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Example of Learning through Exploration

Repeatedly:

1 A user comes to Yahoo! (with history of previous visits, IP address,
data related to his Yahoo! account)

2 Yahoo! chooses information to present (from urls, ads, news stories)

3 The user reacts to the presented information (clicks on something,
clicks, comes back and clicks again, et cetera)

Yahoo! wants to interactively choose content and use the observed

feedback to improve future content choices.



Another Example: Clinical Decision Making

Repeatedly:

1 A patient comes to a doctor with
symptoms, medical history, test results

2 The doctor chooses a treatment

3 The patient responds to it

The doctor wants a policy for choosing
targeted treatments for individual patients.



The Contextual Bandit Setting

For t = 1, . . . ,T :

1 The world produces some context xt ∈ X

2 The learner chooses an action at ∈ {1, . . . ,K}

3 The world reacts with reward rt(at) ∈ [0, 1]

Goal:

Learn a good policy for choosing actions given context.

What does learning mean? Efficiently competing with a large reference
class of possible policies Π = {π : X → {1, ...,K}}:

Regret = max
π∈Π

T∑
t=1

rt(π(xt))−
T∑

t=1

rt(at)

Other names: associative reinforcement learning, associative bandits,

learning with partial feedback, bandits with side information
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Basic Observation #1

This is not a supervised learning problem:

We don’t know the reward of actions not taken—loss function
is unknown even at training time.

Exploration is required to succeed (but still simpler than
reinforcement learning – we know which action is responsible
for each reward)



Basic Observation #2

This is not a bandit problem:

In the bandit setting, there is no x , and the goal is to compete
with the set of constant actions. Too weak in practice.

Generalization across x is required to succeed.



Outline

1 What is it?

2 How can we Evaluate?

3 How can we Learn?



The Evaluation Problem

Let π : X → A be a policy mapping features to actions. How do
we evaluate it?

Method 1: Deploy algorithm in the world.

1 Found company.

2 Get lots of business.

3 Deploy algorithm.

VERY expensive and VERY noisy.
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How do we measure a Static Policy?

Let π : X → A be a policy mapping features to actions. How do
we evaluate it?

Answer: Collect T samples of the form (x , a, ra, pa) where
pa = p(a|x) is the probability of choosing action a, then evaluate:

Value(π) =
1

T

∑
(x ,a,pa,ra)

raI (π(x) = a)

pa

Theorem: For all policies π, for all IID data distributions D,
Value(π) is an unbiased estimate of the expected reward of π:

E(x ,~r)∼D

[
rπ(x)

]
= EValue(π)

with deviations bounded by [Kearns et al. ’00, adapted]:

O

(
1√

T min pπ(x)

)
Proof: [Part 1] ∀π, x , p(a), ra:

Ea∼p

[
raI (π(x)=a)

p(a)

]
=
∑

a p(a) raI (π(x)=a)
p(a) = rπ(x)
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Double Robust Policy Evaluation
[Dudik, Langford, Li 2011]

Basic question: Can we reduce the variance of a policy estimate?

Suppose we have an estimate r̂(a, x), then we can form an
estimator according to:

(r − r̂(a, x))I (π(x) = a)

p(a|x)
+ r̂(π(x), x)

Or even:

ValueDR(π) =
1

T

∑
x ,a,r ,p̂

(r − r̂(a, x))I (π(x) = a)

p̂(a|x)
+ r̂(π(x), x)
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Analysis

ValueDR(π) =
1

T

∑
x ,a,r ,p̂

(r − r̂(a, x))I (π(x) = a)

p̂(a|x)
+ r̂(π(x), x)

Let ∆(a, x) = r̂(a, x)− E~r |x ra = reward deviation

Let δ(a, x) = 1− p(a|x)
p̂(a|x) = probability deviation

Theorem: For all policies π and all (x ,~r):

|ValueDR(π)− E~r |x [rπ(x)]| ≤ |∆(π(x), x)δ(π(x), x)|

In essence: the deviations multiply, and since deviations < 1 this is
good.



An Empirical Test

1 Pick some UCI multiclass datasets.

2 Generate (x , a, r , p) quads via uniform random exploration of
actions

3 Learn r̂(a, x).

4 Compute for each x the double-robust estimate for each a:

(r − r̂(a, x))I (a′ = a)

p(a|x)
+ r̂(a′, x)

5 Learn π using a cost-sensitive classifier.



Experimental Results

IPS: r̂ = 0
DR: r̂ = wa · x
Filter Tree = [Beygelzimer, Langford, Ravikumar 2009] CSMC
reduction to decision tree
Offset Tree = [Beygelzimer, Langford 2009] direct reduction to
decision tree
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Experimental Results

IPS: r̂ = 0
DR: r̂ = wa · x
DLM = [McAllester, Hazan, Keshet 2010] CSMC on linear
representation
Offset Tree = [Beygelzimer, Langford 2009] direct reduction to
decision tree
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Exponential Weight Algorithm for Exploration and
Exploitation with Experts

(EXP4) [Auer et al. ’95]

Initialization: ∀π ∈ Π : wt(π) = 1

For each t = 1, 2, . . .:

1 Observe xt and let for a = 1, . . . ,K

pt(a) = (1− Kµ)

∑
π 1[π(xt) = a] wt(π)∑

π wt(π)
+ µ,

where µ =
√

ln |Π|
KT = minimum probability

2 Draw at from pt , and observe reward rt(at).

3 Update for each π ∈ Π

wt+1(π) =

{
wt(π) exp

(
µ rt(at)

pt(at)

)
if π(xt) = at

wt(π) otherwise



What do we know about EXP4?

Theorem: [Auer et al. ’95] For all oblivious sequences
(x1, r1), . . . , (xT , rT ), EXP4 has expected regret

O
(√

TK ln |Π|
)
.

Theorem: [Auer et al. ’95] For any T , there exists an iid sequence such
that the expected regret of any player is Ω(

√
TK ).

EXP4 can be modified to succeed with high probability or over VC sets
when the world is IID.
[Beygelzimer, et al. 2011].
EXP4 is slow

Ω(TN)

Exponentially slower than is typical for supervised learning. No
reasonable oracle-ized algorithm for speeding up.



A new algorithm
[Dudik, Hsu, Kale, Karampatziakis, Langford, Reyzin, Zhang 2011]

Policy Elimination

Let Π0 = Π and µt = 1/
√

Kt
For each t = 1, 2, . . .

1 Choose distribution Pt over Πt−1 s.t. ∀ π ∈ Πt−1:

Ex∼DX

[
1

(1− Kµt) Prπ′∼Pt (π
′(x) = π(x)) + µt

]
≤ 2K

2 observe xt

3 Let pt(a) = (1− Kµt) Prπ′∼Pt (π
′(x) = π(x)) + µt

4 Choose at ∼ pt and observe reward rt
5 Let Πt = {π ∈ Πt−1 : ηt(π) ≥ maxπ′∈Πt−1 ηt(π′)− Kµt}



Analysis

For all sets of policies Π, for all distributions D(x ,~r), if the world is
IID w.r.t. D, with high probability Policy Elimination has expected
regret

O
(√

TK ln |Π|
)
.

A key lemma: For any set of policies Π and any distribution over
x , step 1 is possible.

Proof: Consider the game:
minP maxQ Eπ∼QEx

1
(1−Kµt) Prπ′∼P(π(x)=π′(x))+µt

Minimax magic!
= maxQ minP Eπ∼QEx

1
(1−Kµt) Prπ′∼P(π(x)=π′(x))+µt

Let P = Q
≤ maxQ Eπ∼QEx

1
(1−Kµt) Prπ′∼Q(π(x)=π′(x))+µt

Linearity of Expectation

= maxQ Ex
∑

a
Prπ∼Q(π(x)=a)

(1−Kµt) Prπ′∼Q(π′(x)=a)+µt
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Another Use of minimax
[DHKKLRZ11]

Randomized UCB

Let µt =
√

ln |Π|
Kt Let ∆t(π) = maxπ′ ηt(π′)− ηt(π)

For each t = 1, 2, . . .

1 Choose distribution P over Π minizing Eπ∼P [∆t(π)] s.t. ∀ π:

Ex∼ht

[
1

(1− Kµt) Prπ′∼P(π′(x) = π(x)) + µt

]
≤max{2K ,Ct(∆t(π))2}

2 observe xt

3 Let pt(a) = (1− Kµt) Prπ′∼P(π′(x) = a) + µt

4 Choose at ∼ pt and observe reward rt



Randomized UCB analysis

For all sets of policies Π, for all distributions D(x ,~r), if the world is
IID w.r.t. D, with high probability Randomized UCB has expected
regret

O
(√

TK ln |Π|
)
.

And: Given an cost sensitive optimization oracle for Π,
Randomized UCB runs in time Poly(t,K , log |Π|)!

Uses ellipsoid algorithm for convex programming. First ever
general nonexponential-time algorithm for contextual bandits.
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Final Thoughts and pointers

2 papers coming to arxiv near you.

Great Background in Exploration and Learning Tutorial.
http://hunch.net/~exploration_learning

Further Contextual Bandit discussion: http://hunch.net/

http://hunch.net/~exploration_learning
http://hunch.net/

