+1 = f(xi|θ0).

d) Calculate posteriors of zi, p1, . . . , pk+1

pc =
n−i
c

n+ α− 1
, 1 ≤ c ≤ k pk+1 =

α

n+ α− 1
.

e) Draw zi ∼ Multi((1/Z)p1l1, . . . , (1/Z)pk+1lk+1),
where Z =

∑k+1
c=1 pclc.

f) If zi = k + 1, k ← k + 1.
2) Resample α and repeat.

B. Infinite Mixture of Gaussians

The DPMM could be combined with various types of
distributions. Hyperspectral data can be modeled as mul-
tivariate Gaussian distributions [12]; hence, we first inves-
tigate the infinite-mixture-of-Gaussians model, where each

component is modeled by a unimodal multivariate Gaussian
distribution

f(xi|θc) ∼ N (μc,Σc).

A normal-inverse-Wishart prior is employed because it is the
conjugate prior for a multivariate normal distribution [51]

μc|Σc ∼ N
(
μ0,

Σc

n0

)
Σ−1

c ∼ W
(
m0,

Σ−1
0

m0

)
.

μ0, Σ0, n0, and m0 are hyperparameters, where μ0 and Σ0

are the initial guess for the parameters and n0 and m0 are the
pseudocounts for the mean and the covariance, respectively.
These hyperparameters determine the distribution of an empty
(n−i

c = 0) cluster, and the posterior distribution of a nonempty
cluster will be pulled toward the prior distribution N (μ0,Σ0)
in proportion to the pseudocounts. W is a Wishart distribution.
The posterior estimates of the parameters are

μc=
1

n0+nc
(n0μ0+ncμ̄c) (1)

Σc=
1

m0+nc

(
m0Σ0+ncΣ̄c+

(μ0−μ̄c)(μ0−μ̄c)
t

1/nc+1/n0

)
. (2)

μ̄c and Σ̄c are the sample mean and covariance measured
from instances assigned to the cth component. Note that μc =
μ0 and Σc = Σ0 when nc = 0, but they will move toward
the sample mean and sample covariance when nc 
 n0,m0.
The likelihood of x from the normal-inverse-Wishart prior
is a student-t, which is approximated by a moment-matched
Gaussian distribution [51]

f(x|θc)∼N (x;μc, γΣc), γ=
(nc + n0 + 1)(nc +m0)

(nc + n0)(nc+m0−d−1)
(3)

where d is the dimensionality of x, m0 > d+ 1.

IV. SPATIALLY DEPENDENT MIXTURES

Although the infinite-mixture-of-Gaussians model provides
a flexible representation for data with unknown number of
classes, it does not incorporate spatially varying characteristics
of remote sensing data. Using a single Gaussian distribution per
class results in high variances, and it becomes more difficult to
separate classes since there are serious overlaps between similar
classes. Instead of the constant sample mean μ̄c in (1), we
employ the setup of the GP-ML algorithm presented in [5] and
use a spatially adapted mean μ̄s

c(s) that consists of a constant
term and a spatially varying term

μ̄s
c(s) = μ̄c + μ̂c(s). (4)

To obtain the spatially varying term μ̂s(s), first, μ̄c obtained
from (1) is subtracted from each data point to make the data
zero mean. Let Xc be an (nc × d) matrix where each row is
(xj − μ̄c)

t for all xj’s with zj = c and Sc be an (nc × 2)
matrix where each row is the spatial coordinate of the cor-
responding row in Xc. The spatially varying term μ̂c(s) is
obtained from a Gaussian process regression

μ̂c(s) = σ2
fk(s, Sc)

[
σ2
fKScSc

+ σ2
ε I

]−1
Xc
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where k is a covariance vector and KScSc
is a covariance

matrix. The same squared-exponential covariance function is
used in the GP-ML and GP-EM algorithms. The length hy-
perparameter of squared-exponential covariance function is
obtained by performing cross-validation using the training data,
as described in [5]. In SESSAMM, the hyperparameters for GP
(σ2

f , σ
2
ε ) are assumed to be identical across all dimensions to

save computation. This simplification does not affect the result
seriously when the data is prenormalized. The Gibbs sampling
procedure described in Algorithm 2 requires removing and
adding a single row/column from [KScSc

+ σ2
ε I], which can

be done in O(n2
c) by using sequential updates of Cholesky

decomposition, as in [52]. The adjusted sample covariance is

Σ̄s
c =

1

nc − 1

∑
j:zj=c

(xj − μ̄s
c(sj)) (xj − μ̄s

c(sj))
t . (5)

Using (4) and (5), (1) and (2) can be rewritten as

μs
c(s) =

1

n0+nc
(n0 μ0+nc μ̄

s
c(s)) (6)

Σs
c =

1

m0+nc

(
m0Σ0+ncΣ̄

s
c+

(μ0−μ̄c)(μ0−μ̄c)
t

1/nc+1/n0

)
. (7)

Consequently, the likelihood in (3) is

fs(x|s, θc) ∼ N (x;μs
c(s), γΣ

s
c) . (8)

Equation (8) models the spatial variability of spectral responses
only, while there also exists strong spatial correlation in the
indicator variable zi. The standard DPMM treats zi’s as in-
dependent random variables, which is not true because there
are strong spatial correlations between land-cover labels, as
exploited in many segmentation-based algorithms [36]–[39], or
in the Markov random field model [40]–[42]. Our approach is
closer to the indicator kriging approach [43], which has been
successfully applied to the GP-EM [2] algorithm. For zi, we
introduce a separate Gaussian process

p(zi = c|z−i, s)

∝σ2
zkz(si, S−i)

[
σ2
zKzS−iS−i

+σε2z
I
]−1

(
δz−i,c−

1

2

)
(9)

where δz−i,c is an (n− 1)-dimensional column vector of
Kronecker-delta functions. Now, the posterior distribution of
zi is not proportional to the number of instances belonging
to a certain component but depends on the proximity to the
instances. A Matérn covariance function with ν = 3/2 is used
to calculate kz and Kz , since the squared-exponential co-
variance function is not optimal to model abruptly changing
variables such as the existence of a certain class, as discussed
in [2]. Note that this distribution is no longer a posterior
distribution of a Dirichlet process prior. Since our posterior is
a Gaussian random process indexed by spatial coordinates, the
prior for this Gaussian process is also a Gaussian process. This
belongs to a family of DDPs, where each DDP is parameter-
ized by a concentration parameter and a base random process
G0(s) indexed by a covariate variable s, instead of a base
distribution G0.

Algorithm 2 Outline of Gibbs sampling algorithm for SES-
SAMM with infinitely many components

A set of labeled data Xl with k0 classes and a set of unla-
beled data Xu are given. Initially, set k = k0 + 1 by assigning
labeled instances to the first k0 components according to their
class labels and assigning all unlabeled instances to the kth
component. Values of indicator variables for labeled data Zl =
{zi|xi ∈ Xl} are fixed to their known classes and not Gibbs
sampled but used in the likelihood and posterior computation.

1) For each xi ∈ Xu, do
a) Update parameters for each component with xi re-

moved. For 1 ≤ c ≤ k0, θc = (μs
c,Σ

s
c) from (6) and

(7). For k0 < c ≤ k, θc = (μc,Σc) from (1) and (2).
Also update γ correspondingly.

b) Remove all empty components, and update k with the
number of nonempty components.

c) Calculate the likelihood of each component

lc = fs(x|s, θc) ∼ N (x;μs
c(s), γΣ

s
c) , 1 ≤ c ≤ k0

lc = f(x|θc) ∼ N (x;μc, γΣc), k0 < c ≤ k.

d) Calculate the likelihood of an unpopulated component
lk+1 = f(xi|θ0).

e) Calculate spatially adjusted posteriors of zi from (9)

pc =
1

T
qc

≡ 1

T
k(si, S−i)

[
σ2
zKS−iS−i

+σ2
εz
I
]−1

×
(
δz−i,c −

1

2

)
, 1 ≤ c ≤ k

pk+1 =
α

n+ α− 1

where T = (1− (α/n+ α− 1))
∑k

c=1 qc.
f) Draw zi ∼ Multi((1/Z)p1l1, . . . , (1/Z)pk+1lk+1),

where Z =
∑k+1

c=1 pclc.
g) If zi = k + 1, k ← k + 1.

2) Resample α and repeat.

The proposed mixture model with Gaussian processes finds
unlabeled instances that belong to one of the known classes
effectively, but in experiments, it turned out that the algorithm
is less effective for separating instances from several different
unknown classes. This is mainly because the Gaussian pro-
cesses adapt for instances from different classes over space
and the fit is often good enough to form a single cluster. Once
there is enough information from labeled instances, the fit of
Gaussian processes for the cluster is stable enough to reject
instances from different classes. However, in the case of clusters
without any prelabeled instances, Gaussian processes for the
cluster tend to adapt their mean parameters for instances from
heterogeneous classes over space. To overcome this problem,
a hybrid approach is taken. Spatially adjusted parameters are
used only for components that have labeled instances, and a
spatially invariant likelihood function with parameters in (3)
is used for all other components. The outline of the Gibbs
sampling procedure for the proposed SESSAMM is presented
in Algorithm 2.
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TABLE I
CLASS NAMES AND NUMBER OF DATA POINTS FOR BOTSWANA DATA

Fig. 2. Images of the nine-class Botswana data. (From left to right) Recon-
structed red–green–blue image, class map of training data, and class map of
test (unlabeled) data.

V. EXPERIMENTS

A. Botswana Data

The Botswana data set was obtained from the Okavango
Delta by the NASA Earth Observing 1 (EO-1) satellite with
the Hyperion sensor on May 31, 2001 [17], [53]. The acquired
data originally consisted of 242 bands, but only 145 bands
are used after removing noisy and water absorption bands.
The area used for experiments has 1476 × 256 pixels with
30-m spatial resolution. The data set has spatially disjoint
training and test data. The ground truth is collected using a
combination of vegetation surveys, aerial photography, and a
high-resolution IKONOS multispectral imagery. Table I shows
the list of classes in the data with the number of training and
unlabeled/test instances in each class. Fig. 2 shows the physical
distribution of training and test instances in the original satellite
image.

We first report results on the nine-class Botswana data set.
Spatially disjoint training and test data, as shown in Table I,
are used as labeled and unlabeled data sets. Randomly selected
classes are removed from the training data, while the unlabeled
data are used as a whole. The numbers of removed classes

vary from zero to four to observe the effects of the amount of
unknown classes on the clustering results. The best-base dimen-
sionality reduction algorithm [14] is used to preprocess the data.
Each band is normalized to have zero mean and unit standard
deviation. The parameter α determines the prior probability of
assigning an instance to an empty cluster. With larger value of
alpha, chances of creating a new cluster assignment increase.
Alpha is initially set to n/1000, which is rather arbitrary, but
in later iterations, alpha is resampled from a noninformative
prior. The Gibbs sampling is repeated 100 times for each
experiment.

Table II shows the averaged clustering scores with the num-
ber of clusters obtained from DPMM and SESSAMM. Because
of the nature of sampling with indefinitely many components,
there are always a few instances randomly assigned to small
clusters. As we are using a multivariate Gaussian distribution to
model each class, small clusters that have less than 20 instances
are ignored and not included in the number of clusters, as they
have too few samples for stable estimation of covariance matri-
ces. Each score is averaged over ten experiments by removing
randomly selected classes from the training data. Two different
metrics are used for evaluation: cluster purity and normalized
mutual information (NMI) [54]. Cluster purity is a metric that
indicates the proportion of cluster members that belongs to
the majority class. Although the average cluster purity is an
intuitive measure, it favors small clusters, and a perfect score of
one is obtained when every instance is separated into singleton
clusters. NMI does not favor small clusters and provides a more
impartial measure. NMI is defined as

NMI(X,Y ) =
I(X;Y )√
H(X)H(Y )

where H(X) and H(Y ) are the entropies of the true class
distribution and the clustered results, respectively, and I(X;Y )
is the mutual information between them. NMI also ranges from
zero to one, where a score of one means that the clustered result
is identical to the ground truth. Overall, SESSAMM shows
higher clustering scores than the standard DPMM in all aspects.
The proposed method excels particularly in the cluster purity
scores of the known classes. Compared to the standard DPMM
results, there is a tendency of oversegmentation with the pro-
posed method, where oversegmentation means that instances
from a single class are sometimes divided into more than one
cluster. This is mainly because pixels belonging to the same
land-cover class at different spatial locations have different
spectral signatures due to spatial variations, which makes it
more likely for them to get assigned to different clusters. On
the contrary, DPMM tends to yield undersegmented results,
i.e., instances from different classes are sometimes clustered
together, resulting in fewer clusters than the number of ac-
tual classes. This is mainly because DPMM prefers assigning
unlabeled data to one of the already occupied clusters (i.e.,
known classes), as the prior probability is proportional to the
number of instances belonging to the cluster. SESSAMM uses
spatially adjusted priors and hence is less affected by the initial
setup. In the proposed scenario of remote sensing applications,
oversegmentation is more desirable than undersegmentation,
since unlabeled instances from irrelevant land-cover classes
could mislead the predictive model. On the other hand, a human
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TABLE II
CLUSTERING RESULTS BY STANDARD DPMM WITH GAUSSIAN DISTRIBUTIONS AND BY SESSAMM WITH RANDOMLY SELECTED

CLASSES REMOVED FROM THE TRAINING DATA. BOTH MEANS AND STANDARD DEVIATIONS ARE PROVIDED

TABLE III
CLASSIFICATION ACCURACIES (IN PERCENT) OF ML AND GP-ML CLASSIFIERS WITH RANDOMLY SELECTED CLASSES REMOVED FROM

THE TRAINING DATA. THE BASELINE METHOD UTILIZES LABELED SAMPLES ONLY, AND THE DPMM AND SESSAMM UTILIZE

UNLABELED SAMPLES FROM CLUSTERING RESULTS. BOTH MEANS AND STANDARD DEVIATIONS ARE PROVIDED

TABLE IV
SESSAMM CLASSIFICATION ACCURACIES (IN PERCENT) WHEN DIFFERENT AMOUNTS OF UNLABELED

SAMPLES ARE INCORPORATED FOR THE TWO-CLASS REMOVAL EXPERIMENTS

can more easily determine that two clusters actually belong
to the same class and thus correct for any oversegmentation
more easily. In Table II, it can be observed that the 3 and
4 unknown class cases show high cluster purity scores than
the 2 unknown class case due to oversegmentation, but the
NMI scores consistently decrease with the number of unknown
classes. It is remarkable that SESSAMM still shows good clus-
tering scores even with significant numbers of classes hidden
from the training data.

To evaluate how SESSAMM helps in the classification of
known classes, classification accuracies for test data are re-
ported in Table III. As we did for clustering score evaluation,
the same set of random classes was removed from the training
data. For the baseline ML and GP-ML results, classifiers are
trained only with labeled examples. For DPMM and SES-
SAMM, unlabeled examples assigned to the known classes are
used together with the labeled examples to train the classifier.
In DPMM results, the ML classifier shows improved perfor-
mances compared to the baseline ML method, but the GP-ML
classifier shows inferior performances compared to the baseline
GP-ML classifier. This is due to the fact that GP-ML prediction
is highly dependent on the nearby examples; hence, having
wrongly clustered examples in the training set significantly
affects the classification results. Unlike DPMM, GP-ML after
SESSAMM clustering works better than baseline GP-ML, as
well as ML after SESSAMM does. We can conclude that
the proposed SESSAMM framework successfully identified
unlabeled examples that are helpful for classification, better
than the standard DPMM clustering.

We performed another experiment to illustrate how the pro-
posed method helps to the better identification of unexplored re-
gions by classifying all the pixels in the image using the training
data with two classes removed, the original training data, and
semisupervised data clustered by SESSAMM. The classified
image is provided in the online supplementary material [55].
ML classifiers are used to generate these maps to prevent
extrapolation problems. In practice, the SESSAMM algorithm
could be used together with any classification algorithm as
it only provides clustering results. SESSAMM classification
maps are generated using clustered data in addition to the seven-
class training data, by assuming that an expert has identified
the majority class labels of all novel clusters. Although novel
classes are underrepresented in the SESSAMM-generated map
than in the image with full training data, it is noticeable that
originally hidden land-cover classes are successfully discov-
ered. In more detailed image patches around a river, it is
noticeable that the proposed method captures details of the
river even better than the nine-class case. This is partly because
SESSAMM benefits from the additional unlabeled data and can
make better predictions for the known classes. We also tested
how different amounts of unlabeled data affect classification
results, and the results are shown in Table IV. From the random
removal of the two-class experiments’ results, SESSAMM-
clustered unlabeled instances are randomly sampled at dif-
ferent rates. As shown in the table, the classification result
improves with the increased number of unlabeled instances. It
is also worth noting that GP-ML benefits more from unlabeled
samples than ML, as it gains significantly with only 10% of
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TABLE V
DESCRIPTION OF DC MALL DATA

Fig. 3. (a) Simulated IR image and class maps for (b) training and
(c) unlabeled data used in the experiment.

unlabeled samples while ML shows relatively smaller im-
provement. The same tendency has been observed in all other
experiments with different numbers of classes removed.

B. DC Mall Data

An airborne hyperspectral image known as the DC Mall
data [6] is used for the second set of experiments. Unlike the
Botswana data, the DC Mall data contain classes from man-
made objects such as building roofs, roads, and trails. As in
the Botswana experiments, labeled instances are divided into
spatially disjoint sets, and selected classes are removed from
the training set. As shown in Table V-B, we included relatively
small number of instances in the training set, compared to the
unlabeled set. Fig. 3(a) shows a simulated infrared (IR) image
generated from the visible and IR spectral bands of the original
hyperspectral data [6]. Fig. 3(b) shows the class map of the
training data used, and Fig. 3(c) shows the class map of the
unlabeled data used in the SESSAMM algorithm.

Fig. 4 shows the entire images of DC Mall data classified
by an ML classifier using the training data with trail and water
classes removed, training data with all the classes, and semisu-
pervised data clustered by SESSAMM. The SESSAMM-
generated map originally contains oversegmented clusters, and
such fragments are colored according to the major population

Fig. 4. Classification results from ML with five classes without water and
trail, ML with seven classes, and SESSAM + ML with five classes and
unlabeled data. (a) Five classes. (b) All seven classes. (c) SESSAMM.

Fig. 5. Detailed classification maps of the DC Mall data around the pond.
(a) Simulated IR. (b) Five classes. (c) Seven classes. (d) SESSAMM.

of the cluster for visualization purposes. Even though the water
class was not included in the training data, the SESSAMM-
generated map correctly identifies a pond in the lower center
part of the image as water. It is noteworthy that, even with
all the classes included in the training data, some part of the
pond is misclassified, as shown in Fig. 4(b), which is due
to the lack of nearby training data from the water class in
the training data. As shown in Fig. 3(b), the training data
contain water examples only in the upper left part of the
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TABLE VI
DC MALL CLUSTERING RESULTS BY STANDARD DPMM WITH GAUSSIAN DISTRIBUTIONS AND BY SESSAMM WITH RANDOMLY SELECTED

CLASSES REMOVED FROM THE TRAINING DATA. BOTH MEANS AND STANDARD DEVIATIONS ARE PROVIDED

TABLE VII
CLASSIFICATION ACCURACIES (IN PERCENT) OF ML AND GP-ML CLASSIFIERS WITH RANDOMLY

SELECTED CLASSES REMOVED FROM THE DC MALL DATA

image, and all instances in the specific patch are from the
relatively deep water area. The same phenomenon is also
observed at the long vertical pond in the upper center of the
images. Fig. 5 zooms into the region around the pond in
the maps in Fig. 4. One can note that Fig. 5(c) successfully
separates originally missing classes (trail and water) from other
classes.

Table VI shows the clustering scores by removing random
classes from the DC Mall data, and Table VII shows the
classification accuracies for nonmissing classes using training
only, training plus DPMM-clustered unlabeled data, and train-
ing plus SESSAMM-clustered unlabeled data. SESSAMM-
clustered results show consistently better clustering scores and
better classification accuracies.

VI. CONCLUSION

The SESSAMM algorithm introduced in this paper has not
only detected unlabeled instances that belong to classes that are
present in the training data but also discovered novel classes
when they occur in hyperspectral imagery. It achieves this feat
by using a DPMM with spatial information while also account-
ing for spatial correlations of class labels by employing a DDP
prior indexed by spatial coordinates. Experimental results show
that the proposed approach provides substantially better results
than the standard Dirichlet process model. Most notably, even
when there is not a single example of several classes in the
training data, it is able to fairly accurately discover such classes
without even knowing a priori how many such classes there
may be and with only slight oversegmentation that can be easily
rectified by a human analyst.
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