Gaussian Processes for Classification

Amir Atiya
Dept Computer Engineering, Cairo University
amir@alumni.caltech.edu
www.alumni.caltech.edu/~amir
Currently on leave at Veros Systems, TX

February 2011



Gaussian Process Classification

Nonparametric classification method.

Based on a Bayesian methodology. It assumes some
prior distribution on the underlying probability densities
that guarantees some smoothness properties.

The final classification is then determined as the one that
provides a good fit for the observed data, while at the
same time guaranteeing smoothness.

This is achieved by taking the smoothness prior into
account, while factoring in the observed classification of
the training data.

It is a very effective classifier. We have recently
performed a large scale comparison study of 12 major
classifiers, on 22 benchmark classification problems. The
Gaussian process classifier was the best classifier among
all.

It was developed in the geostatistics field in the seventies
(O'Hagan and others).

Was popularized in the machine learning community by
MacKay, Williams and Rasmussen.



Overview of Bayesian Parameter Estimation

e Consider a model whose function depends on certain
parameters.

e Assume a prior distribution for these parameters.

e Factor in the observed data, to obtain a posterior
distribution of the parameters.

e Obtain a prediction for a new point, by estimating its
distribution given that we know the posterior of the
parameters.

Example: A linear regression problem:
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Bayesian Parameter Estimation (Contd)

The regression model is given by z = w’ z.

Assume a prior for the parameters p(w), e.g. zero mean
Gaussian.

Observe a number of points: (z;,2;), i =1,..., N (let
the data points be D).

The posterior distribution of the parameters is given by:

p(w|D) = p(D)w)p(w)/p(D)

where
o—(zi—w! )%/ (20%)

p(D]w) = H

Consider a new points x
predict the function z*.
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Then
p(z*|D) = [ p(z",w|D)dw

p(z"|w)p(w|D)dw
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On the Bayes Classifier

Class-conditional densities p(z|C)), where x is the
feature vector, (), represents class k. This gives the
probability density of feature vector x that is coming
from class C..

Posterior probabilities P(Cy|r). It represents the
probability that the pattern & comes from class CY.

By Bayes rule:

p(z|Cy) P(C)

POk = @)

Classify x on the basis of the value of P(Cy|z). Select
the class C giving maximum P(Cy|z).

P(C1x) P(C2|x)
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The Gaussian Process Classifier

e |t focuses on modeling the posterior probabilities, by
defining certain latent variables: f; is the latent variable
for pattern 1.

e Consider a two-class case: f; is a measure of the degree
of membership of class 1, meaning:

— If f; is positive and large — pattern ¢ belongs to
class C7 with large probability.

— If f; is negative and large in magnitude — pattern ¢
belongs to class C5 with large probability.

— If f; is close to zero, class membership is less certain.
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The Gaussian Process Classifier (Contd)

e Let y; =1 (y; = —1) denote that pattern i belongs to
class C7 (C%).

e The posterior probability (for class C) is:

P(Cilz:) = Py =1|fi)
= o(/fi)
i 6—962/2
= /_OO N dx
Sigma(x)
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More Definitions

Arrange the f;'s of the training set in a vector f

(fro--s fN)T

Arrange the class memberships y; of the training set in
a vector y = (y1,...,yn)".

Let x; be the feature vector of training pattern 1.

Define the training matrix X as that containing all
training vectors x;.

Let z, be a testing vector to be classified, with latent
variable f, and class membership y.,.



Smoothness Prior




Smoothness Priors (Contd)

e \We enforce smoothness by defining a prior on the latent
variables f;.

e Patterns with close by feature vectors x; will have highly
correlated latent variables f;.

p(f1X) = N(f,0,%)

where N'(f, 1, %) denotes a Gaussian density of variable
f having mean vector 1 and covariance matrix ..

2
3 J\ Corr(f,,f,)=fn(||x, x|}

A e.g. exp(-a [|x; =x,||?)



Smoothness Priors (Contd)
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Classification

Consider a test pattern. Using standard probability
manipulations, we get the probability that the test pattern
belongs to class Cf:

T, = plys = +11X, g, 2,) = / o (f)p(f- X, s 2.)df.
(Recall that o(fy) = P(y. = 1|f.).)

(o] X, yo2.) = / p(foIX, 2, )P(f1X, y)df

where

_ plf)p(f1X)




Classification (Contd)

As we can see, to classify a point we have to evaluate
an N-dimensional integral, where N is the size of the
training set.

This integral is intractable.

There are some approximations, such as:

— Laplace approximation,
— Expectation propagation.

Or, one can evaluate it using the Markov-Chain-Monte-
Carlo (MCMC) procedure. This is numerically a very
slow procedure.
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The Proposed Method

e \We use several variable transformations.

e We also implement several matrix manipulations and
simplifications.

e These result in the following formula for the classification
of a test pattern:

forthN (Uv Oa I+ AlQE/A12) dv _ Il
Jortne N (0,0, 1 + Aad/ Ap) do I

where v = (vy,...,vn41)?, orth means the orthant v > 0,
orth+ means —oo < v < 00, wg > 0,...,vny41 > 0,
N is the multivariate Gaussian density with covariance

matrix I + A1o' Aqo, given by: Aip = [ _01 8, ] Y =

S S ] . where C' = diag(y1,.--,Yn)-



The Proposed Method (Contd)

N area:

Divided by integ-
I ration over area:

JoranN (v,0,1 + A1X Ap)dv _ 1,
Jorina N (v, 0,1 + Apad/ App) dv I

Jp =



Multivariate Gaussian Integrals

e For high dimensionality it is a very hard problem.

e Generating points from the Gaussian distribution and
counting the fraction that falls in integration area is not
feasible.

e For example, consider an identity covariance matrix and
a number Ny, of generated points.

Fraction of points =~ NgenQ_N
For N =100, Nge, = 100,000, we get 7.9e — 26 points
that fall in the integration area.

@
O
o ® o ®
00 g
© ) @ )
©®e © |o o ® _
° ® Fraction
©o o ° of points in
® o o area:



Proposed Integration Method

e The proposed new Monte Carlo method combines aspects
of rejection sampling and bootstrap sampling.

e |t can apply to any integration problem. As such, it is a
new contribution for the general integration problem.

e Algorithm INTEG

— We first generate samples for the first variable v;.

— Subsequently, we reject the points that fall outside the
integral limits (for vy).

— We replenish in place of the discarded points by
sampling with replacement from the existing points.

— We move on to the second variable, v, and generate
points using the conditional distribution p(vs|v1)
(conditioned on the v; points already generated).

— Again, we reject the points of vy that fall outside
the integration limit, and replenish by sampling with
replacement.

— We continue this manner until we reach the final
variable vp. The integral value is then estimated
as the product of the acceptance ratios of the N
variables.



Proposed Integration Method (Contd)

Orthant prob.=product of
Two points each Ppoint acceptance ratios

Generate
X;>0 ¢ according to
T T p(X3 [X4,X)
and continue
X, <0 in this mannel
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Properties of the Proposed Estimator

e We proved that it is a consistent estimator of the
multivariate Gaussian integral (hence also of the posterior
probability).

e [his means that we can approach the true value by using
enough generated points.

e [ he reason is as follows:

— Assume the generated points v; obey the distribution
p(vilvi—1 > 0,...,v1 > 0).

— When we discard the points v; < 0 and sample by
replacement from the existing points, the points will
be distributed as p(v;|v; > 0,v;,-1 > 0,...,v1 > 0).

— When we generate the points v;y; they will be
distributed as p(v;r1|v; > 0,...,v1 > 0).

— Fraction accepted every step is about P(v; > 0|v;_1 >
O,...,’Ul ZO)

— Products of fractions accepted is about:

P(oy >0loy_1>0,...,01 >0)-
P(’UN_1ZO|UN_220,...,U120)...
P(’U1 ZO)

which equals

P(vy > 0,9n-12>0,...,v1 >0)



Al lllustration of the Rejection Step
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Mean Square Error of the Estimators (in Log
Space)

e Let N be the dimension, Ng be the number of generated
points, P, be the integral value, and P, = P(x; >
O|£CZ'_1 2 O, s L1 Z O)

e For the standard Monte Carlo:

1 — Porth

MSE =
PorthNG

e For the new estimator:

MSE = —Avg<1 — P)

NG Pz



Numerical Example:

Consider a 20-dimensional multivariate Gaussian
distribution, with some specific covariance matrix.

We applied both the new algorithm and the standard
Monte Carlo method to evaluate the orthant integral
v > 0.

For both we used 100,000 generated values.

For the standard Monte Carlo, no point fell in the area
of integration.

The true log integral equals -16.8587

For the proposed algorithm, we obtained log(integral)=
-16.8902 (0.19% error).



Other Approaches: Approximations to the
Gaussian Integral

e In cases when we have a very large training set, e.g. in
the thousands, we might opt for fast approximations for
the sake of computation speed.

e \We developed an approximation based on H. Joe (1995)'s
Gaussian integral approximation.

e |t is based on approximating the binary events v; > 0 as
Gaussian, and writing the joint Gaussian in terms of its
conditional constituents.

) 11
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where P;; is the bivariate centered Gaussian orthant integral

for variables ¢ and j. It can be analytically obtained using
a simple formula.



Other Approximations: Linear Regression

The multivariate Gaussian orthant integral is one of the
very old problems that have defied any adequate solution
(whether analytical or algorithmic.

There exist a series expansion, but it is computationally
intractable (exponential in N).

Taking cue, we propose a series expansion. Instead of
computing the coefficients analytically, we use a linear
regression fit.

We regress the orthant probability against the following
possible homogeneous polynomials:

N N N N N N 5
DD DD ak, DD ay|
i=1 j=1 i=1 j=1 i=1 j=1
where a;; is the (i, )" element of the inverse covariance
matrix.

How would we know the real orthant probabilities to
obtain the regression coefficients:

In the literature there are several special cases where a
closed-form solution of the orthant probability exists. We
use these to train the regression model.



Parameters that control smoothness

In the prior distribution, the covariance for the latent
variables is given by:

cov(fi, f;) = Beolmieill

o controls the degree of correlation among f; and f;.

As such, it controls the the degree of smoothness of the
f-surface.

[ controls the variance of the f;'s.

It therefore controls how loose the connection is between
the conditional mean of f; and its resulting classification.



Marginal Likelihood

A very potent way for the selection of these two
parameters is to maximize the marginal likelihood
function:

L=p(ylX) = / oyl F)p(F1X)df

It is a measure of how likely are the class memberships
of the training data given the parameter values a and 3.

Find o and 5 that maximize L.

We also proved that L is equivalent to a multivariate
Gaussian orthant probability, that can be evaluated using
the proposed methods.



Some Simulation Experiments

We tested the new Monte Carlo algorithm on a special
artificial classification problem, for which we can derive
the “ground truth” probabilities.

Convergence was achieved in every single run.

There are no tuning parameters. In summary, the
algorithm works all the time.

In tens of tuning trials for the competing MCMC method,
none converged.
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