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Gaussian Process Classification

• Nonparametric classification method.

• Based on a Bayesian methodology. It assumes some
prior distribution on the underlying probability densities
that guarantees some smoothness properties.

• The final classification is then determined as the one that
provides a good fit for the observed data, while at the
same time guaranteeing smoothness.

• This is achieved by taking the smoothness prior into
account, while factoring in the observed classification of
the training data.

• It is a very effective classifier. We have recently
performed a large scale comparison study of 12 major
classifiers, on 22 benchmark classification problems. The
Gaussian process classifier was the best classifier among
all.

• It was developed in the geostatistics field in the seventies
(O’Hagan and others).

• Was popularized in the machine learning community by
MacKay, Williams and Rasmussen.



Overview of Bayesian Parameter Estimation

• Consider a model whose function depends on certain
parameters.

• Assume a prior distribution for these parameters.

• Factor in the observed data, to obtain a posterior
distribution of the parameters.

• Obtain a prediction for a new point, by estimating its
distribution given that we know the posterior of the
parameters.

Example: A linear regression problem:



Bayesian Parameter Estimation (Contd)

• The regression model is given by z = wTx.

• Assume a prior for the parameters p(w), e.g. zero mean
Gaussian.

• Observe a number of points: (xi, zi), i = 1, . . . , N (let
the data points be D).

• The posterior distribution of the parameters is given by:

p(w|D) = p(D|w)p(w)/p(D)

where

p(D|w) =
∏

i

e−(zi−wTxi)
2/(2σ2)

√
2πσ

• Consider a new points x∗, at which we would like to
predict the function z∗.

• Then

p(z∗|D) =

∫

p(z∗, w|D)dw

=

∫

p(z∗|w)p(w|D)dw



On the Bayes Classifier

• Class-conditional densities p(x|Ck), where x is the
feature vector, Ck represents class k. This gives the
probability density of feature vector x that is coming
from class Ck.

• Posterior probabilities P (Ck|x). It represents the
probability that the pattern x comes from class Ck.

• By Bayes rule:

P (Ck|x) =
p(x|Ck)P (Ck)

p(x)

• Classify x on the basis of the value of P (Ck|x). Select
the class Ck giving maximum P (Ck|x).



The Gaussian Process Classifier

• It focuses on modeling the posterior probabilities, by
defining certain latent variables: fi is the latent variable
for pattern i.

• Consider a two-class case: fi is a measure of the degree
of membership of class C1, meaning:

– If fi is positive and large −→ pattern i belongs to
class C1 with large probability.

– If fi is negative and large in magnitude −→ pattern i
belongs to class C2 with large probability.

– If fi is close to zero, class membership is less certain.



The Gaussian Process Classifier (Contd)

• Let yi = 1 (yi = −1) denote that pattern i belongs to
class C1 (C2).

• The posterior probability (for class C1) is:

P (C1|xi) ≡ P (yi = 1|fi)
= σ(fi)

≡
∫ fi

−∞

e−x2/2

√
2π

dx



More Definitions

• Arrange the fi’s of the training set in a vector f ≡
(f1, . . . , fN)T .

• Arrange the class memberships yi of the training set in
a vector y ≡ (y1, . . . , yN)T .

• Let xi be the feature vector of training pattern i.

• Define the training matrix X as that containing all
training vectors xi.

• Let x∗ be a testing vector to be classified, with latent
variable f∗ and class membership y∗.



Smoothness Prior



Smoothness Priors (Contd)

• We enforce smoothness by defining a prior on the latent
variables fi.

• Patterns with close by feature vectors xi will have highly
correlated latent variables fi.

p(f |X) = N (f, 0,Σ)

where N (f, µ,Σ) denotes a Gaussian density of variable
f having mean vector µ and covariance matrix Σ.



Smoothness Priors (Contd)



Classification

Consider a test pattern. Using standard probability
manipulations, we get the probability that the test pattern
belongs to class C1:

J∗ ≡ p(y∗ = +1|X, y, x∗) =

∫

σ(f∗)p(f∗|X, y, x∗)df∗

(Recall that σ(f∗) ≡ P (y∗ = 1|f∗).)

p(f∗|X, y, x∗) =

∫

p(f∗|X,x∗, f)p(f |X, y)df

where

p(f |X, y) =
p(y|f)p(f |X)

p(y|X)



Classification (Contd)

• As we can see, to classify a point we have to evaluate
an N -dimensional integral, where N is the size of the
training set.

• This integral is intractable.

• There are some approximations, such as:

– Laplace approximation,
– Expectation propagation.

• Or, one can evaluate it using the Markov-Chain-Monte-
Carlo (MCMC) procedure. This is numerically a very
slow procedure.
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The Proposed Method

• We use several variable transformations.

• We also implement several matrix manipulations and
simplifications.

• These result in the following formula for the classification
of a test pattern:

J∗ = p(y = 1|X, y, x∗) =

∫

orth
N (v, 0, I +A12Σ

′A12) dv
∫

orth+
N (v, 0, I + A12Σ′A12) dv

≡ I1
I2

where v = (v1, . . . , vN+1)
T , orth means the orthant v ≥ 0,

orth+ means −∞ < v1 < ∞, v2 ≥ 0, . . . , vN+1 ≥ 0,
N is the multivariate Gaussian density with covariance

matrix I + A12Σ
′A12, given by: A12 =

[

−1 0
0 C ′

]

, Σ′ =
[

Σx∗x∗ ΣT
Xx∗

ΣXx∗ Σ

]

. where C ′ = diag(y1, . . . , yN).



The Proposed Method (Contd)

J∗ =

∫

orth
N (v, 0, I +A12Σ

′A12) dv
∫

orth+
N (v, 0, I +A12Σ′A12) dv

≡ I1
I2



Multivariate Gaussian Integrals

• For high dimensionality it is a very hard problem.

• Generating points from the Gaussian distribution and
counting the fraction that falls in integration area is not
feasible.

• For example, consider an identity covariance matrix and
a number Ngen of generated points.

Fraction of points ≈ Ngen2
−N

For N = 100, Ngen = 100, 000, we get 7.9e− 26 points
that fall in the integration area.



Proposed Integration Method

• The proposed new Monte Carlo method combines aspects
of rejection sampling and bootstrap sampling.

• It can apply to any integration problem. As such, it is a
new contribution for the general integration problem.

• Algorithm INTEG

– We first generate samples for the first variable v1.
– Subsequently, we reject the points that fall outside the

integral limits (for v1).
– We replenish in place of the discarded points by

sampling with replacement from the existing points.
– We move on to the second variable, v2, and generate

points using the conditional distribution p(v2|v1)
(conditioned on the v1 points already generated).

– Again, we reject the points of v2 that fall outside
the integration limit, and replenish by sampling with
replacement.

– We continue this manner until we reach the final
variable vN . The integral value is then estimated
as the product of the acceptance ratios of the N
variables.



Proposed Integration Method (Contd)



Properties of the Proposed Estimator

• We proved that it is a consistent estimator of the
multivariate Gaussian integral (hence also of the posterior
probability).

• This means that we can approach the true value by using
enough generated points.

• The reason is as follows:

– Assume the generated points vi obey the distribution
p(vi|vi−1 ≥ 0, . . . , v1 ≥ 0).

– When we discard the points vi < 0 and sample by
replacement from the existing points, the points will
be distributed as p(vi|vi ≥ 0, vi−1 ≥ 0, . . . , v1 ≥ 0).

– When we generate the points vi+1 they will be
distributed as p(vi+1|vi ≥ 0, . . . , v1 ≥ 0).

– Fraction accepted every step is about P (vi ≥ 0|vi−1 ≥
0, . . . , v1 ≥ 0).

– Products of fractions accepted is about:

P (vN ≥ 0|vN−1 ≥ 0, . . . , v1 ≥ 0) ·
P (vN−1 ≥ 0|vN−2 ≥ 0, . . . , v1 ≥ 0) . . .

P (v1 ≥ 0)

which equals

P (vN ≥ 0, vN−1 ≥ 0, . . . , v1 ≥ 0)



Al Illustration of the Rejection Step



Mean Square Error of the Estimators (in Log

Space)

• Let N be the dimension, NG be the number of generated
points, Porth be the integral value, and Pi ≡ P (xi ≥
0|xi−1 ≥ 0, . . . , x1 ≥ 0)

• For the standard Monte Carlo:

MSE =
1− Porth

PorthNG

• For the new estimator:

MSE =
N

NG
Avg

(

1− Pi

Pi

)



Numerical Example:

• Consider a 20-dimensional multivariate Gaussian
distribution, with some specific covariance matrix.

• We applied both the new algorithm and the standard
Monte Carlo method to evaluate the orthant integral
v ≥ 0.

• For both we used 100,000 generated values.

• For the standard Monte Carlo, no point fell in the area
of integration.

• The true log integral equals -16.8587

• For the proposed algorithm, we obtained log(integral)=
-16.8902 (0.19% error).



Other Approaches: Approximations to the

Gaussian Integral

• In cases when we have a very large training set, e.g. in
the thousands, we might opt for fast approximations for
the sake of computation speed.

• We developed an approximation based on H. Joe (1995)’s
Gaussian integral approximation.

• It is based on approximating the binary events vi ≥ 0 as
Gaussian, and writing the joint Gaussian in terms of its
conditional constituents.

J∗ =
1

2
+

1

2

(

1
4 − PN1 . . . 1

4 − PNN

)

·
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where Pij is the bivariate centered Gaussian orthant integral
for variables i and j. It can be analytically obtained using
a simple formula.



Other Approximations: Linear Regression

• The multivariate Gaussian orthant integral is one of the
very old problems that have defied any adequate solution
(whether analytical or algorithmic.

• There exist a series expansion, but it is computationally
intractable (exponential in N).

• Taking cue, we propose a series expansion. Instead of
computing the coefficients analytically, we use a linear
regression fit.

• We regress the orthant probability against the following
possible homogeneous polynomials:

N
∑

i=1

N
∑

j=1

aij,
N
∑

i=1

N
∑

j=1

a2ij,
N
∑

i=1

[

N
∑

j=1

aij

]2

, . . .

where aij is the (i, j)
th element of the inverse covariance

matrix.

• How would we know the real orthant probabilities to
obtain the regression coefficients:

• In the literature there are several special cases where a
closed-form solution of the orthant probability exists. We
use these to train the regression model.



Parameters that control smoothness

• In the prior distribution, the covariance for the latent
variables is given by:

cov(fi, fj) = βe−α‖xi−xj‖
2

• α controls the degree of correlation among fi and fj.

• As such, it controls the the degree of smoothness of the
f -surface.

• β controls the variance of the fi’s.

• It therefore controls how loose the connection is between
the conditional mean of fi and its resulting classification.



Marginal Likelihood

• A very potent way for the selection of these two
parameters is to maximize the marginal likelihood
function:

L = p(y|X) ≡
∫

p(y|f)p(f |X)df

• It is a measure of how likely are the class memberships
of the training data given the parameter values α and β.

• Find α and β that maximize L.

• We also proved that L is equivalent to a multivariate
Gaussian orthant probability, that can be evaluated using
the proposed methods.



Some Simulation Experiments

• We tested the new Monte Carlo algorithm on a special
artificial classification problem, for which we can derive
the “ground truth” probabilities.

• Convergence was achieved in every single run.

• There are no tuning parameters. In summary, the
algorithm works all the time.

• In tens of tuning trials for the competing MCMC method,
none converged.
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