Gaussian Processes for Classification

Amir Atiya
Dept Computer Engineering, Cairo University
amir@alumni.caltech.edu
www.alumni.caltech.edu/~amir
Currently on leave at Veros Systems, TX

February 2011
Gaussian Process Classification

- Nonparametric classification method.

- Based on a Bayesian methodology. It assumes some prior distribution on the underlying probability densities that guarantees some smoothness properties.

- The final classification is then determined as the one that provides a good fit for the observed data, while at the same time guaranteeing smoothness.

- This is achieved by taking the smoothness prior into account, while factoring in the observed classification of the training data.

- It is a very effective classifier. We have recently performed a large scale comparison study of 12 major classifiers, on 22 benchmark classification problems. The Gaussian process classifier was the best classifier among all.

- It was developed in the geostatistics field in the seventies (O’Hagan and others).

- Was popularized in the machine learning community by MacKay, Williams and Rasmussen.
Overview of Bayesian Parameter Estimation

- Consider a model whose function depends on certain parameters.

- Assume a prior distribution for these parameters.

- Factor in the observed data, to obtain a posterior distribution of the parameters.

- Obtain a prediction for a new point, by estimating its distribution given that we know the posterior of the parameters.

Example: A linear regression problem:
Bayesian Parameter Estimation (Contd)

• The regression model is given by \(z = w^T x \).

• Assume a prior for the parameters \(p(w) \), e.g. zero mean Gaussian.

• Observe a number of points: \((x_i, z_i), \ i = 1, \ldots, N\) (let the data points be \(D \)).

• The posterior distribution of the parameters is given by:

\[
p(w|D) = p(D|w)p(w)/p(D)
\]

where

\[
p(D|w) = \prod_i e^{-\frac{(z_i - w^T x_i)^2}{2\sigma^2}}/\sqrt{2\pi\sigma}
\]

• Consider a new points \(x^* \), at which we would like to predict the function \(z^* \).

• Then

\[
p(z^*|D) = \int p(z^*, w|D)dw
\]

\[
= \int p(z^*|w)p(w|D)dw
\]
On the Bayes Classifier

- **Class-conditional densities** $p(x|C_k)$, where x is the feature vector, C_k represents class k. This gives the probability density of feature vector x that is coming from class C_k.

- **Posterior probabilities** $P(C_k|x)$. It represents the probability that the pattern x comes from class C_k.

- By Bayes rule:

$$P(C_k|x) = \frac{p(x|C_k)P(C_k)}{p(x)}$$

- Classify x on the basis of the value of $P(C_k|x)$. Select the class C_k giving maximum $P(C_k|x)$.

![Diagram showing classification decision](attachment:image)
The Gaussian Process Classifier

• It focuses on modeling the **posterior probabilities**, by defining certain latent variables: f_i is the **latent variable** for pattern i.

• Consider a two-class case: f_i is a measure of the degree of membership of class C_1, meaning:

 – If f_i is positive and large \rightarrow pattern i belongs to class C_1 with large probability.
 – If f_i is negative and large in magnitude \rightarrow pattern i belongs to class C_2 with large probability.
 – If f_i is close to zero, class membership is less certain.

\[f_i < 0: \rightarrow \text{Class } C_2 \quad f_i > 0: \rightarrow \text{Class } C_1 \]
The Gaussian Process Classifier (Contd)

- Let \(y_i = 1 \) \((y_i = -1)\) denote that pattern \(i \) belongs to class \(C_1 \) \((C_2)\).

- The posterior probability (for class \(C_1 \)) is:

\[
P(C_1|x_i) \equiv P(y_i = 1|f_i) = \sigma(f_i) = \int_{-\infty}^{f_i} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx
\]

\textbf{Sigma}(x)

\begin{center}
\includegraphics[width=0.5\textwidth]{sigma.png}
\end{center}
More Definitions

- Arrange the f_i's of the training set in a vector $f \equiv (f_1, \ldots, f_N)^T$.

- Arrange the class memberships y_i of the training set in a vector $y \equiv (y_1, \ldots, y_N)^T$.

- Let x_i be the feature vector of training pattern i.

- Define the training matrix X as that containing all training vectors x_i.

- Let x_* be a testing vector to be classified, with latent variable f_* and class membership y_*.
Smoothness Prior
Smoothness Priors (Contd)

- We enforce smoothness by defining a prior on the latent variables f_i.

- Patterns with close by feature vectors x_i will have *highly correlated* latent variables f_i.

$$p(f|X) = \mathcal{N}(f, 0, \Sigma)$$

where $\mathcal{N}(f, \mu, \Sigma)$ denotes a Gaussian density of variable f having mean vector μ and covariance matrix Σ.

\begin{align*}
\text{Corr}(f_1, f_2) &= \text{fn}(||x_1 - x_2||) \\
\text{e.g. } \exp(-\alpha \ ||x_1 - x_2||^2)
\end{align*}
Smoothness Priors (Contd)
Consider a test pattern. Using standard probability manipulations, we get the probability that the test pattern belongs to class C_1:

$$J_* \equiv p(y_* = +1|X, y, x_*) = \int \sigma(f_*) p(f_*|X, y, x_*) df_*$$

(Recall that $\sigma(f_*) \equiv P(y_* = 1|f_*)$.)

$$p(f_*|X, y, x_*) = \int p(f_*|X, x_*, f)p(f|X, y)df$$

where

$$p(f|X, y) = \frac{p(y|f)p(f|X)}{p(y|X)}$$
Classification (Contd)

• As we can see, to classify a point we have to evaluate an N-dimensional integral, where N is the size of the training set.

• This integral is intractable.

• There are some approximations, such as:
 − Laplace approximation,
 − Expectation propagation.

• Or, one can evaluate it using the Markov-Chain-Monte-Carlo (MCMC) procedure. This is numerically a very slow procedure.
The Proposed Method

• We use several variable transformations.

• We also implement several matrix manipulations and simplifications.

• These result in the following formula for the classification of a test pattern:

\[J_\ast = p(y = 1 | X, y, x_\ast) = \frac{\int_{\text{orth}} N(v, 0, I + A_{12} \Sigma' A_{12}) \, dv}{\int_{\text{orth}+} N(v, 0, I + A_{12} \Sigma' A_{12}) \, dv} \equiv \frac{I_1}{I_2} \]

where \(v = (v_1, \ldots, v_{N+1})^T \), \(\text{orth} \) means the orthant \(v \geq 0 \), \(\text{orth}^+ \) means \(-\infty < v_1 < \infty, \ v_2 \geq 0, \ldots, v_{N+1} \geq 0 \), \(N \) is the multivariate Gaussian density with covariance matrix \(I + A_{12} \Sigma' A_{12} \), given by: \(A_{12} = \begin{bmatrix} -1 & 0 \\ 0 & C' \end{bmatrix}, \Sigma' = \begin{bmatrix} \Sigma_{x_* x_*} & \Sigma_{X x_*}^T \\ \Sigma_{X x_*} & \Sigma \end{bmatrix} \), where \(C' = \text{diag}(y_1, \ldots, y_N) \).
The Proposed Method (Contd)

\[
J^*_\ast = \frac{\int_{orth} \mathcal{N}(v, 0, I + A_{12} \Sigma' A_{12}) \, dv}{\int_{orth^+} \mathcal{N}(v, 0, I + A_{12} \Sigma' A_{12}) \, dv} \equiv \frac{I_1}{I_2}
\]
Multivariate Gaussian Integrals

- For high dimensionality it is a very hard problem.
- Generating points from the Gaussian distribution and counting the fraction that falls in integration area is not feasible.
- For example, consider an identity covariance matrix and a number N_{gen} of generated points.

$$\text{Fraction of points } \approx N_{gen}2^{-N}$$

For $N = 100$, $N_{gen} = 100,000$, we get $7.9e - 26$ points that fall in the integration area.
Proposed Integration Method

- The proposed new Monte Carlo method combines aspects of rejection sampling and bootstrap sampling.
- It can apply to any integration problem. As such, it is a new contribution for the general integration problem.

Algorithm INTEG
- We first generate samples for the first variable v_1.
- Subsequently, we reject the points that fall outside the integral limits (for v_1).
- We replenish in place of the discarded points by sampling with replacement from the existing points.
- We move on to the second variable, v_2, and generate points using the conditional distribution $p(v_2|v_1)$ (conditioned on the v_1 points already generated).
- Again, we reject the points of v_2 that fall outside the integration limit, and replenish by sampling with replacement.
- We continue this manner until we reach the final variable v_N. The integral value is then estimated as the product of the acceptance ratios of the N variables.
Proposed Integration Method (Contd)

Two points each

Orthant prob. = product of point acceptance ratios

\[x_1 > 0 \]

\[x_1 < 0 \]

Generate \(x_1 \), discard and replace

Generate according to \(p(x_3 | x_1, x_2) \) and continue in this manner

\[x_2 < 0 \]

Generate according to \(p(x_2 | x_1) \)

Discard and replace
Properties of the Proposed Estimator

- We proved that it is a consistent estimator of the multivariate Gaussian integral (hence also of the posterior probability).

- This means that we can approach the true value by using enough generated points.

- The reason is as follows:
 - Assume the generated points v_i obey the distribution $p(v_i|v_{i-1} \geq 0, \ldots, v_1 \geq 0)$.
 - When we discard the points $v_i < 0$ and sample by replacement from the existing points, the points will be distributed as $p(v_i|v_i \geq 0, v_{i-1} \geq 0, \ldots, v_1 \geq 0)$.
 - When we generate the points v_{i+1} they will be distributed as $p(v_{i+1}|v_i \geq 0, \ldots, v_1 \geq 0)$.
 - Fraction accepted every step is about $P(v_i \geq 0|v_{i-1} \geq 0, \ldots, v_1 \geq 0)$.
 - Products of fractions accepted is about:

 $P(v_N \geq 0|v_{N-1} \geq 0, \ldots, v_1 \geq 0) \cdot P(v_{N-1} \geq 0|v_{N-2} \geq 0, \ldots, v_1 \geq 0) \ldots P(v_1 \geq 0)$

 which equals

 $P(v_N \geq 0, v_{N-1} \geq 0, \ldots, v_1 \geq 0)$
AI Illustration of the Rejection Step

$p(x)$

Discard

Accepted points

$P(x|x>0)$
Mean Square Error of the Estimators (in Log Space)

- Let N be the dimension, N_G be the number of generated points, P_{orth} be the integral value, and $P_i \equiv P(x_i \geq 0 | x_{i-1} \geq 0, \ldots, x_1 \geq 0)$

- For the standard Monte Carlo:

 $$\text{MSE} = \frac{1 - P_{orth}}{P_{orth} N_G}$$

- For the new estimator:

 $$\text{MSE} = \frac{N}{N_G \text{Avg}} \left(\frac{1 - P_i}{P_i} \right)$$
Numerical Example:

- Consider a 20-dimensional multivariate Gaussian distribution, with some specific covariance matrix.

- We applied both the new algorithm and the standard Monte Carlo method to evaluate the orthant integral $v \geq 0$.

- For both we used 100,000 generated values.

- For the standard Monte Carlo, no point fell in the area of integration.

- The true log integral equals -16.8587

- For the proposed algorithm, we obtained $\log(\text{integral}) = -16.8902$ (0.19% error).
Other Approaches: Approximations to the Gaussian Integral

- In cases when we have a very large training set, e.g. in the thousands, we might opt for fast approximations for the sake of computation speed.

- We developed an approximation based on H. Joe (1995)’s Gaussian integral approximation.

- It is based on approximating the binary events \(v_i \geq 0 \) as Gaussian, and writing the joint Gaussian in terms of its conditional constituents.

\[
J^* = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{4} - P_{N1} \right) \left(\frac{1}{4} - P_{NN} \right) \cdot \\
\left(\begin{array}{cccc}
\frac{1}{4} & P_{12} - \frac{1}{4} & \cdots & P_{1N} - \frac{1}{4} \\
P_{12} - \frac{1}{4} & \frac{1}{4} & \cdots & P_{2N} - \frac{1}{4} \\
\vdots & \vdots & \ddots & \vdots \\
P_{1N} - \frac{1}{4} & P_{2N} - \frac{1}{4} & \cdots & \frac{1}{4}
\end{array} \right)^{-1} \left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array} \right)
\]

where \(P_{ij} \) is the bivariate centered Gaussian orthant integral for variables \(i \) and \(j \). It can be analytically obtained using a simple formula.
Other Approximations: Linear Regression

- The multivariate Gaussian orthant integral is one of the very old problems that have defied any adequate solution (whether analytical or algorithmic.

- There exist a series expansion, but it is computationally intractable (exponential in N).

- Taking cue, we propose a series expansion. Instead of computing the coefficients analytically, we use a linear regression fit.

- We regress the orthant probability against the following possible homogeneous polynomials:

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij}, \quad \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij}^2, \quad \sum_{i=1}^{N} \left[\sum_{j=1}^{N} a_{ij} \right]^2, \ldots
$$

where a_{ij} is the $(i, j)^{th}$ element of the inverse covariance matrix.

- How would we know the real orthant probabilities to obtain the regression coefficients:

- In the literature there are several special cases where a closed-form solution of the orthant probability exists. We use these to train the regression model.
Parameters that control smoothness

- In the prior distribution, the covariance for the latent variables is given by:

\[
\text{cov}(f_i, f_j) = \beta e^{-\alpha \| x_i - x_j \|^2}
\]

- \(\alpha\) controls the degree of correlation among \(f_i\) and \(f_j\).

- As such, it controls the degree of smoothness of the \(f\)-surface.

- \(\beta\) controls the variance of the \(f_i\)'s.

- It therefore controls how loose the connection is between the conditional mean of \(f_i\) and its resulting classification.
Marginal Likelihood

• A very potent way for the selection of these two parameters is to maximize the marginal likelihood function:

\[L = p(y|X) \equiv \int p(y|f)p(f|X)df \]

• It is a measure of how likely are the class memberships of the training data given the parameter values \(\alpha \) and \(\beta \).

• Find \(\alpha \) and \(\beta \) that maximize \(L \).

• We also proved that \(L \) is equivalent to a multivariate Gaussian orthant probability, that can be evaluated using the proposed methods.
Some Simulation Experiments

- We tested the new Monte Carlo algorithm on a special artificial classification problem, for which we can derive the “ground truth” probabilities.

- Convergence was achieved in every single run.

- There are no tuning parameters. In summary, the algorithm works all the time.

- In tens of tuning trials for the competing MCMC method, none converged.