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Why
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Data
• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme) >10B useful webpages
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Data - Identity & Graph
• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme) 100M-1B vertices
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Data - User generated content
• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme) >1B images, 40h video/minute 
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Data - Messages
• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme) >1B texts
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Data - User Tracking
• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme)

alex.smola.org

>1B ‘identities’
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Personalization
• 100-1000M users

• Spam filtering
• Personalized targeting 

& collaborative filtering
• News recommendation
• Advertising

• Large parameter space
(25 parameters = 100GB)

• Distributed storage
(need it on every server)

• Distributed optimization
• Model synchronization

Monday, September 19, 11



 
• Ads

• Click feedback

• Emails

• Tags

• Editorial data is very 
expensive! Do not use!

• Graphs

• Document collections 

• Email/IM/Discussions

• Query stream

(implicit) Labels no Labels
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Hardware
• Mostly commodity hardware
• Server

• Multicore
• Soft NUMA (e.g. 2-4 socket Xeons)
• Plenty of disks

• Racks
• Common switch per rack
• 40 odd servers

• Server Center
• Many racks
• Big fat master switch(es)

• Faulty (1-100 years MTBF per machine)
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What

modular strategy
simple components
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1. Distributed Convex Optimization

• Supervised learning
• Classification, regression
• CRFs, Max-Margin-Markov networks
• Fully observed graphical models
• Small modifications for aggregate labels, etc

• Works with MapReduce/Hadoop
• Small number of iterations
• Distributed file system
• Simple & theoretical guarantees
• Plenty of data

• Parallel batch subgradient solver (cluster)
• Parallel online solver (multicore & cluster)
TLSV’07, ZSL’09, TVSL’10,  ZWSL’10
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2. Parameter Compression
• Personalization

• Spam filtering
• News recommendation
• Collaborative filtering

• String kernels
• Dictionary free
• Arbitrary substrings

• Sparse high-dimensional data
• Structured data without pointers
• Fixed memory footprint 
• Simple & theoretical guarantees

SPDLSSV’09, WDALS’09, KSW’10, PSCBN’10, YLSZZ’11, ASTV’12

Hey,

please mention 
subtly during your 
talk that people 
should use Yahoo 
products more 
often. 

Thanks,  

1

3

2

-1

h()

matrix factor
compression
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3. Distributed Storage, 
Sampling and Synchronization

• Latent variable models with large state
• Joint statistics (e.g. clustering, topic models)
• Local state (attached to evidence)
• Too big to store on a single machine

• Distributed Storage
• Asynchronous computation & communication
• Maps to network topology
• Consistent hashing for scalability
• Out of core storage of local state

• Distributed Gibbs sampler
(10B latent variables, 1000 machines)

SN’10, AAJS’11, LAS’11, AAGS’12
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Design Principles
• Must scale (essentially linearly) with

• Amount of data
• Number of machines
• Problem complexity (parameter space)

• Composable techniques
• Accommodate more complex model with more data

• No 100 cluster model on 1B objects
• Bayesian Nonparametrics
• No 1000 parameter classifier on 1M data
• Increased bit resolution for hashing
• Throughput on simple models and 1CPU meaningless
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How
•Distributed Batch Convex Optimization
•Distributed Online Convex Optimization
•Parameter Compression
•Distributed Sampling and Synchronization
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Large Margin Classification

Spam
Ham
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Large Margin Classification

Spam
Ham
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Large Margin Classification

Spam
Ham

minimize

w,b,⇠

1

m

mX

i=1

⇠i +
�

2

kwk2

subject to yi [hw, xii+ b] � 1� ⇠i and ⇠i � 0
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Large Margin Classification

Spam
Ham

minimize

w,b

1

m

mX

i=1

max [0, 1� yi [hw, xii+ b]] +

�

2

kwk2
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Large Margin Classification

Spam
Ham

minimize

w,b

1

m

mX

i=1

max [0, 1� yi [hw, xii+ b]] +

�

2

kwk2l(xi, yi, w) ⌦[w]
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Regularized Risk Functional

SVM, regression, sequence 
annotation, ranking and 
recommendation, image 
annotation, gene finding, face 
detection, density estimation, 
novelty detection

minimize
w

1

m

mX

i=1

l(xi, yi, w) + �⌦[w]

decomposable relatively 
simple

quadratic penalty (l2)
sparsity penalty (l1)
hyperkernels
group lasso
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Regularized Risk Functional
minimize

w

1

m

mX

i=1

l(xi, yi, w) + �⌦[w]

data

aggregate loss
& subgradients"

X

i2S

l(xi, yi, w)

#
,

"
X

i2S

@wl(xi, yi, w)

#
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Regularized Risk Functional
minimize

w

1

m

mX

i=1

l(xi, yi, w) + �⌦[w]

data

solve master 
problem
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Regularized Risk Functional
minimize

w

1

m

mX

i=1

l(xi, yi, w) + �⌦[w]

data

update 
parameter

w
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Bundle Method Solver
empirical

risk ⌦[w]

+

minimize

w

h
max

i
hgi, wi+ bi

i
+

�

2

⌦[w]
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Bundle Method Solver
empirical

risk ⌦[w]

+

minimize

w

h
max

i
hgi, wi+ bi

i
+

�

2

⌦[w]
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Bundle Method Solver
empirical

risk ⌦[w]

+

minimize

w

h
max

i
hgi, wi+ bi

i
+

�

2

⌦[w]
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Bundle Method Solver
empirical

risk ⌦[w]

+

minimize

w

h
max

i
hgi, wi+ bi

i
+

�

2

⌦[w]
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Bundle Method Solver

• starting point w0

• compute first order Taylor approximation (gi, bi)
• solve optimization problem
• repeat

empirical
risk ⌦[w]

+

minimize

w

h
max

i
hgi, wi+ bi

i
+

�

2

⌦[w]
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Bundle Method Solver
minimize

w

h
max

i
hgi, wi+ bi

i
+

�

2

⌦[w]

• Empirical risk certificates (at each iteration)
• Upper bound on risk via first order Taylor approximation.
• Lower bound on risk after solving optimization problem

• Convergence guarantees (worst case)
(loss bound L, gradient bound G, Hessian bound H)

• Generic iteration bound

• For bounded Hessian 

log

�L

G2
+

8G2

�✏

log

�L

G2
+

4

�
[1 +H log 2✏]
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Bundle Method Solver
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Bundle Method Solver
• Alternatives

• Use BFGS in outer loop
• Gradient with line search
• Dual Subgradient (Boyd et al.)

• Theoretically elegant
• Slow convergence due to dual gradient descent

• FISTA (better for l1 sparsity penalty)
• Problems with batch solvers

• requires 50 passes through dataset
• requires smooth regularizer for fast convergence

Monday, September 19, 11



How
•Distributed Batch Convex Optimization
•Distributed Online Convex Optimization
•Parameter Compression
•Distributed Sampling and Synchronization

Monday, September 19, 11



Multicore
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Online Learning
• General Template

• Get instance
• Compute instantaneous gradient
• Update parameter vector

• Problems
• Sequential execution (single core)
• CPU core speed is no longer increasing
• Disk/network bandwidth: 300GB/h
• Does not scale to TBs of data
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Parallel Online Templates

• Data parallel

• Parameter parallel

loss
gradient

data
source

x

data

source
data

part n

x

part n

updater
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Delayed Updates

• Data parallel
• n processors compute gradients
• delay is n-1 between gradient computation 

and application 
• Parameter parallel

• delay between partial computation and 
feedback from joint loss

• delay logarithmic in processors
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• Optimization Problem

• Algorithm

Delayed Updates

minimize
w

�

i

fi(w)

Input: scalar ⇥ > 0 and delay ⇤
for t = ⇤ + 1 to T + ⇤ do

Obtain ft and incur loss ft(wt)
Compute gt := ⇥ft(wt) and set �t = 1

�(t�⇥)

Update wt+1 = wt � �tgt�⇥

end for
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• Linear function classes

Algorithm converges no worse than with serial 
execution. Up to a factor of 4 as tight.

• Strong convexity

Each loss function is strongly convex with modulus λ. 
Constant offset depends on the degree of parallelism.

• Bounds are tight
Adversary sends same instance τ times  

Adversarial Guarantees

E[fi(w)]  4RL
p

⌧T

R[X]  �⌧R +

⇥
1
2 + ⌧

⇤ L2

�
(1 + ⌧ + log T )
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• Lipschitz continuous loss gradients

Rate no longer depends on amount of parallelism
• Strong convexity and Lipschitz gradients

This only works when the objective function is very 
close to a parabola (upper and lower bound)

Nonadversarial Guarantees

E[R[X]] 

28.3R2H +

2

3

RL +

4

3

R2H log T

�
⌧2

+

8

3

RL
p

T .

E[R[X]]  O(⌧2
+ log T )
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Convergence on TREC
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Convergence on Y!Data
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Speedup on TREC
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Cluster
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MapReduce variant
• Idiot proof simple algorithm

• Perform stochastic gradient on each computer 
for a random subset of the data (drawn with 
replacement)

• Average parameters
• Benefits

• No communication during optimization
• Single pass MapReduce
• Latency is not a problem
• Fault tolerant (we oversample anyway)
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Guarantees
• Requirements

• Strongly convex loss
• Lipschitz continuous gradient

• Theorem

• Not sample size dependent
• Regularization limits parallelization
• For runtime 

Ew2DT,k
⌘

[c(w)]�min
w

c(w)  8⌘G2

p
k�

q
k@ckL +

8⌘G2 k@ckL

k�
+ (2⌘G2)

T = ln k�(ln ⌘+ln �)
2⌘�
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How
•Distributed Batch Convex Optimization
•Distributed Online Convex Optimization
•Parameter Compression
•Distributed Sampling and Synchronization
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Classifier ClassifierClassifier Classifier

Spam Classification
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1: donut?
0: not-
spam!1: spam! ?

maliciouseducated misinformed confused silent

0: quality 

Classifier ClassifierClassifier Classifier

Spam Classification
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Classifier

maliciouseducated misinformed confused silent

Classifier ClassifierClassifier Classifier

Spam Classification
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Classifier Classifier Classifier Classifier Classifier

maliciouseducated misinformed confused silent

Global
Classifier

Multitask Learning
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Collaborative Classification

• Primal representation

Kernel representation

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
• Problem - dimensionality is 1013. That is 40TB of space

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

k((x, u), (x�, u�)) = k(x, x�)[1 + �u,u� ]
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Collaborative Classification

email

w
wuser

• Primal representation

Kernel representation

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
• Problem - dimensionality is 1013. That is 40TB of space

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

k((x, u), (x�, u�)) = k(x, x�)[1 + �u,u� ]
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Collaborative Classification

email

w
wuser

email (1 + euser)

w + wuser 

• Primal representation

Kernel representation

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
• Problem - dimensionality is 1013. That is 40TB of space

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

k((x, u), (x�, u�)) = k(x, x�)[1 + �u,u� ]
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Hash Kernels
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Hash Kernels

Hey,

please mention 
subtly during your 
talk that people 
should use Yahoo 
products more 
often. 
Thanks,  

Someone important

instance: dictionary:

1

2

1

 

 
1

task/user
(=barney):

sparse
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Hash Kernels

Hey,

please mention 
subtly during your 
talk that people 
should use Yahoo 
products more 
often. 
Thanks,  

Someone important

instance: dictionary:

1

2

1

 

 
1

task/user
(=barney):

sparse

1

3

2
1

Rm

hash
function:

h()

sparse
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Hash Kernels
instance:

task/user
(=barney):

Hey,

please mention 
subtly during 
your talk that 
people should 
use Yahoo 
search more 
often. 
Thanks,  

⇥xi � RN�(U+1)

1

3

2
-1

h()

h(‘mention’)

h(‘mention_barney’)

s(m_b)

s(m)

{-1, 1}

Similar to count hash
(Charikar, Chen, Farrach-Colton, 2003)
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Approximate Orthogonality

Rsmall

We can do multi-task learning!

�()
h()

Rlarge
Rsmall
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Guarantees
• For a random hash function the inner product vanishes with 

high probability via

• We can use this for multitask learning

• The hashed inner product is unbiased
Proof: take expectation over random signs

• The variance is O(1/n)
Proof: brute force expansion

• Preserves sparsity
• No dictionary needed

Pr{|⌅wv, hu(x)⇧| > �} � 2e�C�2m

Direct sum in 
Hilbert Space

Sum in 
Hash Space
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Spam classification results
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Lazy users ...
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Results by user group
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Results by user group
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Results by user group
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Matrices
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Collaborative Filtering
• Netflix / Amazon / del.icio.us problem

• Many users, many products
• Recommend product / news / friends

• Matrix factorization
• Latent factor for users and movies each
• Compatibility via

• Factorization model

• Optimization via stochastic gradient descent
• Loss function depends on problem

(regression, preference, ranking, quatile, novelty) 

X � U�V hence Xij � u�i vj
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Collaborative Filtering
• Big problem

• We have millions of users
• We have millions of products
• Storage - for 100 factors this is 800TB of variables
• We want a model that can be kept in RAM (<16GB)

• Hashing compression

ui =
�

j,k:h(j,k)=i

�(j, k)Ujk and vi =
�

j,k:h�(j,k)=i

��(j, k)Vjk.

Xij :=
�

k

�(k, i)��(k, j)uh(k,i)vh�(k,j).
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Examples

Thousands of elements in M
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Beyond
• String kernels

• Hash substrings
• Insert wildcards for approximate matching

• Data structures
• Ontologies (hash class labels)
• Hierarchical factorization (hash context)

• Feistel hash to reduce cache miss penalty
• Better approximation guarantees in terms of risk
• Hashing does not satisfy RIP property

(even breaks the Candes and Plan conditions)
• Dense function spaces

(even Random Kitchen Sinks are too expensive)
Monday, September 19, 11



Beyond
• String kernels

• Hash substrings
• Insert wildcards for approximate matching

• Data structures
• Ontologies (hash class labels)
• Hierarchical factorization (hash context)

• Feistel hash to reduce cache miss penalty
• Better approximation guarantees in terms of risk
• Hashing does not satisfy RIP property

(even breaks the Candes and Plan conditions)
• Dense function spaces

(even Random Kitchen Sinks are too expensive)
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How
•Distributed Batch Convex Optimization
•Distributed Online Convex Optimization
•Parameter Compression
•Distributed Sampling and Synchronization
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Latent Variable Models

• We don’t observe everything
• Poor engineering
• Too intrusive
• Too expensive
• Machine failure
• No editors
• Forgot to measure it
• Impossible to observe directly
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Latent Variable Models

• We don’t observe everything
• Poor engineering
• Too intrusive
• Too expensive
• Machine failure
• No editors
• Forgot to measure it
• Impossible to observe directly

• Local
• Lots of evidence (data)
• Lots of local state (parameters)

• Global
• Large state (too large for single machine)
• Depends on local state
• Partitioning is difficult (e.g. natural graphs)
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Latent Variable Models

mean
variance

cluster weight

data cluster ID

mixture of Gaussians clustering
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Latent Variable Models
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User 
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User profiling
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Synchronization
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Variable Caching

global
state

data
local
state
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Variable Caching

global
state

data local
state

copy
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Variable Caching

global
replica

rack

cluster

Monday, September 19, 11



Message Passing
• Child performs updates (sampling, variational)
• Synchronization

• Start with common state
• Child stores old and new state
• Parent keeps global state
• Bandwidth limited

• Works for any abelian group (sum, log-sum, cyclic group)

�  x� x

old

x

old  x

x

global  x

global + �

local to global global to local

x x+ (xglobal � x

old)

x

old  x

global
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Consistent Hashing
• Dedicated server for variables

• Insufficient bandwidth (hotspots)
• Insufficient memory

• Select server via consistent hashing

m(x) = argmin
m2M

h(x,m)
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Consistent Hashing
• Storage is O(1/k) per machine
• Communication is O(1) per machine
• Fast snapshots O(1/k) per machine
• O(k) open connections per machine
• O(1/k) throughput per machine

m(x) = argmin
m2M

h(x,m)
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Communication Shaping
• Data rate between machines is O(1/k)
• Machines operate asynchronously (no barrier)
• Solution

• Schedule message pair
• Communicate with r machines simultaneously
• Use Luby-Rackoff PRNG for load balancing

• Efficiency guarantee
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Performance

• 8 Million documents, 1000 topics, {100,200,400} machines, LDA
• Red (symmetric latency bound message passing)
• Blue (asynchronous bandwidth bound message passing & message scheduling) 

• 10x faster synchronization time
• 10x faster snapshots
• Scheduling improves 10% already on 150 machines
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LDA - our Guinea Pig
https://github.com/shravanmn/Yahoo_LDA
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Latent Dirichlet Allocation

zij

wij

Θi

j=1..mi

α

βψl

l=1..k
i=1..m
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Sequential Algorithm
• Collapsed Gibbs Sampler (Griffith & Steyvers 2005)

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update global (word, topic) table
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Sequential Algorithm
• Collapsed Gibbs Sampler (Griffith & Steyvers 2005)

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update global (word, topic) table

this kills parallelism
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• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table

• Update global (word, topic) table

State of the art
UMass Mallet, UC Irvine, Google

p(t|wij) / �w
↵t

n(t) + �̄
+ �w

n(t, d = i)
n(t) + �̄

+
n(t, w = wij) [n(t, d = i) + ↵t]

n(t) + �̄
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• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table

• Update global (word, topic) table

State of the art
UMass Mallet, UC Irvine, Google

p(t|wij) / �w
↵t

n(t) + �̄
+ �w

n(t, d = i)
n(t) + �̄

+
n(t, w = wij) [n(t, d = i) + ↵t]

n(t) + �̄

slow
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• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table

• Update global (word, topic) table

State of the art
UMass Mallet, UC Irvine, Google

p(t|wij) / �w
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n(t) + �̄
+ �w
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n(t) + �̄

+
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n(t) + �̄

slow

changes rapidly

Monday, September 19, 11



• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table

• Update global (word, topic) table

State of the art
UMass Mallet, UC Irvine, Google
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• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table

• Update global (word, topic) table

State of the art
UMass Mallet, UC Irvine, Google

p(t|wij) / �w
↵t

n(t) + �̄
+ �w

n(t, d = i)
n(t) + �̄

+
n(t, w = wij) [n(t, d = i) + ↵t]

n(t) + �̄

slow

changes rapidly

moderately fast

table out 
of sync

blocking

network 
bound

memory
inefficient
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Distributed asynchronous sampler
• For 1000 iterations do (independently per computer)

• For each thread/core do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Generate computer local (word, topic) message

• In parallel update local (word, topic) table
• In parallel update global (word, topic) table
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Distributed asynchronous sampler

continuous
sync

barrier 
free

concurrent
cpu hdd net

minimal 
view

• For 1000 iterations do (independently per computer)
• For each thread/core do

• For each document do
• For each word in the document do

• Resample topic for the word
• Update local (document, topic) table
• Generate computer local (word, topic) message

• In parallel update local (word, topic) table
• In parallel update global (word, topic) table

Monday, September 19, 11



Multicore Architecture

• Decouple multithreaded sampling and updating 
(almost) avoids stalling for locks in the sampler

• Joint state table
• much less memory required
• samplers syncronized (10s vs. m/proc delay)

• Hyperparameter update via stochastic gradient descent
• No need to keep documents in memory (streaming OK)

tokens

topics

file 

combiner

count

updater

diagnostics

& 

optimization

output to

file
topics

sampler
sampler

sampler
sampler

sampler
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Scalability

>8000 documents/s
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Outlook

• Convex optimization 
• Parameter compression 
• Distributed sampling 
• Fast nonlinear function classes 
• Data streams (sketches & statistics) 

• Graphs, FAWN architectures, relational data, 
bandit-like settings, applications

Monday, September 19, 11


