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Abstract

This paper introduces a non-parametric data
synthesizing algorithm to generate privacy-
safe “realistic but not real” synthetic health
data. The proposed algorithm synthesizes ar-
tificial records while preserving the statistical
characteristics of the original data to the ex-
tent possible. The risk from “database link-
ing attack” is quantified by an I-diversified
data generation process. Moreover its al-
gorithmic performance is optimized using
Locality-Sensitive Hashing and parallel com-
putation techniques to yield a linear-time al-
gorithm that is suitable for Big Health data
applications. We synthesize a public Medi-
care claim dataset using the proposed algo-
rithm, and demonstrate multiple data min-
ing applications and statistical analyses using
the data. The synthetic dataset delivers re-
sults that are substantially identical to those
obtained from the original dataset, without
revealing the actual records.

1. Introduction

Synthetic data, generated from a certain random pro-
cess, can address disclosure limitation issues in pub-
lic use health data. Many health datasets contain
privacy-sensitive and sometimes confidential informa-
tion such as disease, payment, and treatment records.
Revealing such health information is clearly disagree-
able to many, and raises severe ethical and fiduciary
issues. Instead, when created carefully, synthetic data
can provide the required statistical information for
various analyses in the healthcare domain without re-
vealing person-specific data or person’s identity. De-
veloping appropriate algorithms to generate synthetic
data is critical to meeting the growing need for well-
grounded health informatics research.

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

Using traditional “parametric model-based” synthe-
sizers, however, provides only a partial solution to
such objectives (Reiter et al., 2006), as it introduces
two open-ended issues, namely model selection prob-
lem and unquantifiable privacy-risk. The complexity
of a synthetic model limits the answerable range of
research questions; for example, a linear model syn-
thetic data cannot address identifying quadratic re-
lationships between covariates. However, most data
mining research is based on retrospective analysis,
where the research questions are posed post hoc and
may be determined during the data exploration pro-
cess. Thus, this type of synthetic data are not perfectly
suited for data mining applications. Moreover, pop-
ular privacy metrics such as k-anonymity (Sweeney,
2002), I-diversity (Machanavajjhala et al., 2007), or e-
differential privacy (Dwork, 2006) cannot be directly
applied to such model-based synthesizers (Abowd &
Vilhuber, 2008). Recent reports on adversarial privacy
attacks (Narayanan & Shmatikov, 2008; 2009) suggest
that rigorous characterization of such risk is critical in
data publishing.

Non-parametric synthetic data may be a remedy for
the model selection issue. Moreover, if the genera-
tive process of such data adheres to a certain state of
the art privacy metric, then the risk from synthetic
data can be well characterized. However, such non-
parametric schemes are rarely adopted in generating
synthetic data in practice, due to its computational
cost, and non-intuitive connections to privacy metrics.
In this paper, we analyze the definition of privacy in
the healthcare context, and derive its connection to
probabilistic generative processes. We also propose a
novel and practical algorithm for generating synthetic
data, adapting and coupling: parallel computation and
Locality Sensitive Hashing (LSH) techniques (Gionis
et al., 1999) to address the computational challenges.
This data type is dominant in many health records.
Furthermore, for many numeric fields, binning, also
known as histogramming or quantization, can be ap-
propriately applied to transform data into categorical
format, supporting the generality of our framework.
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2. Preliminaries

The original table and synthetic table are denoted
as D and S, respectively. n and m represent the
number of rows and columns in table D, and x =
(1, @2, ... , Ty) is a row of the table. x\; is a
row with the value of z; undetermined e.g. x\; =
(-, 2, ..., Tym). Random variables are expressed us-
ing capital letters, for example X for a scalar, and X
for a vector. Pr(X) is a true probability distribution
of the original data, and Pr.(X | D) represents an em-
pirical probability mass function given data D.

A categorical dataset D with indistinguishable rows,
i.e. without any ID’s, can be completely described
by a contingency table. Thus, with enough number of
samples, the contingency table can be said as the most
precise and non-parametric approximation for the un-
derlying joint distribution. We exchangeably use the
notations for the normalized contingency table' and
the empirical distribution Pr.(X | D).

The difference between the empirical and the true dis-
tribution decays as the number of data points increase
(Csiszar & Shields, 2004). The empirical distribution
approaches the true distribution exponentially fast as
N increases. In practice, this empirical distribution
can be treated as the underlying true distribution
when the size of the data is huge.

Obtaining a full contingency table is usually in-
tractable especially with a large number of attributes.
However, we can mimic sampling from a full contin-
gency table using Gibbs sampling. Gibbs sampling is
a prevalent estimation or sampling technique, when
sampling from a joint distribution is intractable. A
synthetic sample x, from a joint distribution Pr.(X |
D) can be Gibbs-sampled as follows:

€Ty ~ PI‘E(Xl | X\l,D)
xy ~ Pr.(Xs | x\2,D)

Tm ~~ Prc(Xm | X\map)

where Pr.(X; | x\;,D) is a conditional frequency ta-
ble derived from data D. When the above cycle has
reached an enough number iterations (burn-in period),
the last sample x is equivalent to a random sample
from the joint distribution. It is important to note
that, in Gibbs sampling, the information about the
joint distribution is distributed across its conditional
distributions.

This brute-force Gibbs synthesizer, however, has three

'Normalized by the total row counts.

critical issues: a lack of convergence guarantee, com-
putational inefficiency, and loose privacy guarantee.
For a Gibbs sampler to converge, the Markov chain
in a Gibbs sampler needs to be irreducible and aperi-
odic. In the brute-force Gibbs synthesizer, the Markov
chain of the empirical conditional distributions needs
to be verified to satisfy both conditions. Moreover,
this brute-force Gibbs synthesizer is computationally
expensive. The number of distinct conditional distri-
butions exponentially grows with the number of fea-
tures, thus pre-computing Pr.(X; | X\;, D) is not de-
sirable. Estimating Pr.(X; | X\;, D) on the fly is not a
smart choice, since the estimation needs a linear scan
for every Gibbs iteration. Finally, synthetic samples
from an empirical distribution always can always be
found in the original data, as the support of an em-
pirical distribution is the same as the support of the
original data. In other words, the synthetic data are
“realistic and real”, not “realistic but not real”.

3. LUGS Algorithm

We now present an [-diversified uniformly smoothed
Gibbs Ssynthesizer (LUGS). LUGS is an efficient non-
parametric data synthesizer that meets the [-diversity
principle, and is illustrated in Algorithm 1. The LUGS
algorithm consists of three steps: estimation, pertur-
bation, and sampling steps.

Algorithm 1 LUGS Algorithm

(Step 1) Estimate P.(X; | g(X\;), D)

(Step 2) Perturb P, — Q s.t. —E[log Q] > log!
(Step 3) Gibbs-sample synthetic data from the per-
turbed conditional distributions

3.1. Step 1: Estimation

Instead of Pr.(X; | X\;,D), LUGS estimates an ap-
proximated distribution, P.(X; | g(Xy;),D), where
g(X\y;) is a hash function such as MinHashing (Broder,
1997) and Locality-Sensitive Hashing (LSH) (Gionis
et al., 1999; Indyk & Motwani, 1998). The hash func-
tion is employed to reduce the number of distinct con-
ditional distributions and to access the conditional dis-
tributions faster.

We first reduce the hash key space using MinHash-
ing, then perform a fast (approximate) nearest neigh-
bor search using LSH. In this paper, we choose to use
an LSH family F defined for a metric space M =
(x, Hamming), but we note that other distance metrics
are also applicable. MinHashing collision probability
can be adjusted by its parameters, and the number
of MinHashing keys can be made significantly smaller
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than the size of the original database. Thus, even for a
really large-scale database with high-dimensional fea-
tures, LUGS can sample from its (approximated) con-
ditional distributions. Note that there is a trade-off
between the exact conditional distribution and the re-
quired memory size.

3.2. Step 2: Perturbation

The obtained conditional distributions are perturbed
to meet a prescribed entropy [-diversity criterion for
privacy:

Definition 1 (Entropy I-diversity (Machanavajjhala
et al., 2007)). A probability mass function Q is “en-
tropy l-diverse” if

Ellog Q] =

ZQ )log Q(x) > logl

where logl > 0.

We perturb the approximated probability distribution
P.(X; | g(X\;),D) to satisfy the [-diversity principle
as follows:

Qo (Xi | 9(Xys)) = o(Xi [ g(X\a),

where U is a uniform distribution over the range of
X;. As we want to keep the statistical properties of
the original data to the extent possible, we choose the
minimum « that satisfies the condition:

(1-a)P D)+ aU

a* = argmin Q, (X; | g(Xy;)) > logl

QX | 9(X\s)) = Qu (Xi | (X))

Although we do not show details in this paper, per-
turbed distributions can be modified to satisfy other
privacy metrics such as e-differential privacy or Put-
terfish framework (Kifer & Machanavajjhala, 2012).
This paper mainly focuses on the [-diversified synthetic
data, and we leave further experiments and compar-
isons with other privacy metrics to future work.

3.3. Step 3: Sampling

LUGS samples are generated through a perturbed
Gibbs sampler:

rp ~ Q(X1 | g(x\1))
Ty ~ Q(X2 | g(x\2))

This Markov chain converges to a unique stationary
distribution, Q(X) if a > 0, see Theorem 1.

m | g(x\m))

Theorem 1 (Existence of Q(X)). If Q(X;Xy;) > 0
(positivity condition), then the Markov chain of a per-
turbed Gibbs sampler is irreducible, thus there exists a
unique stationary distribution Q(X).

Proof. For any two states x and x’, we have:

Pr(X®+) = x | X®
Pr(Xt+) = x/

=x')>0
| X® =x)>0

where X (1) represents the (¢ + 1)th iteration sample
of the Gibbs sampler. As x and x’ intercommunicate,
one of the following is true (Grimmett & Stirzaker,
2001): x and x’ are both recurrent or x and x’ are
both null-recurrent. As the range of X is finite, we
have at least one recurrent state, thus all the states of
X are recurrent. Since the Markov chain is irreducible
and its all the states are recurrent, the chain has a
unique stationary distribution Q(X). O

The difference between Pr.(X) and Q(X) is upper-
bounded by the parameter logl, and hence the dif-
ference between the true distribution Pr(X) and the
LUGS-distribution Q(X) is also upper-bounded. Note
that the perturbed Gibbs sampler generates artificial
samples that are not in the original data. For these
artificial samples, we find the nearest neighboring per-
turbed conditional distribution as follows:
QX [ g(X{7™)) st A Xy

using LSH, then use this approximated nearest neigh-
bor distirubion in the Gibbs sampling iterations.

3.4. Additional Step: Parallelization

The LUGS Algorithm is embarrassingly paralleliz-
able with sub-sampling. Algorithm 2 illustrates the
parallel-LUGS (PLUGS) algorithm. If each process in
PLUGS satisfies the [-diversity principle, the collection
of synthetic data also meet the [-diversity principle.

Algorithm 2 PLUGS Algorithm

(Step 0) Partition D into {DP} and distribute to
parallel processes

(Step 1) Estimate P.(X; | g(X\;),DP)

(Step 2) Perturb P, — Q s.t. —E[log Q] > log!
(Step 3) Gibbs-sample synthetic data from the per-
turbed conditional distributions

(Step 4) Combine and mix synthetic data {SP} from
the parallel processes
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_— . y (sensitive variables)
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Figure 1. A link attack example. Two datasets can be
linked based on Age and ZIP code. Sensitive values such
as Diabetes and STD can be revealed using the new linked
variables Name and BMI.

4. Privacy Analyses

The “realistic but not real” principle can be achieved
through rigorous analyses on the definition of “pri-
vacy” in the healthcare context. Unlike other scientific
measurement datasets, healthcare datasets in general
contain the information about real people, such as pa-
tients and physicians. Thus, the definition of data pri-
vacy in healthcare datasets can be narrowed down. We
define the goal of privacy protection in the healthcare
domain is to protect the identity of the people, and to
protect their sensitive information.

The attacks on published datasets can be categorized
as follows:

e Identity attack: identifying “who”

e Feature attack: identifying “what”

Although many other types of attacks may be threats
to uncover private information, such attacks are not
directly related to our definition of privacy protection.
For example, an attacker can link two datasets and find
out new information for a specific row, without know-
ing a person’s identity. In this case, as the attacker
has no clue about the identity of the records, this at-
tack does not infringe on privacy by our definition.
Again, it is possible that even such information can be
useful for later identity and feature attacks (transitive
attacks). We note that the uncertainty level of such
information may decrease as more linkable datasets
become available.

In this paper, we analyze the effect of database link-
ing on feature attacks. Consider a dataset with two
features: X (non-sensitive) and Y (sensitive). When
publishing the dataset, a typical strategy is to noise

Y to be Y. However, if another dataset is linked with
the original dataset based on X, the linked informa-
tion may reduce the uncertainty about the sensitive
field. Figure 1 illustrates this linking scenario. Theo-
rem 2 illustrates this information gain for attackers by
linking two datasets:

Theorem 2 (Link Gain). Suppose that two datasets
Dy ={Z,X} and Dy = {(Y,X)} are linked based on
X, then:

Pr(Y =Y | X, 2)
Pr(Y =Y | X)

_P(Z|X,Y=Y)
 Pr(Z]X) =A Q)

where A is the “link gain ratio” by linking two datasets.

Proof. Equation (1) is a direct result by applying
Bayes’ theorem. O

Theorem 2 states two competing objectives when pub-
lishing data: A needs to be low and Pr(Y =Y | X)
needs to be low. As can be seen, A increases as
Pr(Y = Y | X) decreases, and Pr(Y = Y | X) in-
creases as A decreases. Furthermore, A can be arbi-
trarily large when Pr(Z | X) ~ 0, where we have no
control over Z and Dy. Thus, lowering A is very dif-
ficult. LUGS addresses this issue by perturbing every
variable in a dataset i.e. including linking variables. In
other words, instead of directly lowering A, we inject
uncertainty on linking.

The perturbation step in LUGS can be interpreted
from the information theory context. The mutual in-
formation between X; and X\ x, is as follows:

I(X5 X)) = H(X;) — H(X3]X\;) (2)

where I(X;;X,;) is Shannon Mutual Information be-
tween X; and X,;. Uniformly smoothing Pr.(X; |
X\;, D) increases the conditional entropy H(X;|X\;),
decreasing I(X;; X\;) as a result. Thus, LUGS weak-
ens the link between X; and X,; by increasing the
conditional entropy. On the other hand, traditional
data publishing methods such as k-anonimity and I-
diversity decreases the entropy of H(X;) by general-
ization or suppression of the feature values. However,
both LUGS and traditional data publishing methods
try to reduce the mutual information between features.

5. Empirical Studies

In this section, we demonstrate the impact of LUGS
algorithm using Medicare Claims records for both de-
scriptive analysis and predictive modeling. Centers
for Medicare and Medicaid Services (CMS) provides
several public-use data files (PUF), such as inpatient
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claims, line-items, drug events, etc. For our experi-
ment, we use “BSA Inpatient Claims PUF”2 describ-
ing Basic Stand Alone Inpatient records. The data file
contains seven variables: ID, Gender, Age, DRG (drug
code), ICD-9 (procedure code), Length (the length
of stay), and Amount (payment), and has 15K rows.
Age, Length, and Amount variables are originally nu-
meric records, but CMS has categorized them into five
quantiles. Note that data re-coding methods such as
k-anonymity and [-diversity cannot be directly com-
pared to LUGS, as their feature granularities are dif-
ferent. To the best of our knowledge, LUGS is the first
privacy-safe data synthesizer, which adheres to the rig-
orous privacy metric, “synthetic l-diversity”.

5.1. Sample Path and Marginal Distribution

We first show a sample path of Gibbs samples. Table 1
illustrates a random sample from the synthetic pro-
cess. Figure 2 shows the first 300 Gibbs iterations of
one synthetic sample. As can be seen, the Gibbs sam-
ple traverses over all the possible combinations of the
feature space. From Figure 3, we can observe that the
autocorrelations of the Gibbs samples are less than 0.1
after 5 iterations, suggesting that the LUGS samples
are reasonably converged to a stationary distribution.

Table 1. Gibbs Samples over Iteration

(t) | Gender Age DRG ICD9 DAYS AMT
1 2 4 147 81 3 4

2 1 1 158 39 1 2

3 2 6 88 45 2 4

Figure 4 and 5 shows marginal histograms of ICD-9
procedure and drug codes over different levels of pri-
vacy metrics (logl). We can observe uniform smooth-
ing effects from the LUGS-generated synthetic data;
rare data points are amplified.

5.2. K-way Correlation

K-way correlation (K > 2) between categorical
variables can be visualized using log-linear analy-
sis (Simkiss et al., 2012). Log-linear analysis can be
viewed as a multi-way chi-square independence test.
For example, if Age (i), Gender (j), and Amount (k)
variables are cross-tabulated, then each cell frequency

*http://www.cms.gov/Research-Statistics-
Data-and-Systems/Statistics-Trends-and-
Reports/BSAPUF'S/Inpatient_Claims.html
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Fjji can be fully modeled as follows:

IOgFijk: )\0 + >\i+)\j+>\k +
~ —

offset  independent effect

Nij + Ajk + A+ Aijk
N ——

2-way interaction terms  3-way interaction term

However, if the features are independent of each other,
then the full description can be simplified:

IOg Fijk = )\0 + /\z + )\j + >\k (3)

Log-linear analysis basically compares the log-
likelihood values from these two models. Age, Gen-
der, and Amount variables, are cross-tabulated, and
their Pearson Chi-square (y?) statistics for each I-
diversified synthetic dataset are plotted in Figure 6.
The [-diversified synthetic datasets show less correla-
tion among variables.
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5.3. Missing Value Imputation

As a side effect of the [-diversified generative pro-
cess, generated synthetic data tend to have less miss-
ing values. Figure 6 shows missing value percentages
for each synthetic data set. While the original data
(logl = 0.0) exhibits &~ 8% missing rate, the gener-
ated synthetic data have less than 6% missing values.

5.4. Purely Artificial Records

LUGS generates “realistic but not real” synthetic data
(non-support region records). The generated samples
are “not real”, since its [-diversified distributions have
positive probabilities for any possible record combina-
tions. Purely artificial records are the records that can-
not be found in the original data. Figure 6 illustrates
the ratios of these artificial records for each synthetic
dataset. We emphasize that even with very small log!
values, more than 60% of synthetic records are filled
with purely artificial records.

5.5. Effect on Predictive Models

Privacy preserving synthetic data can be publicly dis-
closed to answer various types of data mining research
questions. If the statistical properties of the original
data are well preserved in the LUGS-generated data,
then the data mining results from the synthetic data
should be significantly identical to those from the origi-
nal data. We demonstrate illustrative results of simple
predictive modeling by arbitrarily setting Amount as

a dependent variable:

~ Age 4+ Gender + DRG + ICD9

X: independent variables

AMT
——

y: dependent variable

Dummy coding is applied to the categorical variables
such as DRG and ICD9, resulting in 352 dependent
variables. We apply the Lasso regression (Friedman
et al., 2010) to deal with this high dimensionality, then
measure Mean Square Errors (MSE) using the original
data:

B* = min [[yaynen — Xyntn 11 + AlIB]|
MSE = ||yorig - }(-Ol"igﬁ*n2

Figure 7 (top) shows the measured MSE values over
different A and log! values. As can be seen, MSE
values increase with the logl value, but their devia-
tion from the original MSE is negligible compared to
the spread of values at each privacy setting, logl. We
next show a classification example setting AMT > 3
as “positive” and AMT < 3 as “negative”. Logistic
regression with the Lasso penalty is used. Figure 7
(bottom) shows the measured Area Under Receiver
Operating Characteristic (AUC) curves. As in the re-
gression example, classification results are very robust
and consistent with the synthetic data.

6. Discussions

We proposed a novel data synthesizer that protects
sensitive information by adhering to a prescribed I-
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diversity privacy metric. The proposed algorithm,
LUGS, scales linearly with respect to the size of the
data. Furthermore, LUGS is a non-parametric and
non-model based technique. This property assures
that a wide range of data mining algorithms can be ap-
plied without considering the generative process of the
synthetic data. Many health datasets are not available
because of privacy restrictions such as HIPAA privacy
regulation. We believe that the proposed solution can
be an alternative way to facilitate collaborative health-
care research efforts.
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