
Scaling up Machine Learning
Alex Smola

Yahoo! Research
Santa Clara

alex.smola.org

Monday, September 19, 11

Thanks

Amr
Ahmed

Joey
Gonzalez

Yucheng
Low

Qirong
Ho

Ziad
al Bawab

Sergiy
Matyusevich

Shravan
Narayanamurthy

Kilian
Weinberger

John
Langford

Vanja
Josifovski

Quoc
Le

Choon Hui
Teo

Eric
Xing

James
Petterson

Jake
Eisenstein

Shuang Hong
Yang

Vishy
Vishwanathan

Zhaohui
Zheng

Markus
Weimer

Alexandros
Karatzoglou

Martin
Zinkevich

Monday, September 19, 11

Why

Monday, September 19, 11

Data
• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme) >10B useful webpages

Monday, September 19, 11

Data - Identity & Graph
• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme) 100M-1B vertices

Monday, September 19, 11

Data - User generated content
• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme) >1B images, 40h video/minute

Monday, September 19, 11

Data - Messages
• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme) >1B texts

Monday, September 19, 11

Data - User Tracking
• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme)

alex.smola.org

>1B ‘identities’
Monday, September 19, 11

Personalization
• 100-1000M users

• Spam filtering
• Personalized targeting

& collaborative filtering
• News recommendation
• Advertising

• Large parameter space
(25 parameters = 100GB)

• Distributed storage
(need it on every server)

• Distributed optimization
• Model synchronization

Monday, September 19, 11

• Ads

• Click feedback

• Emails

• Tags

• Editorial data is very
expensive! Do not use!

• Graphs

• Document collections

• Email/IM/Discussions

• Query stream

(implicit) Labels no Labels

Monday, September 19, 11

Hardware
• Mostly commodity hardware
• Server

• Multicore
• Soft NUMA (e.g. 2-4 socket Xeons)
• Plenty of disks

• Racks
• Common switch per rack
• 40 odd servers

• Server Center
• Many racks
• Big fat master switch(es)

• Faulty (1-100 years MTBF per machine)

Monday, September 19, 11

What

modular strategy
simple components

Monday, September 19, 11

1. Distributed Convex Optimization

• Supervised learning
• Classification, regression
• CRFs, Max-Margin-Markov networks
• Fully observed graphical models
• Small modifications for aggregate labels, etc

• Works with MapReduce/Hadoop
• Small number of iterations
• Distributed file system
• Simple & theoretical guarantees
• Plenty of data

• Parallel batch subgradient solver (cluster)
• Parallel online solver (multicore & cluster)
TLSV’07, ZSL’09, TVSL’10, ZWSL’10

Monday, September 19, 11

2. Parameter Compression
• Personalization

• Spam filtering
• News recommendation
• Collaborative filtering

• String kernels
• Dictionary free
• Arbitrary substrings

• Sparse high-dimensional data
• Structured data without pointers
• Fixed memory footprint
• Simple & theoretical guarantees

SPDLSSV’09, WDALS’09, KSW’10, PSCBN’10, YLSZZ’11, ASTV’12

Hey,

please mention
subtly during your
talk that people
should use Yahoo
products more
often.

Thanks,

1

3

2

-1

h()

matrix factor
compression

Monday, September 19, 11

3. Distributed Storage,
Sampling and Synchronization

• Latent variable models with large state
• Joint statistics (e.g. clustering, topic models)
• Local state (attached to evidence)
• Too big to store on a single machine

• Distributed Storage
• Asynchronous computation & communication
• Maps to network topology
• Consistent hashing for scalability
• Out of core storage of local state

• Distributed Gibbs sampler
(10B latent variables, 1000 machines)

SN’10, AAJS’11, LAS’11, AAGS’12
Monday, September 19, 11

Design Principles
• Must scale (essentially linearly) with

• Amount of data
• Number of machines
• Problem complexity (parameter space)

• Composable techniques
• Accommodate more complex model with more data

• No 100 cluster model on 1B objects
• Bayesian Nonparametrics
• No 1000 parameter classifier on 1M data
• Increased bit resolution for hashing
• Throughput on simple models and 1CPU meaningless

Monday, September 19, 11

How
•Distributed Batch Convex Optimization
•Distributed Online Convex Optimization
•Parameter Compression
•Distributed Sampling and Synchronization

Monday, September 19, 11

Large Margin Classification

Spam
Ham

Monday, September 19, 11

Large Margin Classification

Spam
Ham

Monday, September 19, 11

Large Margin Classification

Spam
Ham

minimize

w,b,⇠

1

m

mX

i=1

⇠i +
�

2

kwk2

subject to yi [hw, xii+ b] � 1� ⇠i and ⇠i � 0

Monday, September 19, 11

Large Margin Classification

Spam
Ham

minimize

w,b

1

m

mX

i=1

max [0, 1� yi [hw, xii+ b]] +

�

2

kwk2

Monday, September 19, 11

Large Margin Classification

Spam
Ham

minimize

w,b

1

m

mX

i=1

max [0, 1� yi [hw, xii+ b]] +

�

2

kwk2l(xi, yi, w) ⌦[w]

Monday, September 19, 11

Regularized Risk Functional

SVM, regression, sequence
annotation, ranking and
recommendation, image
annotation, gene finding, face
detection, density estimation,
novelty detection

minimize
w

1

m

mX

i=1

l(xi, yi, w) + �⌦[w]

decomposable relatively
simple

quadratic penalty (l2)
sparsity penalty (l1)
hyperkernels
group lasso

Monday, September 19, 11

Regularized Risk Functional
minimize

w

1

m

mX

i=1

l(xi, yi, w) + �⌦[w]

data

aggregate loss
& subgradients"

X

i2S

l(xi, yi, w)

#
,

"
X

i2S

@wl(xi, yi, w)

#

Monday, September 19, 11

Regularized Risk Functional
minimize

w

1

m

mX

i=1

l(xi, yi, w) + �⌦[w]

data

solve master
problem

Monday, September 19, 11

Regularized Risk Functional
minimize

w

1

m

mX

i=1

l(xi, yi, w) + �⌦[w]

data

update
parameter

w

Monday, September 19, 11

Bundle Method Solver
empirical

risk ⌦[w]

+

minimize

w

h
max

i
hgi, wi+ bi

i
+

�

2

⌦[w]

Monday, September 19, 11

Bundle Method Solver
empirical

risk ⌦[w]

+

minimize

w

h
max

i
hgi, wi+ bi

i
+

�

2

⌦[w]

Monday, September 19, 11

Bundle Method Solver
empirical

risk ⌦[w]

+

minimize

w

h
max

i
hgi, wi+ bi

i
+

�

2

⌦[w]

Monday, September 19, 11

Bundle Method Solver
empirical

risk ⌦[w]

+

minimize

w

h
max

i
hgi, wi+ bi

i
+

�

2

⌦[w]

Monday, September 19, 11

Bundle Method Solver

• starting point w0

• compute first order Taylor approximation (gi, bi)
• solve optimization problem
• repeat

empirical
risk ⌦[w]

+

minimize

w

h
max

i
hgi, wi+ bi

i
+

�

2

⌦[w]

Monday, September 19, 11

Bundle Method Solver
minimize

w

h
max

i
hgi, wi+ bi

i
+

�

2

⌦[w]

• Empirical risk certificates (at each iteration)
• Upper bound on risk via first order Taylor approximation.
• Lower bound on risk after solving optimization problem

• Convergence guarantees (worst case)
(loss bound L, gradient bound G, Hessian bound H)

• Generic iteration bound

• For bounded Hessian

log

�L

G2
+

8G2

�✏

log

�L

G2
+

4

�
[1 +H log 2✏]

Monday, September 19, 11

Bundle Method Solver

Monday, September 19, 11

Bundle Method Solver
• Alternatives

• Use BFGS in outer loop
• Gradient with line search
• Dual Subgradient (Boyd et al.)

• Theoretically elegant
• Slow convergence due to dual gradient descent

• FISTA (better for l1 sparsity penalty)
• Problems with batch solvers

• requires 50 passes through dataset
• requires smooth regularizer for fast convergence

Monday, September 19, 11

How
•Distributed Batch Convex Optimization
•Distributed Online Convex Optimization
•Parameter Compression
•Distributed Sampling and Synchronization

Monday, September 19, 11

Multicore

Monday, September 19, 11

Online Learning
• General Template

• Get instance
• Compute instantaneous gradient
• Update parameter vector

• Problems
• Sequential execution (single core)
• CPU core speed is no longer increasing
• Disk/network bandwidth: 300GB/h
• Does not scale to TBs of data

Monday, September 19, 11

Parallel Online Templates

• Data parallel

• Parameter parallel

loss
gradient

data
source

x

data

source
data

part n

x

part n

updater

Monday, September 19, 11

Delayed Updates

• Data parallel
• n processors compute gradients
• delay is n-1 between gradient computation

and application
• Parameter parallel

• delay between partial computation and
feedback from joint loss

• delay logarithmic in processors

Monday, September 19, 11

• Optimization Problem

• Algorithm

Delayed Updates

minimize
w

�

i

fi(w)

Input: scalar ⇥ > 0 and delay ⇤
for t = ⇤ + 1 to T + ⇤ do

Obtain ft and incur loss ft(wt)
Compute gt := ⇥ft(wt) and set �t = 1

�(t�⇥)

Update wt+1 = wt � �tgt�⇥

end for

Monday, September 19, 11

• Linear function classes

Algorithm converges no worse than with serial
execution. Up to a factor of 4 as tight.

• Strong convexity

Each loss function is strongly convex with modulus λ.
Constant offset depends on the degree of parallelism.

• Bounds are tight
Adversary sends same instance τ times

Adversarial Guarantees

E[fi(w)] 4RL
p

⌧T

R[X] �⌧R +

⇥
1
2 + ⌧

⇤ L2

�
(1 + ⌧ + log T)

Monday, September 19, 11

• Lipschitz continuous loss gradients

Rate no longer depends on amount of parallelism
• Strong convexity and Lipschitz gradients

This only works when the objective function is very
close to a parabola (upper and lower bound)

Nonadversarial Guarantees

E[R[X]]

28.3R2H +

2

3

RL +

4

3

R2H log T

�
⌧2

+

8

3

RL
p

T .

E[R[X]] O(⌧2
+ log T)

Monday, September 19, 11

Convergence on TREC

-12

-10

-8

-6

-4

-2

 0

 2

 0 10 20 30 40 50 60 70 80 90 100

L
o

g
_

2
 E

rr
o

r

Thousands of Iterations

Performance on TREC Data

no delay
delay of 10

delay of 100
delay of 1000

Monday, September 19, 11

Convergence on Y!Data

-6

-5

-4

-3

-2

-1

 0

 1

 2

 0 10 20 30 40 50 60 70 80 90 100

L
o
g
_
2
 E

rr
o
r

Thousands of Iterations

Performance on Real Data

no delay
delay of 10

delay of 100
delay of 1000

Monday, September 19, 11

Speedup on TREC

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4 5 6 7

P
e
rc

e
n
t
S

p
e
e
d
u
p

Threads

Performance on TREC Data

Monday, September 19, 11

Cluster

Monday, September 19, 11

MapReduce variant
• Idiot proof simple algorithm

• Perform stochastic gradient on each computer
for a random subset of the data (drawn with
replacement)

• Average parameters
• Benefits

• No communication during optimization
• Single pass MapReduce
• Latency is not a problem
• Fault tolerant (we oversample anyway)

Monday, September 19, 11

Guarantees
• Requirements

• Strongly convex loss
• Lipschitz continuous gradient

• Theorem

• Not sample size dependent
• Regularization limits parallelization
• For runtime

Ew2DT,k
⌘

[c(w)]�min
w

c(w) 8⌘G2

p
k�

q
k@ckL +

8⌘G2 k@ckL

k�
+ (2⌘G2)

T = ln k�(ln ⌘+ln �)
2⌘�

Monday, September 19, 11

How
•Distributed Batch Convex Optimization
•Distributed Online Convex Optimization
•Parameter Compression
•Distributed Sampling and Synchronization

Monday, September 19, 11

Classifier ClassifierClassifier Classifier

Spam Classification

Monday, September 19, 11

1: donut?
0: not-
spam!1: spam! ?

maliciouseducated misinformed confused silent

0: quality

Classifier ClassifierClassifier Classifier

Spam Classification

Monday, September 19, 11

Classifier

maliciouseducated misinformed confused silent

Classifier ClassifierClassifier Classifier

Spam Classification

Monday, September 19, 11

Classifier Classifier Classifier Classifier Classifier

maliciouseducated misinformed confused silent

Global
Classifier

Multitask Learning

Monday, September 19, 11

Collaborative Classification

• Primal representation

Kernel representation

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
• Problem - dimensionality is 1013. That is 40TB of space

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

k((x, u), (x�, u�)) = k(x, x�)[1 + �u,u�]

Monday, September 19, 11

Collaborative Classification

email

w
wuser

• Primal representation

Kernel representation

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
• Problem - dimensionality is 1013. That is 40TB of space

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

k((x, u), (x�, u�)) = k(x, x�)[1 + �u,u�]

Monday, September 19, 11

Collaborative Classification

email

w
wuser

email (1 + euser)

w + wuser

• Primal representation

Kernel representation

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
• Problem - dimensionality is 1013. That is 40TB of space

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

k((x, u), (x�, u�)) = k(x, x�)[1 + �u,u�]

Monday, September 19, 11

Hash Kernels

Monday, September 19, 11

Hash Kernels

Hey,

please mention
subtly during your
talk that people
should use Yahoo
products more
often.
Thanks,

Someone important

instance: dictionary:

1

2

1

1

task/user
(=barney):

sparse

Monday, September 19, 11

Hash Kernels

Hey,

please mention
subtly during your
talk that people
should use Yahoo
products more
often.
Thanks,

Someone important

instance: dictionary:

1

2

1

1

task/user
(=barney):

sparse

1

3

2
1

Rm

hash
function:

h()

sparse

Monday, September 19, 11

Hash Kernels
instance:

task/user
(=barney):

Hey,

please mention
subtly during
your talk that
people should
use Yahoo
search more
often.
Thanks,

⇥xi � RN�(U+1)

1

3

2
-1

h()

h(‘mention’)

h(‘mention_barney’)

s(m_b)

s(m)

{-1, 1}

Similar to count hash
(Charikar, Chen, Farrach-Colton, 2003)

Monday, September 19, 11

Approximate Orthogonality

Rsmall

We can do multi-task learning!

�()
h()

Rlarge
Rsmall

Monday, September 19, 11

Guarantees
• For a random hash function the inner product vanishes with

high probability via

• We can use this for multitask learning

• The hashed inner product is unbiased
Proof: take expectation over random signs

• The variance is O(1/n)
Proof: brute force expansion

• Preserves sparsity
• No dictionary needed

Pr{|⌅wv, hu(x)⇧| > �} � 2e�C�2m

Direct sum in
Hilbert Space

Sum in
Hash Space

Monday, September 19, 11

Spam classification results
!"#$%

!"#&% !"##% !"##% !%

!"!'%

#"$'%

#"(#%

#")$% #")(%

#"##%

#"'#%

#"*#%

#")#%

#"$#%

!"##%

!"'#%

!$% '#% ''% '*% ')%

!"
#
$
%$

&!
!'
(#
)*
%+
(*
,#
-
.
*
%)
/
%0
#
!*
,&
1
*
2%

0%0&)!%&1%3#!3')#0,*%

+,-./,01/2134%

5362-7/,8934%

./23,873%

N=20M, U=400K
Monday, September 19, 11

Lazy users ...

1 

10 

100 

1000 

10000 

100000 

1000000 

0
 

1
3
 

2
6
 

3
9
 

5
2
 

6
5
 

7
8
 

9
1
 

1
0
4
 

1
1
7
 

1
3
0
 

1
4
3
 

1
5
6
 

1
6
9
 

1
8
2
 

1
9
7
 

2
1
1
 

2
2
8
 

2
4
4
 

2
6
1
 

2
8
8
 

3
1
7
 

3
7
0
 

5
2
3
 

n
u
m
b
e
r 
o
f 
u
se
rs
 

number of labels 

Labeled emails per user 

Monday, September 19, 11

Results by user group

Monday, September 19, 11

Results by user group

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

('" $!" $$" $%" $&"

!"
#
$
%$

&!
!'
(#
)*
%+
(*
,#
-
.
*
%)
/
%0
#
!*
,&
1
*
2%

0%0&)!%&1%3#!3')#0,*%

)!*"

)(*"

)$+,*"

)%+-*"

)'+(.*"

)(&+,(*"

),$+&%*"

)&%+/0"

12345674"

labeled emails:

Monday, September 19, 11

Results by user group

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

('" $!" $$" $%" $&"

!"
#
$
%$

&!
!'
(#
)*
%+
(*
,#
-
.
*
%)
/
%0
#
!*
,&
1
*
2%

0%0&)!%&1%3#!3')#0,*%

)!*"

)(*"

)$+,*"

)%+-*"

)'+(.*"

)(&+,(*"

),$+&%*"

)&%+/0"

12345674"

labeled emails:

Monday, September 19, 11

Matrices

Monday, September 19, 11

Collaborative Filtering
• Netflix / Amazon / del.icio.us problem

• Many users, many products
• Recommend product / news / friends

• Matrix factorization
• Latent factor for users and movies each
• Compatibility via

• Factorization model

• Optimization via stochastic gradient descent
• Loss function depends on problem

(regression, preference, ranking, quatile, novelty)

X � U�V hence Xij � u�i vj

Monday, September 19, 11

Collaborative Filtering
• Big problem

• We have millions of users
• We have millions of products
• Storage - for 100 factors this is 800TB of variables
• We want a model that can be kept in RAM (<16GB)

• Hashing compression

ui =
�

j,k:h(j,k)=i

�(j, k)Ujk and vi =
�

j,k:h�(j,k)=i

��(j, k)Vjk.

Xij :=
�

k

�(k, i)��(k, j)uh(k,i)vh�(k,j).

Monday, September 19, 11

Examples

Thousands of elements in M

Th
ou

sa
nd

s
of

 e
le

m
en

ts
 in

 U

1225

840

720

520

400

240

120

60

32 16 10 9 8 7 6 5
1.20

1.22

1.24

1.26

1.28

1.30

1.32

rows in M

ro
w

s
in

 U

983

500

450

400

350

300

250

200

150

100

50

1682 500 450 400 350 300 250 200 150 100 50

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

Eachmovie MovieLens
Monday, September 19, 11

Beyond
• String kernels

• Hash substrings
• Insert wildcards for approximate matching

• Data structures
• Ontologies (hash class labels)
• Hierarchical factorization (hash context)

• Feistel hash to reduce cache miss penalty
• Better approximation guarantees in terms of risk
• Hashing does not satisfy RIP property

(even breaks the Candes and Plan conditions)
• Dense function spaces

(even Random Kitchen Sinks are too expensive)
Monday, September 19, 11

Beyond
• String kernels

• Hash substrings
• Insert wildcards for approximate matching

• Data structures
• Ontologies (hash class labels)
• Hierarchical factorization (hash context)

• Feistel hash to reduce cache miss penalty
• Better approximation guarantees in terms of risk
• Hashing does not satisfy RIP property

(even breaks the Candes and Plan conditions)
• Dense function spaces

(even Random Kitchen Sinks are too expensive)
Monday, September 19, 11

How
•Distributed Batch Convex Optimization
•Distributed Online Convex Optimization
•Parameter Compression
•Distributed Sampling and Synchronization

Monday, September 19, 11

Latent Variable Models

• We don’t observe everything
• Poor engineering
• Too intrusive
• Too expensive
• Machine failure
• No editors
• Forgot to measure it
• Impossible to observe directly

Monday, September 19, 11

Latent Variable Models

• We don’t observe everything
• Poor engineering
• Too intrusive
• Too expensive
• Machine failure
• No editors
• Forgot to measure it
• Impossible to observe directly

• Local
• Lots of evidence (data)
• Lots of local state (parameters)

• Global
• Large state (too large for single machine)
• Depends on local state
• Partitioning is difficult (e.g. natural graphs)

Monday, September 19, 11

Latent Variable Models

mean
variance

cluster weight

data cluster ID

mixture of Gaussians clustering

Monday, September 19, 11

Latent Variable Models

data

local state

global state

Vanilla LDA

User
profiling

global state

Monday, September 19, 11

Latent Variable Models

data

local state

global state

Vanilla LDA

User
profiling

global state

Monday, September 19, 11

User profiling

0 10 20 30 400

0.1

0.2

0.3

Pr
op

ot
io

n
Day

Baseball

Finance

Jobs

Dating

0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

Pr
op

ot
io

n

Day

Baseball

Dating

Celebrity

Health

Snooki
Tom

Cruise
Katie

Holmes
Pinkett
Kudrow

Hollywood

League
baseball

basketball,
doublehead

Bergesen
Griffey
bullpen
Greinke

skin
body

fingers
cells
toes

wrinkle
layers

women
men

dating
singles

personals
seeking
match

Dating Baseball Celebrity Health

job
career

business
assistant

hiring
part-time

receptionist

financial
Thomson

chart
real

Stock
Trading

currency

Jobs Finance

Monday, September 19, 11

User profiling

0 10 20 30 400

0.1

0.2

0.3

Pr
op

ot
io

n
Day

Baseball

Finance

Jobs

Dating

0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

Pr
op

ot
io

n

Day

Baseball

Dating

Celebrity

Health

Snooki
Tom

Cruise
Katie

Holmes
Pinkett
Kudrow

Hollywood

League
baseball

basketball,
doublehead

Bergesen
Griffey
bullpen
Greinke

skin
body

fingers
cells
toes

wrinkle
layers

women
men

dating
singles

personals
seeking
match

Dating Baseball Celebrity Health

job
career

business
assistant

hiring
part-time

receptionist

financial
Thomson

chart
real

Stock
Trading

currency

Jobs Finance

Monday, September 19, 11

User profiling

0 10 20 30 400

0.1

0.2

0.3

Pr
op

ot
io

n
Day

Baseball

Finance

Jobs

Dating

0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

Pr
op

ot
io

n

Day

Baseball

Dating

Celebrity

Health

500 Million Users
100+ topics

full activity logs
1000 machines

Monday, September 19, 11

User profiling

0 10 20 30 400

0.1

0.2

0.3

Pr
op

ot
io

n
Day

Baseball

Finance

Jobs

Dating

0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

Pr
op

ot
io

n

Day

Baseball

Dating

Celebrity

Health

500 Million Users
100+ topics

full activity logs
1000 machines

Monday, September 19, 11

Synchronization

Monday, September 19, 11

Variable Caching

global
state

data
local
state

Monday, September 19, 11

Variable Caching

global
state

data local
state

copy

Monday, September 19, 11

Variable Caching

global
replica

rack

cluster

Monday, September 19, 11

Message Passing
• Child performs updates (sampling, variational)
• Synchronization

• Start with common state
• Child stores old and new state
• Parent keeps global state
• Bandwidth limited

• Works for any abelian group (sum, log-sum, cyclic group)

� x� x

old

x

old x

x

global x

global + �

local to global global to local

x x+ (xglobal � x

old)

x

old x

global

Monday, September 19, 11

Consistent Hashing
• Dedicated server for variables

• Insufficient bandwidth (hotspots)
• Insufficient memory

• Select server via consistent hashing

m(x) = argmin
m2M

h(x,m)

Monday, September 19, 11

Consistent Hashing
• Storage is O(1/k) per machine
• Communication is O(1) per machine
• Fast snapshots O(1/k) per machine
• O(k) open connections per machine
• O(1/k) throughput per machine

m(x) = argmin
m2M

h(x,m)

Monday, September 19, 11

Communication Shaping
• Data rate between machines is O(1/k)
• Machines operate asynchronously (no barrier)
• Solution

• Schedule message pair
• Communicate with r machines simultaneously
• Use Luby-Rackoff PRNG for load balancing

• Efficiency guarantee

Monday, September 19, 11

Performance

• 8 Million documents, 1000 topics, {100,200,400} machines, LDA
• Red (symmetric latency bound message passing)
• Blue (asynchronous bandwidth bound message passing & message scheduling)

• 10x faster synchronization time
• 10x faster snapshots
• Scheduling improves 10% already on 150 machines

Monday, September 19, 11

LDA - our Guinea Pig
https://github.com/shravanmn/Yahoo_LDA

Monday, September 19, 11

https://github.com/shravanmn/Yahoo_LDA
https://github.com/shravanmn/Yahoo_LDA

Latent Dirichlet Allocation

zij

wij

Θi

j=1..mi

α

βψl

l=1..k
i=1..m

Monday, September 19, 11

Sequential Algorithm
• Collapsed Gibbs Sampler (Griffith & Steyvers 2005)

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update global (word, topic) table

Monday, September 19, 11

Sequential Algorithm
• Collapsed Gibbs Sampler (Griffith & Steyvers 2005)

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update global (word, topic) table

this kills parallelism

Monday, September 19, 11

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table

• Update global (word, topic) table

State of the art
UMass Mallet, UC Irvine, Google

p(t|wij) / �w
↵t

n(t) + �̄
+ �w

n(t, d = i)
n(t) + �̄

+
n(t, w = wij) [n(t, d = i) + ↵t]

n(t) + �̄

Monday, September 19, 11

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table

• Update global (word, topic) table

State of the art
UMass Mallet, UC Irvine, Google

p(t|wij) / �w
↵t

n(t) + �̄
+ �w

n(t, d = i)
n(t) + �̄

+
n(t, w = wij) [n(t, d = i) + ↵t]

n(t) + �̄

slow
Monday, September 19, 11

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table

• Update global (word, topic) table

State of the art
UMass Mallet, UC Irvine, Google

p(t|wij) / �w
↵t

n(t) + �̄
+ �w

n(t, d = i)
n(t) + �̄

+
n(t, w = wij) [n(t, d = i) + ↵t]

n(t) + �̄

slow

changes rapidly

Monday, September 19, 11

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table

• Update global (word, topic) table

State of the art
UMass Mallet, UC Irvine, Google

p(t|wij) / �w
↵t

n(t) + �̄
+ �w

n(t, d = i)
n(t) + �̄

+
n(t, w = wij) [n(t, d = i) + ↵t]

n(t) + �̄

slow

changes rapidly

moderately fast
Monday, September 19, 11

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table

• Update global (word, topic) table

State of the art
UMass Mallet, UC Irvine, Google

p(t|wij) / �w
↵t

n(t) + �̄
+ �w

n(t, d = i)
n(t) + �̄

+
n(t, w = wij) [n(t, d = i) + ↵t]

n(t) + �̄

slow

changes rapidly

moderately fast

table out
of sync

blocking

network
bound

memory
inefficient

Monday, September 19, 11

Distributed asynchronous sampler
• For 1000 iterations do (independently per computer)

• For each thread/core do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Generate computer local (word, topic) message

• In parallel update local (word, topic) table
• In parallel update global (word, topic) table

Monday, September 19, 11

Distributed asynchronous sampler

continuous
sync

barrier
free

concurrent
cpu hdd net

minimal
view

• For 1000 iterations do (independently per computer)
• For each thread/core do

• For each document do
• For each word in the document do

• Resample topic for the word
• Update local (document, topic) table
• Generate computer local (word, topic) message

• In parallel update local (word, topic) table
• In parallel update global (word, topic) table

Monday, September 19, 11

Multicore Architecture

• Decouple multithreaded sampling and updating
(almost) avoids stalling for locks in the sampler

• Joint state table
• much less memory required
• samplers syncronized (10s vs. m/proc delay)

• Hyperparameter update via stochastic gradient descent
• No need to keep documents in memory (streaming OK)

tokens

topics

file

combiner

count

updater

diagnostics

&

optimization

output to

file
topics

sampler
sampler

sampler
sampler

sampler

Monday, September 19, 11

Scalability

>8000 documents/s

Monday, September 19, 11

Outlook

• Convex optimization
• Parameter compression
• Distributed sampling
• Fast nonlinear function classes
• Data streams (sketches & statistics)

• Graphs, FAWN architectures, relational data,
bandit-like settings, applications

Monday, September 19, 11

