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Some social networks in Yahoo!

MyWeb 2.0
– Friendship network

Instant messenger
– Buddy list

Flickr
– Photo sharing and tagging

Yahoo! 
– Topically focused communities
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What can be studied?

Structural analysis
Understanding social phenomena
Information propagation and diffusion
Prediction (buzz, information, social)
Modeling
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A study of blogs

Joint work with:
– Dan Gruhl (IBM)
– R. Guha (Google)
– Ravi Kumar (Yahoo!)
– David Liben-Nowell (Carleton)
– Jasmine Novak (Yahoo!)
– Prabhakar Raghavan (Yahoo!)
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Etymology

From the OED new ed. (draft entry, Mar 2003) …
blog intr. To write or maintain a weblog. Also: to read or browse through 

weblogs, esp. habitually. 
web¢log n. 2. A frequently updated web site consisting of personal 

observations, excerpts from other sources, etc., typically run by a single 
person, and usually with hyperlinks to other sites; an online journal or 
diary.  

blog¢space n. The collection of weblogs; = blogosphere, blogsphere, 
blogistan, …
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Blogs 101

Characteristics
– Pages with reverse chronological sequences of dated entries
– Usually contain a persistent sidebar containing profile (and other blogs read by 

the author – “blogroll”)
– Usually maintained and published by one of the common variants of public-

domain blog software

From Slashdot, 1999
“… a new, personal, and determinedly non-hostile evolution of the electric 

community. They are also the freshest example of how people use the Net to 
make their own, radically different new media”
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Look and feel

Quirky
Highly personal
Consumed by a small number of regular repeat visitors
Often updated multiple times each day
Highly interwoven into a network of small but active micro-communities
Eg: LiveJournal, Blogger, …
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The blog era

Blogs began in 1996, but exploded in popularity in 1999
– Proliferation of authoring tools

Newsweek 2002 estimates ~500K 
Annual Blogathon for charity

– Bloggers update their Blogs every 30m for 24h
– Sponsors pay …

Impact of blogs
– “Miserable failure”, “French military victories”
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Livejournal blogspace

Livejournal.com: popular blog site
1.3M bloggers (Feb 2004)
3.9M bloggers (Oct 2005)
Each blogger has a profile

– Name, age, …

– Geographic information (city, state, zip, …)

– Friends and friend of

– Interests/communities
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Eg, LiveJournal user “bill”
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LJ bloggers in US

< 1K
< 5K
< 10K
< 25K
< 50K
~ 100K
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LJ bloggers world-wide

< 1K
< 2K
< 5K
~ 25K
~ 50K
~ 75K
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Who are they?

Age     %    Representative interests
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Friendship graph

Directed
80% mutual
Average degree ~ 14
Power law degrees
Clustering coeff. ~ 0.2
Most friendships explained by age, 
location, interest

Age 1%

Location
20%

Interest
16%

5%

16%

22%
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Blogs as trend indicators

Can blogs be used to predict trends?
Data

– Amazon sales rank of some books

– Blog chatter in an index
Questions

– How well do they correlate?

– Can sales rank be predicted using blogs automatically?
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The Lance Armstrong Performance Program

Query: 
Lance Armstrong
OR Tour de France
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Vanity Fair
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Cross-correlation for Lance Armstrong
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Simple inferences

How to formulate queries automatically
– Depends on the object (book, CD, DVD, …)

– Simple heuristics work well
Predicting sales motion is hard
Predicting spikes appears relatively easier

More to be done …
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Another question:

How does friendship depend on geographic distance?
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Dataset

1.3M LiveJournal bloggers, as of February 2004
500K list a home town in the United States
Home towns mapped to lat/long
Granularity of locations: roughly cities
Extracted self-reported “friends” of each blogger: 4M friendships
80% of friendships are reciprocal
¾ of network form giant strongly-connected component
Clustering coefficient: 0.2
Lognormal degree distribution
Each blogger has a profile

– Name, age, …

– Geographic information (city, state, zip, …)

– Friends and friend of

– Interests/communities
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Message forwarding

Stanley Milgram: short paths in social networks, small worlds, and “Six 
degrees of separation”, 1967.
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What’s surprising about Milgram?

Surprising fact number one (observed by Milgram): network contains short 
paths
Surprising fact number two (observed much later by Kleinberg): a purely 
local algorithm allows discovery of these short paths
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Models to explain greedy routing

Each grid point is a 
person
Each person “knows”
the four neighbors
Each person also 
knows one other 
person

[Kleinberg 2000]
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How should the “long-range” neighbor be chosen

For a candidate neighbor x at distance d away, 
Pr[x is the long-range neighbor]  ~ 1/dk

If k=2:
– Network contains short paths for every pair (polylog(n))

– Short paths can be discovered by local greedy routing
If k != 2:

– Networks does not contain short paths (poly(n))
Exponential gap between k=2 and k!=2
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Simulating geographic greedy routing on LiveJournal data

Can simulate geographic greedy routing on the LiveJournal network
Results show short paths between most pairs – similar to Milgram’s
experiment
So relationship between friendship and distance should follow 1/d2
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Results
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What’s happening?

Assumption: one 
person per grid point
Reality: highly varying 
number of people per 
grid point
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Population density

Dot for every inhabited 
location
Each circle represents 
50,000 bloggers
Centered on Ithaca, NY
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Does population density (or other factors) impact the relationship 
between friendship and geography?
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Our solution

Why use distance to determine 
friendship probabilities?

–Two people who live a mile apart in 
Beijing will never meet

–Two people who live a mile apart in 
Iowa will be close acquaintances

What’s the difference?
–Within Manhattan, there are 
thousands of people living within a mile

–Within Iowa, there are very few
Probability of friendship should 
depend on the size of the candidate 
population

Bill

Jane

Pr[friendship] ~ 1 / (# of closer people)
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Properties of Rank-based friendship

Population density determines relationship between distance and friendship

For uniform density, rank-based friendship is equivalent to Kleinberg –
same theorems hold
For non-uniform density, a similar theorem can be shown…
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Theorem

For any n-person population network, for arbitrary source s, and uniformly-
chosen target t, the expected length of a geographic greedy routing path 
from s to the location of t is O(log3n)

Compared to Kleinberg:
– Lose: expectation rather than with high probability

– Lose: another log factor

– Gain: arbitrary population distributions
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Generalization 1: General metric spaces

Motivation: “distance” between people may represent complex phenomena: 
shared interests, similar backgrounds, personality similarity, etc.  Would like 
to allow as general a distance function as possible.
Model:

– Local edges: pick a shortest path graph in the metric space, include all “local”
neighbors that are on a shortest path

– Long-range edges: rank-based friendship
Input:  an n-person social network whose underlying metric space has 
doubling dimension alpha, aspect ratio AR, and long-range degree d
Theorem:  For arbitrary source person s and uniformly chosen target 
person t, the expected length of a path from s to the location of t is O(log(n) 
log2(AR) 2alpha/d).
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Generalization 2: Recursive networks

Motivation: send a message to Manhattan, then route within the sub-
network to the correct building, then to the correct room
Model: As in a standard population network, but each point contains either 
a singleton person or a recursive sub-network
Input: a recursive population network of depth O(poly(n))
Theorem: For arbitrary source person s and uniformly chosen destination 
person t, the expected path length from s to t is O(T x min{log(n), depth} ) 
where T is the expected path length of a non-recursive network
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Generalization 3: Trees with no local edges

Motivation: many models for social networks have been proposed for trees, 
without strong routing results
Input: binary tree of depth logk(n)
Model:

– Each person has logk+1(n) long-range links by rank-based friendship

– Local links: none
Theorem: With arbitrary probability, for arbitrary source person s and 
uniformly chosen destination person t, the expected path length from s to 
the location of t is O(logk(n))
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Friendship versus rank
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East versus West Coast revisisted
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How much does geography explain?

Graph of distance versus friendship 
probability
Good estimator of friendship: 
function of distance plus constant
Constant term represents 
geographically-independent 
reasons for friendship
Back-solving, we find that 2.5/8 
friends are non-geographic
Could shared interests explain 
these friendships?



Switching gears: Visualization of Social 
Networks using Connection  Subgraphs

Joint work with:
Christos Faloutsos, CMU
Kevin McCurley, Google

Work performed at IBM Almaden Research Center

Appeared at KDD 2004
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Outline

Introduction / Motivation
Survey
Proposed Method
Algorithms
Experiments
Conclusions
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Informal Problem Statement

Given a large social network and two distinguished vertices s and t, show 
the “relationship” between s and t in the network
Example: show the relationship between “Nicole Kidman” and “Cameron 
Diaz”
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Standard Approaches

Standard approach number 1: show an edge if one exists:

Nicole Kidman Cameron Diaz

Acted in a movie
together

Standard approach number 2: if no edge exists, show a path:

Nicole Kidman Cameron DiazCarmen Electra
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Proposed Approach

Show a small subgraph that may capture exponentially many paths 
concisely:

Kidman

Diaz
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How big a subgraph?

Given a graph with initial and final vertices s and t, and a budget 
B, return a B-node subgraph that best connects s and t.

s

t
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Budget: 3 nodes
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Budget: 5 nodes
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Budget: 6 nodes
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A larger example: Jan Pedersen to Andrew Tomkins
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An example: Byron Dom to David Filo
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Fragment of Gary Flake to Bill Gates
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Problem definition

Given a graph, and two nodes s and t, and a 'budget' b of nodes
Find the best b nodes that capture the relationship between s and t

s t

f
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Problem definition

Given a graph, and two nodes s and t, and a 'budget' b of nodes
Find the best b nodes that capture the relationship between s and t

s t

f
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Problem definition

Part 1: How to quantify the goodness?
Part 2: How to pick ‘best few’ nodes?
Part 3: Scalability: large graphs (10**7 nodes)
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Survey

Graph Partitioning
– [Karypis+Kumar]; [Newman+];

– etc
Communities

– [Flake+]; [Kumar, Kleinberg+]
External distances [Palmer+]
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Outline

Introduction / Motivation
Survey
Proposed Method
Algorithms
Experiments
Conclusions
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part 1: measuring quality of a path:
– electrical current / random walks

part 2: selecting a subgraph
– dynamic programming

part 3: scalability
– heuristics

Proposed method for selecting a subgraph
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Path quality, part 1

Why not shortest path?

s t

f



59

Yahoo! Research

Path quality, part 2

Why not shortest path?
Why not net. flow?

s t

f
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Path quality, part 3

Why not shortest path?
Why not net. flow?
Why not plain ‘voltages’?

+1V
s t

f
0V
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Path quality, part 4

Why not shortest path?
Why not net. flow?
Why not plain ‘voltages’?

+1V

+0.5V

s t

f
0V
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s t

f

...

Proposed path quality measure

Proposed method: voltages with universal sink:
– ~ ‘tax collector’

goodness of a path:
its electric current(*)!

+1V 0V

0V
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Outline

Introduction / Motivation
Survey
Proposed Method
Algorithms
Experiments
Conclusions
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Electricity – Algorithm

Voltages/Amperages can be computed easily ( O(E) )
without universal sink:
v(i) = Σumj [v(j) * C(i,j) / C(i,*) ] 

i != source, sink

v(source)=1; v(sink)=0
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Electricity – Algorithm

With universal sink:
v(i) = 1/(1+a) Σumj [v(j) * C(i,j) / C(i,*) ]

(~ insensitive to a (=1))
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Part 2: From paths to subgraphs

Using Part 1, compute an s-t flow on the entire graph
Find a subgraph that “captures” much of this flow

s
t

1

1 1

1 1

1

Given the flow above, how good is the specified path?
“Delivered current”: how many electrons travel from s to t along that path

1/2

1/2

1

1 1/2

1/2
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Delivered current of a subgraph

All units of flow (ie, electrons) that travel from s to t via edges in the 
subgraph:
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Algorithm for selecting subgraph

Combinatorial problem: find a B-node subgraph to optimize delivered 
current – hard to solve exactly or provide approximation algorithms
Dynamic program to compute:

– Path  which maximizes delivered current per node
Recursive greedy application
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Given the voltages and currents
Which b nodes to keep?

Part 2: DisplayGen
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Part 2: DisplayGen

‘delivered current’ of a path:
– ~ ‘how many electrons’ choose this path

=4/5 *1/2A
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Part 2: DisplayGen

find path to maximize marginal delivered current per node
– Dynamic programming

Incrementally, add paths to solution
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Part 3: Scalability

Begin with enormous out-of-core graph
Slowly expand from s and t to find a candidate subgraph for algorithm:

Begin with nodes s and t in expansion pool
Until (stoppingCriterion)

Use pickHeuristic() to pick a node n from expansion pool
Add n to candidate subgraph
Add neighbors of n to expansion pool

Apply electrical flow and dynamic program to candidate subgraph
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s tsource sink

Part 3: Scalability

By successive, careful expansions
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s t

Part 3: Scalability
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s t

Part 3: Scalability
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s t

Part 3: Scalability



78

Yahoo! Research

Pseudo-code

Until (stoppingCriterion)
use pickHeuristic() to pick a node n

expand node n
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Pseudo-code

pickHeuristic() favors
Nearby nodes with

– Strong connections to source or sink
– Small degree
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Outline

Introduction / Motivation
Survey
Proposed Method
Algorithms
Experiments
Conclusions
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Experiments

on large real graph 
– ~15M nodes, ~100M edges, weighted

– ‘who co-appears with whom’ (from 500M web pages)
Q1: Quality of ‘voltage’ approach?
Q2: Speed/accuracy trade-off?
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Q1: Quality

Actors (A); Computer-Scientists (CS)
Kidman-Diaz (A-A)
Negreponte-Palmisano (CS-CS)
Turing-Stone (CS-A)
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(A-A) Kidman-Diaz

Strong, direct link

What are the best paths between ‘Kidman’ and ‘Diaz’?

Kidman

Diaz
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CS-CS: Negreponte - Palmisano

NN SP

• Mainly: CEOs of  major Computer companies 
(Dell, Gates, Fiorina, ++) 
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CS-CS: Negreponte - Palmisano

NN
Esther Dyson Louis Gerstner

SP
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CS-A: Turing - Stone

Turing Anderson

Stone
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Outline

Introduction / Motivation
...
Experiments

– Q1: quality

– Q2: speed/accuracy trade-off
Conclusions
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Speed/Accuracy Trade-off

number of nodes kept (‘b’)

delivered
current Kleinberg-Newell

Rivest-Hoffman
Turing-Stone
Kidman-Diaz
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Speed/accuracy trade-off

80/20-like rule:
the first few nodes/paths contribute the vast majority of ‘delivered current’
Thus: CandidateGen makes sense
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Conclusions

Defined the problem
Part 1: Electricity-based method to measure quality
Part 2: Dynamic programming to spot best paths (‘DisplayGen’)
Part 3: Scalability with good accuracy (‘CandidateGen’)
Operational system
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Conclusions

Friendship and Distance are strongly related
Modeling friendship as a function of distance is problematic
Rank is a better measure of friendship than distance
Some friendships form with no geographic correlation (2.5/8)
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More Information

Email: atomkins@yahoo-inc.com
Web: http://www.tomkinshome.com/andrew


