Gaussian Processes for Classification

Amir Atiya Dept Computer Engineering, Cairo University amir@alumni.caltech.edu www.alumni.caltech.edu/~amir Currently on leave at Veros Systems, TX

February 2011

Gaussian Process Classification

- Nonparametric classification method.
- Based on a **Bayesian** methodology. It assumes some prior distribution on the underlying probability densities that guarantees some smoothness properties.
- The final classification is then determined as the one that provides a good fit for the observed data, while at the same time guaranteeing smoothness.
- This is achieved by taking the smoothness prior into account, while factoring in the observed classification of the training data.
- It is a very effective classifier. We have recently performed a large scale comparison study of 12 major classifiers, on 22 benchmark classification problems. The Gaussian process classifier was the best classifier among all.
- It was developed in the geostatistics field in the seventies (O'Hagan and others).
- Was popularized in the machine learning community by MacKay, Williams and Rasmussen.

Overview of Bayesian Parameter Estimation

- Consider a model whose function depends on certain parameters.
- Assume a prior distribution for these parameters.
- Factor in the observed data, to obtain a posterior distribution of the parameters.
- Obtain a prediction for a new point, by estimating its distribution given that we know the posterior of the parameters.

Example: A linear regression problem:

Bayesian Parameter Estimation (Contd)

- The regression model is given by $z = w^T x$.
- Assume a prior for the parameters p(w), e.g. zero mean Gaussian.
- Observe a number of points: $(x_i, z_i), i = 1, ..., N$ (let the data points be D).
- The posterior distribution of the parameters is given by:

$$p(w|D) = p(D|w)p(w)/p(D)$$

where

$$p(D|w) = \prod_{i} \frac{e^{-(z_i - w^T x_i)^2 / (2\sigma^2)}}{\sqrt{2\pi}\sigma}$$

- Consider a new points x^* , at which we would like to predict the function z^* .
- Then

$$p(z^*|D) = \int p(z^*, w|D) dw$$
$$= \int p(z^*|w) p(w|D) dw$$

On the Bayes Classifier

- Class-conditional densities $p(x|C_k)$, where x is the feature vector, C_k represents class k. This gives the probability density of feature vector x that is coming from class C_k .
- **Posterior probabilities** $P(C_k|x)$. It represents the probability that the pattern x comes from class C_k .
- By Bayes rule:

$$P(C_k|x) = \frac{p(x|C_k)P(C_k)}{p(x)}$$

• Classify x on the basis of the value of $P(C_k|x)$. Select the class C_k giving maximum $P(C_k|x)$.

The Gaussian Process Classifier

- It focuses on modeling the **posterior probabilities**, by defining certain latent variables: f_i is the **latent variable** for pattern *i*.
- Consider a two-class case: f_i is a measure of the degree of membership of class C_1 , meaning:
 - If f_i is positive and large \longrightarrow pattern i belongs to class C_1 with large probability.
 - If f_i is negative and large in magnitude \longrightarrow pattern i belongs to class C_2 with large probability.
 - If f_i is close to zero, class membership is less certain.

The Gaussian Process Classifier (Contd)

- Let $y_i = 1$ ($y_i = -1$) denote that pattern i belongs to class C_1 (C_2).
- The posterior probability (for class C_1) is:

$$P(C_1|x_i) \equiv P(y_i = 1|f_i)$$
$$= \sigma(f_i)$$
$$\equiv \int_{-\infty}^{f_i} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx$$

More Definitions

- Arrange the f_i 's of the training set in a vector $f \equiv (f_1, \ldots, f_N)^T$.
- Arrange the class memberships y_i of the training set in a vector $y \equiv (y_1, \ldots, y_N)^T$.
- Let x_i be the feature vector of training pattern i.
- Define the training matrix X as that containing all training vectors x_i .
- Let x_* be a testing vector to be classified, with latent variable f_* and class membership y_* .

Smoothness Prior

Smoothness Priors (Contd)

- We enforce smoothness by defining a prior on the latent variables f_i .
- Patterns with close by feature vectors x_i will have *highly* correlated latent variables f_i .

$$p(f|X) = \mathcal{N}(f, 0, \Sigma)$$

where $\mathcal{N}(f, \mu, \Sigma)$ denotes a Gaussian density of variable f having mean vector μ and covariance matrix Σ .

Smoothness Priors (Contd)

Classification

Consider a test pattern. Using standard probability manipulations, we get the probability that the test pattern belongs to class C_1 :

$$J_* \equiv p(y_* = +1|X, y, x_*) = \int \sigma(f_*) p(f_*|X, y, x_*) df_*$$

(Recall that $\sigma(f_*) \equiv P(y_* = 1|f_*)$.)

$$p(f_*|X, y, x_*) = \int p(f_*|X, x_*, f) p(f|X, y) df$$

where

$$p(f|X, y) = \frac{p(y|f)p(f|X)}{p(y|X)}$$

Classification (Contd)

- As we can see, to classify a point we have to evaluate an N-dimensional integral, where N is the size of the training set.
- This integral is intractable.
- There are some approximations, such as:
 - Laplace approximation,
 - Expectation propagation.
- Or, one can evaluate it using the Markov-Chain-Monte-Carlo (MCMC) procedure. This is numerically a very slow procedure.

The Proposed Method

- We use several variable transformations.
- We also implement several matrix manipulations and simplifications.
- These result in the following formula for the classification of a test pattern:

$$J_* = p(y = 1 | X, y, x_*) = \frac{\int_{orth} \mathcal{N} (v, 0, I + A_{12} \Sigma' A_{12}) dv}{\int_{orth+} \mathcal{N} (v, 0, I + A_{12} \Sigma' A_{12}) dv} \equiv \frac{I_1}{I_2}$$

where $v = (v_1, \dots, v_{N+1})^T$, orth means the orthant $v \ge 0$,
 $orth+$ means $-\infty < v_1 < \infty$, $v_2 \ge 0, \dots, v_{N+1} \ge 0$,
 \mathcal{N} is the multivariate Gaussian density with covariance
matrix $I + A_{12} \Sigma' A_{12}$, given by: $A_{12} = \begin{bmatrix} -1 & 0 \\ 0 & C' \end{bmatrix}$, $\Sigma' = \begin{bmatrix} \Sigma_{x_*x_*} & \Sigma_{Xx_*}^T \\ \Sigma_{Xx_*} & \Sigma \end{bmatrix}$. where $C' = \operatorname{diag}(y_1, \dots, y_N)$.

The Proposed Method (Contd)

$$J_* = \frac{\int_{orth} \mathcal{N}\left(v, 0, I + A_{12}\Sigma'A_{12}\right)dv}{\int_{orth+} \mathcal{N}\left(v, 0, I + A_{12}\Sigma'A_{12}\right)dv} \equiv \frac{I_1}{I_2}$$

Multivariate Gaussian Integrals

- For high dimensionality it is a very hard problem.
- Generating points from the Gaussian distribution and counting the fraction that falls in integration area is not feasible.
- For example, consider an identity covariance matrix and a number N_{gen} of generated points.

Fraction of points $\approx N_{qen}2^{-N}$

For N = 100, $N_{gen} = 100,000$, we get 7.9e - 26 points that fall in the integration area.

Proposed Integration Method

- The proposed new Monte Carlo method combines aspects of rejection sampling and bootstrap sampling.
- It can apply to any integration problem. As such, it is a new contribution for the general integration problem.
- Algorithm INTEG
 - We first generate samples for the first variable v_1 .
 - Subsequently, we reject the points that fall outside the integral limits (for v_1).
 - We replenish in place of the discarded points by sampling with replacement from the existing points.
 - We move on to the second variable, v_2 , and generate points using the conditional distribution $p(v_2|v_1)$ (conditioned on the v_1 points already generated).
 - Again, we reject the points of v_2 that fall outside the integration limit, and replenish by sampling with replacement.
 - We continue this manner until we reach the final variable v_N . The integral value is then estimated as the product of the acceptance ratios of the N variables.

Proposed Integration Method (Contd)

Properties of the Proposed Estimator

- We proved that it is a consistent estimator of the multivariate Gaussian integral (hence also of the posterior probability).
- This means that we can approach the true value by using enough generated points.
- The reason is as follows:
 - Assume the generated points v_i obey the distribution $p(v_i|v_{i-1} \ge 0, \dots, v_1 \ge 0).$
 - When we discard the points $v_i < 0$ and sample by replacement from the existing points, the points will be distributed as $p(v_i | v_i \ge 0, v_{i-1} \ge 0, \dots, v_1 \ge 0)$.
 - When we generate the points v_{i+1} they will be distributed as $p(v_{i+1}|v_i \ge 0, \dots, v_1 \ge 0)$.
 - Fraction accepted every step is about $P(v_i \ge 0 | v_{i-1} \ge 0, \ldots, v_1 \ge 0)$.
 - Products of fractions accepted is about:

$$P(v_N \ge 0 | v_{N-1} \ge 0, \dots, v_1 \ge 0) \cdot$$

 $P(v_{N-1} \ge 0 | v_{N-2} \ge 0, \dots, v_1 \ge 0) \dots$
 $P(v_1 \ge 0)$

which equals

$$P(v_N \ge 0, v_{N-1} \ge 0, \dots, v_1 \ge 0)$$

AI Illustration of the Rejection Step

Mean Square Error of the Estimators (in Log Space)

- Let N be the dimension, N_G be the number of generated points, P_{orth} be the integral value, and $P_i \equiv P(x_i \ge 0 | x_{i-1} \ge 0, \dots, x_1 \ge 0)$
- For the standard Monte Carlo:

$$MSE = \frac{1 - P_{orth}}{P_{orth}N_G}$$

• For the new estimator:

$$MSE = \frac{N}{N_G} Avg\left(\frac{1 - P_i}{P_i}\right)$$

Numerical Example:

- Consider a 20-dimensional multivariate Gaussian distribution, with some specific covariance matrix.
- We applied both the new algorithm and the standard Monte Carlo method to evaluate the orthant integral $v \ge 0$.
- For both we used 100,000 generated values.
- For the standard Monte Carlo, no point fell in the area of integration.
- The true log integral equals -16.8587
- For the proposed algorithm, we obtained log(integral)= -16.8902 (0.19% error).

Other Approaches: Approximations to the Gaussian Integral

- In cases when we have a very large training set, e.g. in the thousands, we might opt for fast approximations for the sake of computation speed.
- We developed an approximation based on H. Joe (1995)'s Gaussian integral approximation.
- It is based on approximating the binary events $v_i \ge 0$ as Gaussian, and writing the joint Gaussian in terms of its conditional constituents.

$$J^{*} = \frac{1}{2} + \frac{1}{2} \begin{pmatrix} \frac{1}{4} - P_{N1} & \dots & \frac{1}{4} - P_{NN} \end{pmatrix} \cdot \\ \begin{pmatrix} \frac{1}{4} & P_{12} - \frac{1}{4} & \dots & P_{1N} - \frac{1}{4} \\ P_{12} - \frac{1}{4} & \frac{1}{4} & \dots & P_{2N} - \frac{1}{4} \\ \vdots & \vdots & \vdots & \vdots \\ P_{1N} - \frac{1}{4} & P_{2N} - \frac{1}{4} & \dots & \frac{1}{4} \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

where P_{ij} is the bivariate centered Gaussian orthant integral for variables i and j. It can be analytically obtained using a simple formula.

Other Approximations: Linear Regression

- The multivariate Gaussian orthant integral is one of the very old problems that have defied any adequate solution (whether analytical or algorithmic.
- There exist a series expansion, but it is computationally intractable (exponential in N).
- Taking cue, we propose a series expansion. Instead of computing the coefficients analytically, we use a linear regression fit.
- We regress the orthant probability against the following possible homogeneous polynomials:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij}, \quad \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij}^{2}, \quad \sum_{i=1}^{N} \left[\sum_{j=1}^{N} a_{ij} \right]^{2}, \dots$$

where a_{ij} is the $(i, j)^{th}$ element of the inverse covariance matrix.

- How would we know the real orthant probabilities to obtain the regression coefficients:
- In the literature there are several special cases where a closed-form solution of the orthant probability exists. We use these to train the regression model.

Parameters that control smoothness

 In the prior distribution, the covariance for the latent variables is given by:

$$\operatorname{cov}(f_i, f_j) = \beta e^{-\alpha \|x_i - x_j\|^2}$$

- α controls the degree of correlation among f_i and f_j .
- As such, it controls the the degree of smoothness of the *f*-surface.
- β controls the variance of the f_i 's.
- It therefore controls how loose the connection is between the conditional mean of f_i and its resulting classification.

Marginal Likelihood

 A very potent way for the selection of these two parameters is to maximize the marginal likelihood function:

$$L = p(y|X) \equiv \int p(y|f)p(f|X)df$$

- It is a measure of how likely are the class memberships of the training data given the parameter values α and β .
- Find α and β that maximize L.
- We also proved that L is equivalent to a multivariate Gaussian orthant probability, that can be evaluated using the proposed methods.

Some Simulation Experiments

- We tested the new Monte Carlo algorithm on a special artificial classification problem, for which we can derive the "ground truth" probabilities.
- Convergence was achieved in every single run.
- There are no tuning parameters. In summary, the algorithm works all the time.
- In tens of tuning trials for the competing MCMC method, none converged.

