
Competitive Learning with Pairwise Constraints
Thiago F. Covões∗†, Eduardo R. Hruschka∗†, Joydeep Ghosh∗

∗University of Texas (UT) at Austin, USA
†University of São Paulo (USP) at São Carlos, Brazil

{tcovoes,erh}@icmc.usp.br;ghosh@ece.utexas.edu

Abstract—Constrained clustering has been an active research
topic in the last decade. Most studies focus on batch-mode
algorithms. This paper introduces two algorithms for on-line
constrained learning, named O-LCVQE (On-line Linear Con-
strained Vector Quantization Error) and C-RPCL (Constrained
Rival Penalized Competitive Learning). The former is a variant
of the LCVQE algorithm for on-line settings, while the latter
is an adaptation of the (on-line) RPCL algorithm to deal with
constrained clustering. The accuracy results — in terms of the
normalized mutual information (NMI) — from experiments with
nine datasets show that the partitions induced by O-LCVQE
are competitive with those found by the (batch-mode) LCVQE.
Compared to this formidable baseline algorithm, it is surprising
that C-RPCL can provide better partitions (in terms of the
NMI) for most of the datasets. Also, experiments on a large
dataset show that on-line algorithms for constrained clustering
can significantly reduce the computational time.

I. INTRODUCTION

Competitive Learning algorithms are characterized by com-
petitions among k neurons [1]. At each step, an input (object)
xi is presented, and the neuron that wins the competition
learns the input, i.e., that neuron is adapted towards xi with a
pre-specified learning rate. This approach is known as Winner-
Take-All (WTA) learning [2], which has been extensively stud-
ied [1,3]. Competitive learning can also be seen as performing
clustering in the input space [2,4,5]. In particular, regarding
the neurons as cluster prototypes, and making use of the
squared Euclidean distance as the competition score, the WTA
approach can be seen as an on-line k-means algorithm. In a
broader view, competitive learning algorithms belong to the
class of stochastic gradient descent algorithms [3].

The use of supervision in the competitive learning frame-
work was considered in the LVQ algorithm [6], where it is as-
sumed that labels are known for the training data. Such labels
are used to guide the refinement of the decision boundaries.
However, the acquisition of labels is often costly, whereas
unlabeled data are abundant in diverse applications. Thus,
algorithms capable of using only partial supervision — e.g.,
in the form of a subset of labeled objects — are needed.

In the last decade, considerable attention has been given
to constrained clustering algorithms, which incorporate known
information about the desired data partitions into the clustering
process [7]. Among the most common types of constraints
are those about pairs of objects — specifically the Must-Link
(ML) and Cannot-Link (CL) constraints [7,8]. Considering a
set X = {xi}Ni=1 of N objects, each one represented by a
vector xi ∈ RM , a ML constraint c=(i, j) indicates that the

objects xi and xj should lie in the same cluster, whereas a
CL constraint c6=(i, j) indicates that xi and xj should lie in
different clusters. One characteristic of ML and CL constraints
is that they represent less information than labels. This can be
noted by the fact that is possible to deduce constraints from
labels, but the inverse does not hold [7].

Several algorithms have been developed for constrained
clustering [7]–[11]. Among them, k-means-based algorithms
are widely used in practice and thus are of interest to a
large audience. In a recent study [11], it has been shown
that the clustering results of the Linear Constrained Vector
Quantization Error (LCVQE) algorithm [8] are competitive
with those achieved by the Constrained Vector Quantization
Error (CVQE) algorithm [10], while violating less constraints
and being more computationally efficient. Furthermore, in
most cases, LCVQE provided better accuracy compared to
MPCK-Means [9], which is capable of learning distance
metrics. Motivated by these results, as a starting point we
decided to extend the (LCVQE) algorithm to deal with on-
line settings. Since the proposed extension of LCVQE can be
seen as a competitive learning algorithm, extensions of alter-
native competitive learning algorithms to deal with pairwise
constraints can also be potentially helpful.

This paper introduces two on-line constrained clustering al-
gorithms, which are named O-LCVQE (On-line LCVQE) and
C-RPCL (Constrained Rival Penalized Competitive Learning).
Both algorithms have been designed to incorporate constraint
handling without losing the desirable simplicity provided by
the competitive learning approach. It is worth mentioning
that, despite the increasing interest in constrained clustering
over the last decade, there is a lack of studies for on-line
settings. The development of on-line algorithms can be helpful
to the analysis of large scale data, as well as to the use
of constraints in distributed and asynchronous settings [3].
Another attractive characteristic of on-line algorithms is that
they are particularly suited to deal with scenarios where the
dataset (X) suffers changes (addition/removal of objects),
as well as with scenarios where the set of constraints is
dynamically changing.

We performed experiments on nine datasets for which the
class labels are known. Thus, pairwise constraints can be
obtained from some labeled objects, as commonly done in
constrained clustering studies [7]. However, there is a caveat
on this setting. Since (multimodal) classes can potentially be
represented by multiple clusters, the use of ML constraints
derived from class labels can be hazardous to the clustering

process. More specifically, if two objects belong to the same
class but to different clusters, a ML constraint involving them
will guide the clustering algorithm to merge these two clusters.
Clearly, this can be detrimental to the clustering process.
Therefore, we consider CL constraints only, because these
are correct independently of the validity of the so-called one-
cluster-per-class assumption. However, for cases where ML
constraints can be assured to be valid, it is straightforward to
incorporate them into the proposed algorithms.

The remainder of this paper is organized as follows. The
next section reviews the LCVQE algorithm [8], which serves
as the basis to describe the proposed algorithms — presented
in Section III and empirically compared in Section IV. Finally,
Section V concludes the paper.

Notation. A hard partition of the data is a collection
P = {Ci}ki=1 of k disjoint clusters such that

⋃
Ci = X

and Ci ∩ Cj = ∅,∀i 6= j, and |Ci| 6= 0,∀i, where |Ci|
denotes the number of objects in cluster Ci. Each cluster Ci

is represented by a prototype µi. The distance between an
object xi and a prototype µj is calculated by using the squared
Euclidean distance, i.e., ‖xi − µj‖2 = (xi − µj)

T (xi − µj),
where T denotes the transposed matrix. The set of ML
and CL constraints are denoted as M and C, respectively.
Using oM(l) and o′M(l) for denoting the functions that return
the first and second objects of the lth ML constraint, it
is possible to define the functions gM(l) and g′M(l) that
return, respectively, the indices of the clusters that the first
and second objects of the lth ML constraint belong to, i.e.,
gM(l) = {j|oM(l) ∈ Cj} and g′M(l) = {t|o′M(l) ∈ Ct}.
Similarly, the functions oC(l), o′C(l), gC(l), and g′C(l) can be
defined for CL constraints. The set of ML constraints being
violated is defined as VM = {i|Mi ∈M, gM(i) 6= g′M(i)},
and similarly, the set of CL constraints being violated is
defined as VC = {i|Ci ∈ C, gC(i) = g′C(i)}. Finally, 1[Condition]
is an indicator function, that is equal to one when the condition
is satisfied and 0 otherwise.

II. REVIEW OF THE LINEAR CONSTRAINED VECTOR
QUANTIZATION ERROR (LCVQE) ALGORITHM [8]

The LCVQE algorithm is an improved version of the Con-
strained Vector Quantization Error algorithm [10]. LCVQE
uses as its objective function the usual vector quantization
error augmented with costs associated with constraint vio-
lations. Even though we do not use ML constraints in our
experimental setting, for completeness we describe the full
LCVQE algorithm. The cost of violating a ML constraint is
based on the distances between objects and prototypes. These
distances are computed by considering the object of a cluster
and the prototype of another (neighbor) cluster. For a CL
constraint, the object that is the farthest to the prototype is
determined. Then, the distance between this object and its
nearest neighbor prototype (second-closest cluster) is used
as the violation cost. Thus, total cost = (distortion cost) +
(ML violation cost) + (CL violation cost). Mathematicaly, we
have:

J =

k∑
j=1

[(1

2

∑
xi∈Cj

‖µj − xi‖2
)

+
(1

2

∑
l∈VM,gM(l)=j

1

2
‖µj − o′M(l)‖2

+
1

2

∑
l∈VM,g′

M(l)=j

1

2
‖µj − oM(l)‖2

)
+

(1

2

∑
l∈VC,V (l)=j

‖µj −RgC(l)(l)‖
2
)]

(1)

The auxiliary functions, RgC(l)(l) and V (l), are defined in
Equations (2) and (3), respectively. Intuitively, the former —
RgC(l)(l) — returns the object of the lth CL constraint farthest
to the prototype µgC(l), while the latter — V (l) — returns the
index of the nearest neighbor prototype to the object RgC(l)(l).

RgC(l)(l) =

{
oC(l) if ‖oC(l)− µgC(l)‖

2 > ‖o′C(l)− µgC(l)‖
2

o′C(l) otherwise,
(2)

V (l) = arg min
m∈{1,...,k}−{gC(l)}

‖RgC(l)(l)− µm‖2. (3)

For the assignment of which cluster each object belongs to,
initially every object is assigned to the closest cluster. Then,
for each ML constraint being violated, only three assignment
possibilities are examined: (i) maintain the violation; (ii)
assign the two objects to the cluster whose prototype is the
nearest to the first object (oM(l)); (iii) assign the two objects
to the cluster whose prototype is the nearest to the second
object (o′M(l)). For each CL constraint being violated, only
two cases are checked: (i) maintain the violation; (ii) keep the
object that is the closest to the cluster prototype as it is, and
assign the farthest object (RgC(l)(l)) to the cluster with second-
closest prototype (V (l)). Then, the prototypes are updated as:

µj =
yj

zj
, (4)

yj =
∑

xi∈Cj

xi +
1

2

∑
l∈VM,gM(l)=j

o′M(l)

+
1

2

∑
l∈VM,g′

M(l)=j

oM(l)

+
∑

l∈VC,V (l)=j

RgC(l)(l) (5)

zj = |Cj |+
1

2

∑
l∈VM

1[gM(l)=j]

+
1

2

∑
l∈VM

1[g′
M(l)=j] +

∑
l∈VC

1[V (l)=j] (6)

The update rule can be interpreted as follows. Let l be the
index of a ML constraint that is being violated, i.e., oM(l) ∈

Cj and o′M(l) ∈ Cn with j 6= n. Then, the prototype µj

is moved towards the object o′M(l) and the prototype µn is
moved towards the object oM(l). Now consider the case of a
CL constraint being violated, i.e., oC(l) ∈ Cj and o′C(l) ∈ Cj .
Consider also that ‖µj−o′C(l)‖2 > ‖µj−oC(l)‖2 and that µn

is the second-closest prototype of o′C(l). Then, µn is moved
towards o′C(l). The whole process (assignment and prototype
update) is repeated until a convergence criterion is satisfied.

III. CONSTRAINED COMPETITIVE LEARNING

As stated in Section I, competitive learning can be seen
as an on-line approach to clustering because the prototype
updates are incrementally made after each input is observed.
This approach is different from the one performed by batch
mode algorithms, which take one full pass through the data
before an update is made.

The simplest competitive learning algorithm is based on
the Winner-Take-All (WTA) approach, in which the closest
prototype (neuron) to the input moves towards the input at a
learning rate α, i.e., ∆µj = rjα(xi−µj), i ∈ {1, . . . , N}, j ∈
{1, . . . , k}, where rj is one if µj is the closest prototype to
xi, and zero otherwise. Despite its simplicity, WTA presents
the neuron underutilization problem [1], which arises when
some neurons are not properly initialized and thereby making
them unable to win even once. For instance, if all neurons
are initialized in a region far from the data, it is likely that
the winner for the first input will also win the remaining
competitions.

Several competitive learning algorithms have been devel-
oped to address the neuron underutilization problem — see [1]
for a thorough discussion. A simple approach is to consider
the winning frequency for each neuron, i.e., weighting the dis-
tances between prototypes and objects by the neuron winning
frequency. This is known as frequency sensitive competitive
learning [12]. An extension of this approach, which can also
be seen as an extension of the LVQ2 algorithm [6], is the
Rival Penalized Competitive Learning (RPCL) [13]. In this
algorithm, the second nearest prototype to the input, called
rival, is penalized by moving it away from that object. This
penalization is proportional to a different learning rate (β)
— usually β � α. For simplicity, we refer to β as the
unlearning rate. Now we are in position to describe the
proposed constrained competitive learning algorithms, namely:
O-LCVQE and C-RPCL.

A. On-line LCVQE

O-LCVQE can also be seen as a WTA approach that deals
with CL constraints. We do not adopt ML constraints in
our framework due to the reasons discussed in Section I.
Therefore, we omit the procedure that handles them1. We note
that the procedure used to handle CL constraints is similar in
spirit to the LCVQE’s procedure, i.e., the winner prototype is
defined as in LCVQE. Specifically, if the input is involved in a
CL constraint, and the same prototype (µj) is the nearest one

1Nevertheless, it is straightforward to consider them if so desired.

for the two objects in question, then two cases are assessed: (i)
use the same prototype to represent both objects; (ii) adjust the
second nearest prototype (µn) to the object of the constraint
that is farthest from µj . Each case has an associated cost,
which is derived from the objective function of LCVQE — Eq.
(1). After computing them, the case that incurs the smallest
cost is chosen. For the second case, if the farthest object is
not the current input (xi), an additional step is performed so
that µj moves away from the farthest object and towards xi.
The main steps of O-LCVQE are presented in Algorithm 1.

Note that this algorithm handles CL constraints in a greedy
manner. In particular, for each constraint it assesses every
possible assignment by considering only the costs imposed
by that particular constraint — without taking into account
the costs that may be imposed by other constraints related to
the current input. This procedure is related to the competitive
learning approach, as the constraints are always processed in
an on-line fashion. Also, when no constraints are provided this
algorithm reduces to the WTA approach (see Section III).

Algorithm 1 On-line LCVQE (O-LCVQE).

1: function O-LCVQE(X , {µi}ki=1, α, β, C)
2: Randomly take an object xi from X
3: j ← arg minj∈{1,...,k} ‖xi − µj‖2
4: SC ← {l|oC(l) = i} ∪ {l|o′C(l) = i}
5: if SC = ∅ then
6: µj ← µj + α(xi − µj)
7: else
8: for each l ∈ SC do
9: o← {oC(l) ∪ o′C(l)}\{i}

10: r ← arg minr∈{1,...,k} ‖xo − µr‖2
11: if r 6= j then
12: µj ← µj + α(xi − µj)
13: else
14: c← arg minc∈{i,o} ‖xc − µj‖2
15: f ← {i, o}\{c}
16: n← arg minn∈{1,...,k}\{j} ‖xf − µn‖2
17: cV io ← 1

2 (‖xi − µj‖2 + ‖xo − µj‖2 +
‖µn − xf‖2)

18: cNeighbor ← 1
2 (‖xc−µj‖2+‖xf−µn‖2)

19: if cV io < cNeighbor then
20: µj ← µj + α(xi − µj)
21: µn ← µn + α(xf − µn)
22: else
23: µn ← µn + α(xf − µn)
24: if f = o then
25: µj ← µj − β(xo − µj)
26: µj ← µj + α(xi − µj)

27: If there are still objects to process, go to Step 2

B. Constrained RPCL

The RPCL algorithm [13] can also be modified to deal with
CL constraints. The intuition behind this modified algorithm,
named C-RPCL, is that if a CL constraint gets violated by

assigning the object to a given prototype, then we search for
the nearest rival that does not cause any constraint violations.
This nearest rival becomes the winner, and the previous winner
prototype is moved away from that object. For the degenerate
case where no nearest rival can be found, the original RPCL
procedure is used. The variable γ is introduced to avoid
neuron underutilization, as mentioned in Section III. More
specifically, γ holds the (normalized) winning count for each
neuron. The distance between objects and prototypes are
scaled by γ, so that previously frequent winners have less
chance to win the subsequent competition. The C-RPCL’s
main steps are described in Algorithm 2. Differently from
O-LCVQE, the proposed C-RPCL takes into account all the
available constraints in order to define the winner and rival
neurons. By doing that, C-RPCL can avoid some unnecessary
prototype updates that would be made by O-LCVQE. When
no constraints are provided, C-RPCL reduces to RPCL, which
is capable of estimating the number of clusters. The adoption
of constraints does not make C-RPCL lose this feature.

Algorithm 2 Constrained RPCL (C-RPCL).

1: function C-RPCL(X , {µi}ki=1, α, β, C)
2: w← 1 //w = [wi]

k
i=1

3: γ ← 1× k−1 //γ = [γj]
k
j=1

4: Randomly take an object xi from X
5: j ← arg minj∈{1,...,k} γj‖xi − µj‖2
6: SC ← {l|oC(l) = i} ∪ {l|o′C(l) = i}
7: F ← ∅
8: for each l ∈ SC do
9: o← {oC(l) ∪ o′C(l)}\{i}

10: r ← arg minr∈{1,...,k} γr‖xo − µr‖2
11: F ← F ∪ {r}
12: if SC = ∅ or j /∈ F or |F| = k then
13: n← arg minn∈{1,...,k}\{j} γn‖xi − µn‖2
14: µn ← µn − β(xi − µn)
15: µj ← µj + α(xi − µj)
16: wj ← wj + 1
17: else
18: n← arg minn∈{1,...,k}\F γn‖xi − µn‖2
19: µn ← µn + α(xi − µn)
20: µj ← µj − β(xi − µj)
21: wn ← wn + 1

22: for each j ∈ {1, . . . , k} do
23: γj ← wj × (

∑k
i=1 wi)

−1

24: If there are still objects to process, go to Step 4

IV. EMPIRICAL EVALUATION

In order to compare the algorithms O-LCVQE and C-RPCL,
experiments were performed on eight benchmarks datasets.
Most of them are available at the UCI Repository [14].
In addition, we have used the 9Gauss dataset [15], which
is formed by nine balanced clusters arranged according to
Gaussian distributions that have some degree of overlapping,
as well as the Protein dataset [9]. Following [9], for the Letters

dataset only classes I, J, and L were considered and, for
Pendigits, only classes 3, 8, and 9 were considered. According
to [9] these classes represent difficult classification problems.
The characteristics of the datasets are summarized on Table I.

As stated in Section I, we consider the scenario where
constraints are derived from class labels. For generating the
constraints, we consider cases where samples of labeled ob-
jects are available. In particular, we adopt a variety of different
quantities of labeled objects — i.e., 5, 10, 15, and 20 randomly
selected objects per class. From these samples, all possible
CL constraints are deduced. For instance, for the Iris dataset,
which has three classes, by sampling 5 objects per class a
set of 75 constraints is obtained. The adopted methodology
follows from the scenario where a domain expert provides
labels for some objects. In this scenario, one should take as
much information as possible from the labeled objects by
considering all the induced constraints.

Each algorithm was run for 100 epochs (full passes through
the data). Initial prototypes were sampled by a Gaussian
distribution, with mean and covariance estimated from 20% of
the data. Due to the sensitivity to initialization and processing
order of the objects, each algorithm was run five times with
different initial prototypes and processing orders. The whole
process was repeated ten times to get better estimates of the
statistics under interest. As done in [13], the learning and
unlearning rates were set to 0.05 and 0.002, respectively.

The quality of the obtained partitions is assessed by means
of Normalized Mutual Information (NMI) [16] by taking
into account the reference partitions provided by the known
classes/clusters. As a baseline2, we considered the results
obtained by the (batch mode) LCVQE algorithm [8]. Since
batch mode algorithms have access to more information to
perform prototypes updates than on-line algorithms, it is
expected that their partitions serve as approximations to those
achieved by the batch mode algorithms. Thus, we assess the
relative performance of the proposed on-line algorithms by
analyzing the differences between the NMI values computed
for the partitions obtained by the on-line and batch algorithms.

The average differences between the NMI values obtained
by the on-line algorithms and those obtained by LCVQE are
reported in Table I, where a positive number means that the
corresponding on-line algorithm obtained better results than
LCVQE. It can be seen that C-RPCL obtained the best results,
with NMI values equal to or greater than those obtained by
LCVQE in more than 67% of the cases (27 out of 40). For
O-LCVQE, the results were less favorable — specifically, the
results obtained were equal or better than LCVQE in only
47% of the cases. Comparing the on-line algorithms, C-RPCL
obtained better results than O-LCVQE in 75% of the cases.

The results for Pendigits are particularly appealing. In
this dataset, C-RPCL presented the largest observed positive
difference (0.229 on average). In order to better understand this
result, the average NMI values obtained by each algorithm are

2Note that this is a very competitive baseline as LCVQE typically outper-
forms alternatives such as MPCK-Means [9] and CVQE [10] — see [11] (due
to space limitations we do not reproduce such results).

Table I: Differences between Normalized Mutual Information values obtained by on-line algorithms and LCVQE (greater is
better) — #LO denotes the number of labeled objects used to generate constraints.

Algorithm RPCL C-RPCL WTA O-LCVQE

Dataset
LO 0 5 10 15 20 Average 0 5 10 15 20 Average

Name N M k
9Gauss 900 2 9 -.010 .005 -.015 -.005 -.007 -.006 -.017 -.032 -.101 -.100 -.102 -.071

Ionosphere 351 34 2 -.010 .004 -.004 .000 .017 .001 -.010 -.007 -.028 -.077 -.057 -.036
Iris 150 4 3 -.007 -.015 .001 -.037 -.019 -.015 .000 .013 .010 -.027 -.024 -.006

Wine 178 13 3 .003 .008 .030 .035 .038 .023 .000 .012 .020 .025 .028 .017
Breast Cancer 683 9 2 .000 .016 -.011 .007 .027 .008 -.018 .016 .013 -.023 -.013 -.005

Pendigits 3165 16 3 .204 .184 .227 .280 .250 .229 .052 .031 .173 .128 .111 .099
Letters 2263 16 3 .013 .010 .000 .008 .020 .010 -.006 .000 .010 .024 .052 .016
Pima 768 8 2 .001 .000 -.011 -.005 .001 -.003 -.003 -.004 -.019 -.027 -.019 -.014

Table II: Averages and standard deviations for the NMI values
for different amounts of labeled objects (#LO) — Pendigits.

LO C-RPCL O-LCVQE LCVQE
0 0.69 (0.00) 0.53 (0.08) 0.48 (0.00)
5 0.68 (0.00) 0.52 (0.04) 0.49 (0.05)

10 0.71 (0.02) 0.66 (0.05) 0.49 (0.06)
15 0.76 (0.00) 0.61 (0.07) 0.48 (0.06)
20 0.77 (0.00) 0.63 (0.13) 0.52 (0.09)

presented in Table II, where there are two salient aspects to
be observed. Firstly, the small variance of the results obtained
by C-RPCL indicates some level of robustness with respect to
the initialization of prototypes. Secondly, for all quantities of
labeled objects the partitions obtained by C-RPCL presented
high NMI values (≈ 0.72, on average). These results suggest
that C-RPCL is not only obtaining better results than the other
algorithms, but also it has found very good data partitions.

Table III presents the average differences between the
number of constraints violated by on-line algorithms compared
to LCVQE. In this case, small numbers are better, indicating
that the on-line version violated less constraints than LCVQE.
From these results, it is possible to see that, as expected,
LCVQE, which can observe all the data at the same time,
violated less constraints than the on-line algorithms in 75%
of the cases (24 out of 32). However, some results deserve
further attention. In particular, for the Ionosphere and Pendigits
datasets, C-RPCL violated less constraints than LCVQE.

For a better understanding of the results obtained for
Pendigits, we performed experiments by using only its (two)
most informative features — with the same constraints as de-
rived from 15 labeled objects used in the previous experiments.
These two features were selected using the well-known Naïve
Bayes Wrapper and provide an average classification error of
7% (10-fold cross-validation). Note that this is not a practical
procedure. Instead, the use of the known labels for feature
selection is only justified by our interest in understanding the
obtained results. From this standpoint, Figure 1a illustrates
the partitions obtained from the trial with the largest NMI
difference between C-RPCL and LCVQE. The cluster and
class centroids, as well as the objects used for deriving the
constraints (shown as inverted triangles) are highlighted. The
density of each class is shown by its contours. One can see

that the classes overlap in this subspace and that the class
represented by the number “9” has a small cluster to the
left hand-side of the larger density area. From the obtained
centroids, it can be noted that C-RPCL was less affected
by such an “outlier” cluster, which allows it to obtain a
better estimate of the cluster mean than LCVQE. For this
reason, the partition obtained by LCVQE has more errors for
objects of class “8” compared to C-RPCL. To better illustrate
this, we present in Figure 1b three objects of class “8” that
were correctly classified by C-RPCL only — the remaining
algorithms misclassified them. It can be seen that the object
on the top-left is a reasonably well-formed “8”, whereas the
others are harder to classify. Noting that digit recognition is a
hard problem, the capability of correctly identifying numbers
with deformities (like those in Fig. 1b) is relevant. Also, we
speculate that the structure observed in the subspace shown in
Fig. 1a is, to some extent, similar to the one existing in the
full 16-dimensional space.

To compare on-line algorithms against batch algorithms on a
large dataset, we performed experiments on the KDDCUP’99
Network Intrusion Detection dataset, commonly used to assess
streaming clustering algorithms [17]. We considered only
classes with more than 1,000 objects, reducing the problem
from 23 to 8 types of connections. The dataset comprises
492,368 objects represented by 34 features. We generated
constraints using 20 labeled objects per class and repeated the
experiments ten times. Performance comparisons are summa-
rized in Table IV. The on-line algorithms were run in a stream
fashion, i.e., they make only one pass through the data. Note
that intrusion detection applications need a just-in-time pro-
cessing, making an on-line algorithm even more suitable. From
Table IV, one can note that the NMI values obtained by the
algorithms are similar. However, the amount of computation
time needed by the on-line algorithms is significantly smaller
than for the batch algorithm. More specifically, C-RPCL used
approximately 33% of the processing time needed by LCVQE,
while O-LCVQE used about 23% of the same amount of time.

V. FINAL REMARKS

We introduced two competitive learning algorithms for on-
line constrained clustering, namely: the Constrained Rival
Penalized Competitive Learning (C-RPCL) and the On-line
Linear Constrained Vector Quantization Error (O-LCVQE).

Table III: Differences between the number of constraints violated by on-line algorithms and LCVQE (smaller is better).

Algorithm C-RPCL O-LCVQE

Dataset
LO 5 10 15 20 Average 5 10 15 20 Average

9Gauss 10.8 39.8 75.8 108.5 58.7 12.6 115.2 225.4 398.6 188.0
Ionosphere 1.1 -8.8 -9.3 -45.6 -15.7 1.5 -7.6 9.9 26.6 7.6

Iris 5.6 17.3 42.7 51.3 29.2 3.4 9.7 35.3 57.7 26.5
Wine 4.5 7.1 6.4 1.3 4.8 3.8 5.0 -6.1 94.5 24.3

Breast Cancer 2.0 1.4 14.4 -22.0 -1.0 2.0 -3.4 14.2 4.2 4.2
Pendigits -6.5 -22.8 -81.9 -108.8 -55.0 10.1 -16.6 -43.0 -7.7 -14.3
Letters 4.3 9.6 22.0 19.6 13.9 4.8 15.7 11.6 16.1 12.1
Pima 3.8 7.2 12.4 13.8 9.3 4.2 4.2 -6.2 -5.0 -0.7

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

*

*

*

Labeled #3

Labeled #8

Labeled #9

C−RPCL

LCVQE

O−LCVQE

Class Centroid

Feature 4

F
e
a
tu

re
 1

0

(a) Centroids, labeled objects, and classes — using the most discriminative features only.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

0 20 40 60 80 100 120
0

20

40

60

80

100

120
0 20 40 60 80 100 120

0

20

40

60

80

100

120

(b) Three objects found by C-
RPCL in the cluster of class 8 —
only C-RPCL correctly classified
these objects.

Figure 1: Detailed results on Pendigits dataset.

Table IV: Results obtained on the KDDCUP’99 Network In-
trusion Detection dataset (standard deviations in parentheses).

Algorithm NMI Time (seconds)
C-RPCL 0.82 (0.03) 40.2 (0.2)

O-LCVQE 0.84 (0.02) 28.5 (0.2)
LCVQE 0.83 (0.02) 121.2 (26.6)

Experimental results show that C-RPCL not only provides
better results than O-LCVQE, but also that it can often provide
more accurate partitions than the well-known (batch mode)
LCVQE algorithm [8]. Moreover, results on a large dataset
highlight the computational and memory advantages of using
on-line algorithms. As future work, the study of C-RPCL for
distributed and asynchronous competitive learning [3], as well
as algorithms capable of identifying clusters with different
shapes (as in [18]), are promising.

ACKNOWLEDGMENTS

This work has been supported by NSF Grants (IIS-0713142
and IIS-1016614) and by FAPESP and CNPq.

REFERENCES

[1] C. S.-T. Choy and W.-C. Siu, “A class of competitive learning models
which avoids neuron underutilization problem,” IEEE Transactions on
Neural Networks, vol. 9, no. 6, pp. 1258–1269, 1998.

[2] T. Hofmann and J. Buhmann, “Competitive learning algorithms for
robust vector quantization,” Signal Processing, IEEE Transactions on,
vol. 46, no. 6, pp. 1665 –1675, 1998.

[3] B. Patra, “Convergence of distributed asynchronous learning vector
quantization algorithms,” JMLR, vol. 12, pp. 3431–3466, 2011.

[4] B. Chen, S. Zhao, P. Zhu, and J. C. Príncipe, “Quantized kernel least
mean square algorithm,” IEEE Trans. Neural Netw. Learning Syst., pp.
22–32, 2012.

[5] T. C. Silva and Z. Liang, “Stochastic competitive learning in complex
networks,” IEEE Trans. Neural Netw. Learning Syst., pp. 385–398, 2012.

[6] T. Kohonen, “Improved versions of learning vector quantization,” in
IJCNN, 1990, pp. 545–550.

[7] S. Basu, I. Davidson, and K. Wagstaff, Constrained Clustering: Ad-
vances in Algorithms, Theory, and Applications, 2008.

[8] D. Pelleg and D. Baras, “K-means with large and noisy constraint sets,”
in ECML, 2007, pp. 674–682.

[9] M. Bilenko, S. Basu, and R. J. Mooney, “Integrating constraints and
metric learning in semi-supervised clustering,” in ICML, 2004, pp. 81–
88.

[10] I. Davidson and S. S. Ravi, “Clustering with constraints: Feasibility
issues and the k-means algorithm,” in SDM, 2005, pp. 138–149.

[11] T. F. Covões, E. R. Hruschka, and J. Ghosh, “A study of k-means-based
algorithms for constrained clustering,” Intelligent Data Analysis, no. 3,
2013.

[12] S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D. E. Melton, “Com-
petitive learning algorithms for vector quantization,” Neural Networks,
vol. 3, no. 3, pp. 277 – 290, 1990.

[13] L. Xu, A. Krzyzak, and E. Oja, “Rival penalized competitive learning for
clustering analysis, RBF net, and curve detection,” IEEE Transactions
on Neural Networks, vol. 4, no. 4, pp. 636 –649, 1993.

[14] A. Asuncion and D. Newman, “UCI machine learning repository,” http:
//www.ics.uci.edu/~mlearn/MLRepository.html, 2007.

[15] R. J. G. B. Campello, E. R. Hruschka, and V. S. Alves, “On the efficiency
of evolutionary fuzzy clustering,” Journal of Heuristics, vol. 15, pp. 43–
75, 2009.

[16] A. Strehl and J. Ghosh, “Cluster ensembles — a knowledge reuse
framework for combining multiple partitions,” JMLR, vol. 3, pp. 583–
617, 2003.

[17] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for
clustering evolving data streams,” in VLDB, 2003, pp. 81–92.

[18] L. Xu, “A unified perspective and new results on RHT computing,
mixture based learning, and multi-learner based problem solving,”
Pattern Recogn., vol. 40, no. 8, pp. 2129–2153, 2007.

