
Spectral learning algorithms 
for dynamical systems

Geoff Gordon
http://www.cs.cmu.edu/~ggordon/

Machine Learning Department
Carnegie Mellon University

joint work with Byron Boots, Sajid Siddiqi, Le Song, Alex Smola



Geoff Gordon—UT Austin—Feb, 2012

. . . . . .

What’s out there?

2

ot-2 ot-1 ot ot+1 ot+2

video frames, as vectors 
of pixel intensities



Geoff Gordon—UT Austin—Feb, 2012

. . . . . .

What’s out there?

2

ot-2 ot-1 ot ot+1 ot+2

video frames, as vectors 
of pixel intensities



Geoff Gordon—UT Austin—Feb, 2012

Given past observations from 
a partially observable system

Predict future observations

A dynamical system

3

. . . . . .ot-2 ot-1 ot ot+1 ot+2

←  Past Future  →

State



Geoff Gordon—UT Austin—Feb, 2012

Given past observations from 
a partially observable system

Predict future observations

A dynamical system

3

. . . . . .ot-2 ot-1 ot ot+1 ot+2

←  Past Future  →

State



Geoff Gordon—UT Austin—Feb, 2012

This talk

• General class of models for dynamical systems

• Fast, statistically consistent learning algorithm 

‣ no local optima

• Includes many well-known models & algorithms as 
special cases

• Also includes new models & algorithms that give 
state-of-the-art performance on interesting tasks
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Includes models

• hidden Markov model

‣ n-grams, regexes, k-order HMMs

• PSR, OOM, multiplicity automaton, RR-HMM

• LTI system

‣ Kalman filter, AR, ARMA

• Kernel versions and manifold versions of above
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Includes algorithms

• Subspace identification for LTI systems

‣ recent extensions to HMMs, RR-HMMs

• Tomasi-Kanade structure from motion

• Principal components analysis (e.g., eigenfaces); 
Laplacian eigenmaps

• New algorithms for learning PSRs, OOMs, etc.

• A new way to reduce noise in manifold learning

• A new range-only SLAM algorithm
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Interesting applications

• Structure from motion

• Simultaneous localization and mapping

‣ Range-only SLAM

‣ “SLAM” from inertial sensors

‣ very simple vision-based SLAM (so far)

• Video textures

• Opponent modeling, option pricing, audio event 
classification, …
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Bayes filter (HMM, Kalman, etc.)

• Goal: given ot, update Pt-1(st-1) to Pt(st)

• Extend: Pt-1(st-1, ot, st) = Pt-1(st-1) P(st | st-1) P(ot | st)

• Marginalize: Pt-1(ot, st) = ! Pt-1(st-1, ot, st) dst-1

• Condition: Pt(st) = Pt-1(ot, st) / Pt-1(ot)
8
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A common form for Bayes filters

• Find covariances as (linear) fns of previous state

‣ Σo(st-1) = E(!(ot) !(ot)T | st-1)

‣ Σso(st-1) = E(st !(ot) | st-1)
‣ nb: uncentered covars; st & !(ot) include constant

• Linear regression to get current state

‣ st = Σso Σo !(ot)

• Exact if discrete (HMM, PSR), Gaussian (Kalman, AR), 
RKHS w/ characteristic kernel [Fukumizu et al.]

• Approximates many more
9
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Why this form?

• If Bayes filter takes (approximately) the above 
form, can design a simple spectral algorithm to 
identify the system

• Intuitions:

‣ predictive state

‣ rank bottleneck 

‣ observable representation
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Predictive state

• If Bayes filter takes above form, we can use a 
vector of predictions of observables as our state

‣ E(!(ot+k) | st) = linear fn of st 

‣ for big enough k, E([!(ot+1) … !(ot+k)] | st) = 
invertible linear fn of st

‣ so, take E([!(ot+1) … !(ot+k)] | st) as our state

11
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Predictive state: example
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Predictive state: minimal example

• For big enough k, E([!(ot+1) … !(ot+k)] | st) = Wst 
invertible linear fn (if system observable)
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Predictive state: summary

• E([!(ot+1) … !(ot+k)] | st) is our state rep’n

‣ interpretable

‣ observable—a natural target for learning
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Rank bottleneck
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Finding a compact predictive state
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Observable representation

• Now that we have a compact predictive state, 
need to estimate fns Σo(st) and Σso(st)

• Insight: parameters are now observable: the 
problem is just to estimate some covariances 
from data

‣ to get Σo, regress (!(o) $ !(o)) ← state

‣ to get Σso, regress (!(o) $ future+) ← state

17
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Algorithm

• Find compact predictive state: regress future ← past

‣ use any features of past/future, or a kernel, or even 
a learned kernel (manifold case)

‣ constrain rank of prediction weight matrix

• Extract model: regress 

‣ (o $ future+) ← [predictive state]

‣ (o $ o) ← [predictive state]

‣ future+: use same rank-constrained basis as for 
predictive state

18
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Does it work?

• Simple HMM: 5 states, 7 observations

• N=300 thru N=900k

19
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Discussion

• Impossibility—learning DFA in poly time = 
breaking crypto primitives [Kearns & Valiant 89]

‣ so, clearly, we can’t always be statistically efficient

‣ but, see McDonald [11], HKZ [09], us [09]: 
convergence depends on mixing rate

• Nonlinearity—Bayes filter update is highly 
nonlinear in state (matrix inverse), even though we 
use a linear regression to identify the model

‣ nonlinearity is essential for expressiveness

21
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Range-only SLAM

• Robot measures distance from current position 
to fixed beacons (e.g., time of flight or signal 
strength)

‣ may also have odometry

• Goal: recover robot path, landmark locations

22



Geoff Gordon—UT Austin—Feb, 2012

Typical solution: EKF

• Problem: linear/Gaussian approximation very bad
23
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Spectral solution (simple version)

24
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Experiments (full version)
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Fig. 4. The autonomous lawn mower and spectral SLAM. A.) The robotic lawn mower platform. B.) In the first experiment, the robot traveled 1.9km
receiving 3,529 range measurements. This path minimizes the effect of heading error by balancing the number of left turns with an equal number of right
turns (a commonly used pattern for lawn mowing). Spectral SLAM recovers the robot’s path and landmark positions accurately. C.) In the second experiment,
the robot traveled 1.3km receiving 1,816 range measurements. This path highlights the effect of heading error on dead reckoning performance by turning in
the same direction repeatedly. Again, spectral SLAM is able to recover the path and landmarks accurately.

VI. CONCLUSION

We proposed a novel formulation and solution for the range-
only SLAM problem that differs substantially from previous
approaches. The essence of this new approach is to formulate
SLAM as a factorization problem, which allows us to derive a
local-minimum free spectral learning method that is closely re-
lated to SfM and spectral approaches to system identification.
We provide theoretical guarantees for our algorithm, discuss
how to derive an online algorithm, and show how to generalize
to a full robot system identification algorithm. Finally, we
demonstrate that our spectral approach to SLAM improves on
other state-of-the-art SLAM approaches in real-world range-
only SLAM problems.
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Fig. 4. The autonomous lawn mower and spectral SLAM. A.) The robotic lawn mower platform. B.) In the first experiment, the robot traveled 1.9km
receiving 3,529 range measurements. This path minimizes the effect of heading error by balancing the number of left turns with an equal number of right
turns (a commonly used pattern for lawn mowing). Spectral SLAM recovers the robot’s path and landmark positions accurately. C.) In the second experiment,
the robot traveled 1.3km receiving 1,816 range measurements. This path highlights the effect of heading error on dead reckoning performance by turning in
the same direction repeatedly. Again, spectral SLAM is able to recover the path and landmarks accurately.
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approaches. The essence of this new approach is to formulate
SLAM as a factorization problem, which allows us to derive a
local-minimum free spectral learning method that is closely re-
lated to SfM and spectral approaches to system identification.
We provide theoretical guarantees for our algorithm, discuss
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Fig. 4. The autonomous lawn mower and spectral SLAM. A.) The robotic lawn mower platform. B.) In the first experiment, the robot traveled 1.9km
receiving 3,529 range measurements. This path minimizes the effect of heading error by balancing the number of left turns with an equal number of right
turns (a commonly used pattern for lawn mowing). Spectral SLAM recovers the robot’s path and landmark positions accurately. C.) In the second experiment,
the robot traveled 1.3km receiving 1,816 range measurements. This path highlights the effect of heading error on dead reckoning performance by turning in
the same direction repeatedly. Again, spectral SLAM is able to recover the path and landmarks accurately.

VI. CONCLUSION

We proposed a novel formulation and solution for the range-
only SLAM problem that differs substantially from previous
approaches. The essence of this new approach is to formulate
SLAM as a factorization problem, which allows us to derive a
local-minimum free spectral learning method that is closely re-
lated to SfM and spectral approaches to system identification.
We provide theoretical guarantees for our algorithm, discuss
how to derive an online algorithm, and show how to generalize
to a full robot system identification algorithm. Finally, we
demonstrate that our spectral approach to SLAM improves on
other state-of-the-art SLAM approaches in real-world range-
only SLAM problems.
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Fig. 4. The autonomous lawn mower and spectral SLAM. A.) The robotic lawn mower platform. B.) In the first experiment, the robot traveled 1.9km
receiving 3,529 range measurements. This path minimizes the effect of heading error by balancing the number of left turns with an equal number of right
turns (a commonly used pattern for lawn mowing). Spectral SLAM recovers the robot’s path and landmark positions accurately. C.) In the second experiment,
the robot traveled 1.3km receiving 1,816 range measurements. This path highlights the effect of heading error on dead reckoning performance by turning in
the same direction repeatedly. Again, spectral SLAM is able to recover the path and landmarks accurately.

VI. CONCLUSION

We proposed a novel formulation and solution for the range-
only SLAM problem that differs substantially from previous
approaches. The essence of this new approach is to formulate
SLAM as a factorization problem, which allows us to derive a
local-minimum free spectral learning method that is closely re-
lated to SfM and spectral approaches to system identification.
We provide theoretical guarantees for our algorithm, discuss
how to derive an online algorithm, and show how to generalize
to a full robot system identification algorithm. Finally, we
demonstrate that our spectral approach to SLAM improves on
other state-of-the-art SLAM approaches in real-world range-
only SLAM problems.
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of the expected state at time t + 1 around the current MAP
state ŝt, given the current action at:

st+1 − st ≈ N [φ(ŝt, at) +
dφ
ds

��
ŝt
(st − ŝt)] (23)

dφ
ds

��
ŝ
= (ŝ⊗ I + I ⊗ ŝ)⊗ āt ⊗ āt (24)

We simply plug this Taylor approximation into the standard
Kalman filter motion update (e.g., [18]).

V. EXPERIMENTAL RESULTS

We perform several SLAM and robot navigation experi-
ments to illustrate and test the ideas proposed in this paper.
First we show how our methods work in theory with synthetic
experiments where complete observations are received at each
point in time and i.i.d. noise is sampled from a multivariate
Gaussian distribution. Next we illustrate our algorithm on data
collected from a real-world robotic system with substantial
amounts of missing data.

Experiments were performed in Matlab, on a 2.66 GHz
Intel Core i7 computer with 8 GB of RAM. The spectral
learning methods described in this paper are very fast, usually
taking only a few seconds to run. Code and data for these
experiments is available at [link will become available when
paper is published].

A. Synthetic Experiments
First we evaluate our spectral SLAM algorithm on simulated

range-only data. Our simulator randomly places 6 landmarks in
a 2-D environment. A robot then randomly moves through the
environment for 500 time steps and receives a range reading
to each one of the landmarks at each time step. The range
readings are perturbed by noise sampled from a Gaussian
distribution with variance equal to 1% of the range. Given
this data, we apply the algorithm from Section III-C to solve
the SLAM problem. We use the coordinates of 4 landmarks to
learn the linear transform S and recover the true state space.
Results are shown in Figure 2A. The results indicate that we
can accurately recover both the landmark locations and the
robot path.

We also investigated the empirical convergence rate of our
observation model (and therefore the map) as the number of
range readings increased. To do so, we generated 1000 differ-
ent random pairs of environments and robot paths. For each
pair, we repeatedly performed our spectral SLAM algorithm
on increasingly large numbers of range readings and looked at
the difference between our estimated measurement model and
the true measurement model || �C−C||F . The results are shown
in Figure 2B, and show that our estimates steadily converge
to the true model.

B. Autonomous Lawn Mower
We next evaluate the performance of our spectral SLAM

algorithm on two freely available range-only SLAM data sets
collected from an autonomous lawn mowing robot [6]. (The
lawn mowing robot is shown in Figure 4A.)2 These “Plaza”

2http://www.frc.ri.cmu.edu/projects/emergencyresponse/RangeData/index.html

Method Plaza 1 Plaza 2
Dead Reckoning (full path) 15.92m 27.28m
Cartesian EKF (last 10%) 0.94m 0.92m
Batch Optimization (last 10%) 0.68m 0.96m
FastSLAM (last 10%) 0.73m 1.14m
ROP EKF (last 10%) 0.65m 0.87m
Spectral SLAM (worst 10%) 1.17m 0.51m
Spectral SLAM (best 10%) 0.28m 0.22m
Spectral SLAM (full path) 0.39m 0.35m

Fig. 3. Comparison of Range-Only SLAM Algorithms (Localization RMSE).
Boldface entries are best in column.

datasets were collected via radio nodes from Multispectral
Solutions that use time-of-flight of ultra-wide-band signals
to provide inter-node ranging measurements. This system
produces a time-stamped range estimate between the mobile
robot and stationary nodes (landmarks) in the environment.
The landmark radio nodes are placed atop traffic cones approx-
imately 138cm above the ground throughout the environment,
and one node was placed on top of the center of the robot’s
coordinate frame (also 138cm above the ground). The robot
odometry (dead reckoning) comes from an onboard fiberoptic
gyro and wheel encoders. The two environmental setups, in-
cluding the location of the landmarks, the dead reckoning path,
and the ground truth path (calculated within 2cm accuracy via
GPS), are shown in Figure 4B-C. For details see [6].

The two data sets were very sparse, with approximately
11 time steps (and up to 500 steps) between range readings
for the worst case landmark. We first interpolated the missing
range readings with the method of Section III-C4. Then we
applied the rank-7 spectral SLAM algorithm of Section III-C;
the results are depicted in Figure 4B-C. Qualitatively, we see
that the robot’s localization path conforms to the true path.

In addition to the qualitative results, we quantitatively
compared spectral SLAM to a number of different competing
range-only SLAM algorithms (the results we compared to are
summarized in [6]). These algorithms included a Cartesian
EKF, a batch optimization technique [12] run for 10,000
iterations, FastSLAM [14], and a Relative Over-Parameterized
EKF (ROP-EKF) [7], a state-of-the-art range-only SLAM
algorithm. The localization root mean squared error (RMSE)
in meters for each SLAM algorithm is shown in Figure 3.
Previous results only reported the RMSE for the last 10% of
the path, which is generally the best 10% of the path (since it
gives the most time to recover from initialization problems);
this is a very favorable statistic for competing SLAM methods.
The full path localization error can be considerably worse,
particularly for the initial portion of the path—see Fig. 5
(right) of [7].

To compare to these results, we report the RMSE for our
spectral algorithm when restricting the data set to the best or
worst 10% of the path, as well as the RMSE for the full path.
The results show that our spectral SLAM algorithm beats,
often by a significant margin, the best previous methods on
the Plaza datasets.
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Structure from motion
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Video textures

• Kalman filter works for some video textures

‣ steam grate example above

‣ fountain:

27

observation = raw 
pixels (vector of 
reals over time)
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Video textures, redux

Kalman Filter PSR
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Learning in the loop: option pricing

• Price a financial derivative: “psychic call”
‣ holder gets to say “I bought call 100 days ago”
‣ underlying stock follows Black Scholes (unknown 

parameters)
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Option pricing

• Solution [Van Roy et al.]: use policy iteration
‣ 16 hand-picked features (e.g., poly ⋅ history)

‣ initialize policy arbitrarily
‣ least-squares temporal differences (LSTD) to 

estimate value function
‣ policy := greedy; repeat

30
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Option pricing

• Better solution: spectral SSID inside policy 
iteration
‣ 16 original features from Van Roy et al.
‣ 204 additional “low-originality” features
‣ e.g., linear fns of price history of underlying
‣ SSID picks best 16-d dynamics to explain 

feature evolution
‣ solve for value function in closed form

31
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Policy iteration w/ spectral learning
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Figure 1: Experimental Results. Error bars indicate standard error. (A.) Estimating the value func-

tion with a small number of informative features. All three approaches do well. (B.) Estimating the

value function with a small set of informative features and a large set of random features. LARS-TD

is designed for this scenario and dramatically outperforms PSTD and LSTD. (C.) Estimating the

value function with a large set of semi-informative features. PSTD is able to determine a small set

of compressed features that retain the maximal amount of information about the value function, out-

performing LSTD and LARS-TD. (D.) Pricing a high-dimensional derivative via policy iteration. At

each iteration the current policy was executed on 10,000 stock price trajectories sampled from the

stationary distribution. The y-axis is expected reward for the current policy executed on the test set

at each iteration. The optimal threshold strategy (sell if price is above a threshold [23]) is in black,

LSTD (16 canonical features) is in blue, LSTD (on the full 240 features) is cyan, LARS-TD (feature

selection from set of 240) is in green, and PSTD (16 dimensions, compressing 240 features(16 +

224)) is in red. PSTD outperforms the competing approaches.

holding the contract or exercise. We consider the financial derivative introduced by Tsitsiklis and

Van Roy [23]. The derivative generates payoffs that are contingent on the prices of a single stock.

At the end of a given day, the holder may opt to exercise. At the time of exercise the contract is

terminated, and a payoff is received in an amount equal to the current price of the stock divided by

the price 100 days beforehand. The stock price is modeled as a geometric Brownian motion with

volatility σ = 0.02, and there is a continuously compounded short term interest rate ρ = 0.0004
(corresponding to an annual interest rate of ∼ 10%). In more detail, if wt is a standard Brownian

motion, then the stock price pt evolves as∇pt = ρpt∇t+σpt∇wt, and we can summarize relevant

state at the end of each day as a discrete-time process {xt | t = 0, 1, ...} ∈ R100
with xt =�

pt−99
pt−100

, pt−98
pt−100

, . . . , pt

pt−100

�T
. The ith dimension xt(i) represents the amount a $1 investment in a

stock at time t−100 would grow to at time t−100+ i. This process is Markov and ergodic [23, 24]:

xt and xt+100 are independent and identically distributed. The immediate reward for exercising

the stock is G(x) = x(100), the immediate reward for continuing to hold the stock is 0, and the

discount factor γ = e−ρ
is determined by the interest rate. The value of the derivative security is

given bysupt E[γtG(xt)]. Our goal is to calculate an approximate value function, and then use this

value function to generate a stopping time t∗ = min{t |G(xt) ≥ V ∗(xt)}. To do so, we sample a

sequence of 1,000,000 states xt ∈ R100
and calculate features φH of each state. We then perform

policy iteration on this sample, alternately estimating the value function under a given policy and

then using this value function to define a new greedy policy “stop if G(xt) ≥ wTφH(xt).”

Within the above strategy, we have two main choices: which features do we use, and how do we

estimate the value function in terms of these features. For value function estimation, we used LSTD,

LARS-TD, or PSTD. In each case we re-used our 1,000,000-state sample trajectory for all iterations:

we start at the beginning and follow the trajectory as long as the policy chooses the “continue” action,

with reward 0 at each step. When the policy executes the “stop” action, the reward is G(x) and the

next state’s features are all 0; we then restart the policy 100 steps in the future, after the process

has fully mixed. For feature selection, we are fortunate, previous researchers have hand-selected a

“good” set of 16 features for this data set through repeated trial and error (see Appendix, Section D

and [23, 24]). We greatly expand this set of features, then use PSTD to synthesize a small set of

high-quality combined features and calculate the value function more accurately. Specifically, we

add the entire 100-step sample trajectory, the squares of the sample trajectory, and several additional

nonlinear features, increasing the total number of features from 16 to 240. We use histories of length

1, tests of length 3, and (for comparison’s sake) we choose a linear dimension of 16.
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Hilbert Space Embeddings of Hidden Markov Models
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Figure 4. Slot car inertial measurement data. (A) The slot

car platform and the IMU (top) and the racetrack (bot-

tom). (B) Squared error for prediction with different esti-

mated models and baselines.

this data while the slot car circled the track controlled
by a constant policy. The goal of this experiment was
to learn a model of the noisy IMU data, and, after
filtering, to predict future IMU readings.

We trained a 20-dimensional embedded HMM using
Algorithm 1 with sequences of 150 consecutive obser-
vations (Section 3.8). The bandwidth parameter of
the Gaussian RBF kernels is set with ‘median trick’.
The regularization parameter λ is set of 10−4. For
comparison, a 20-dimensional RR-HMM with Parzen
windows is learned also with sequences of 150 observa-
tions; a 20-dimensional LDS is learned using Subspace
ID with Hankel matrices of 150 time steps; and finally,
a 20-state discrete HMM (with 400 level of discretiza-
tion for observations) is learned using EM algorithm
run until convergence.

For each model, we performed filtering for different
extents t1 = 100, 101, . . . , 250, then predicted an im-
age which was a further t2 steps in the future, for
t2 = 1, 2..., 100. The squared error of this prediction
in the IMU’s measurement space was recorded, and
averaged over all the different filtering extents t1 to
obtain means which are plotted in Figure 4(B). Again
the embedded HMM learned by the kernel spectral al-
gorithm yields lower prediction error compared to each
of the alternatives consistently for the duration of the
prediction horizon.

4.3. Audio Event Classification
Our final experiment concerns an audio classification
task. The data, recently presented in (Ramos et al.,
2010), consisted of sequences of 13-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) obtained
from short clips of raw audio data recorded using
a portable sensor device. Six classes of labeled au-
dio clips were present in the data, one being Human
Speech. For this experiment we grouped the latter five
classes into a single class of Non-human sounds to for-
mulate a binary Human vs. Non-human classification
task. Since the original data had a disproportionately
large amount of Human Speech samples, this grouping
resulted in a more balanced dataset with 40 minutes
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Figure 5. Accuracies and 95% confidence intervals for Hu-

man vs. Non-human audio event classification, comparing

embedded HMMs to other common sequential models at

different latent state space sizes.

11 seconds of Human and 28 minutes 43 seconds of
Non-human audio data. To reduce noise and training
time we averaged the data every 100 timesteps (corre-
sponding to 1 second) and downsampled.

For each of the two classes, we trained embedded
HMMs with 10, 20, . . . , 50 latent dimensions using
spectral learning and Gaussian RBF kernels with
bandwidth set with the ‘median trick’. The regulariza-
tion parameter λ is set at 10−1. For efficiency we used
random features for approximating the kernel (Rahimi
& Recht, 2008). For comparison, regular HMMs with
axis-aligned Gaussian observation models, LDSs and
RR-HMMs were trained using multi-restart EM (to
avoid local minima), stable Subspace ID and the spec-
tral algorithm of (Siddiqi et al., 2009) respectively, also
with 10, . . . , 50 latent dimensions or states.

For RR-HMMs, regular HMMs and LDSs, the class-
conditional data sequence likelihood is the scoring
function for classification. For embedded HMMs, the
scoring function for a test sequence x1:t is the log of
the product of the compatibility scores for each obser-
vation, i.e.

�t
τ=1 log

��
ϕ(xτ ), µ̂Xτ |x1:τ−1

�
F

�
.

For each model size, we performed 50 random 2:1
partitions of data from each class and used the re-
sulting datasets for training and testing respectively.
The mean accuracy and 95% confidence intervals over
these 50 randomizations are reported in Figure 5. The
graph indicates that embedded HMMs have higher ac-
curacy and lower variance than other standard alter-
natives at every model size. Though other learning
algorithms for HMMs and LDSs exist, our experiment
shows this to be a non-trivial sequence classification
problem where embedded HMMs significantly outper-
form commonly used sequential models trained using
typical learning and model selection methods.

5. Conclusion

We proposed a Hilbert space embedding of HMMs
that extends traditional HMMs to structured and non-
Gaussian continuous observation distributions. The
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this data while the slot car circled the track controlled
by a constant policy. The goal of this experiment was
to learn a model of the noisy IMU data, and, after
filtering, to predict future IMU readings.

We trained a 20-dimensional embedded HMM using
Algorithm 1 with sequences of 150 consecutive obser-
vations (Section 3.8). The bandwidth parameter of
the Gaussian RBF kernels is set with ‘median trick’.
The regularization parameter λ is set of 10−4. For
comparison, a 20-dimensional RR-HMM with Parzen
windows is learned also with sequences of 150 observa-
tions; a 20-dimensional LDS is learned using Subspace
ID with Hankel matrices of 150 time steps; and finally,
a 20-state discrete HMM (with 400 level of discretiza-
tion for observations) is learned using EM algorithm
run until convergence.

For each model, we performed filtering for different
extents t1 = 100, 101, . . . , 250, then predicted an im-
age which was a further t2 steps in the future, for
t2 = 1, 2..., 100. The squared error of this prediction
in the IMU’s measurement space was recorded, and
averaged over all the different filtering extents t1 to
obtain means which are plotted in Figure 4(B). Again
the embedded HMM learned by the kernel spectral al-
gorithm yields lower prediction error compared to each
of the alternatives consistently for the duration of the
prediction horizon.

4.3. Audio Event Classification
Our final experiment concerns an audio classification
task. The data, recently presented in (Ramos et al.,
2010), consisted of sequences of 13-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) obtained
from short clips of raw audio data recorded using
a portable sensor device. Six classes of labeled au-
dio clips were present in the data, one being Human
Speech. For this experiment we grouped the latter five
classes into a single class of Non-human sounds to for-
mulate a binary Human vs. Non-human classification
task. Since the original data had a disproportionately
large amount of Human Speech samples, this grouping
resulted in a more balanced dataset with 40 minutes
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11 seconds of Human and 28 minutes 43 seconds of
Non-human audio data. To reduce noise and training
time we averaged the data every 100 timesteps (corre-
sponding to 1 second) and downsampled.

For each of the two classes, we trained embedded
HMMs with 10, 20, . . . , 50 latent dimensions using
spectral learning and Gaussian RBF kernels with
bandwidth set with the ‘median trick’. The regulariza-
tion parameter λ is set at 10−1. For efficiency we used
random features for approximating the kernel (Rahimi
& Recht, 2008). For comparison, regular HMMs with
axis-aligned Gaussian observation models, LDSs and
RR-HMMs were trained using multi-restart EM (to
avoid local minima), stable Subspace ID and the spec-
tral algorithm of (Siddiqi et al., 2009) respectively, also
with 10, . . . , 50 latent dimensions or states.

For RR-HMMs, regular HMMs and LDSs, the class-
conditional data sequence likelihood is the scoring
function for classification. For embedded HMMs, the
scoring function for a test sequence x1:t is the log of
the product of the compatibility scores for each obser-
vation, i.e.

�t
τ=1 log

��
ϕ(xτ ), µ̂Xτ |x1:τ−1

�
F

�
.

For each model size, we performed 50 random 2:1
partitions of data from each class and used the re-
sulting datasets for training and testing respectively.
The mean accuracy and 95% confidence intervals over
these 50 randomizations are reported in Figure 5. The
graph indicates that embedded HMMs have higher ac-
curacy and lower variance than other standard alter-
natives at every model size. Though other learning
algorithms for HMMs and LDSs exist, our experiment
shows this to be a non-trivial sequence classification
problem where embedded HMMs significantly outper-
form commonly used sequential models trained using
typical learning and model selection methods.

5. Conclusion

We proposed a Hilbert space embedding of HMMs
that extends traditional HMMs to structured and non-
Gaussian continuous observation distributions. The
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Kalman < HSE-HMM < manifold
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Figure 3: Slot car with inertial measurement unit (IMU). (A) The slot car platform: the car and IMU (top) and

racetrack (bottom). (B) A comparison of training data embedded into the state space of three different learned
models. Red line indicates true 2-d position of the car over time, blue lines indicate the prediction from state

space. The top graph shows the Kalman filter state space (linear kernel), the middle graph shows the HSE-

HMM state space (Gaussian RBF kernel), and the bottom graph shows the manifold HSE-HMM state space

(LE kernel). The LE kernel finds the best representation of the true manifold. (C) Root mean squared error for

prediction (averaged over 250 trials) with different estimated models. The HSE-HMM significantly outperforms

the other learned models by taking advantage of the fact that the data we want to predict lies on a manifold.

structing a manifold, none of these papers compares

the predictive accuracy of its model to state-of-the-art

dynamical system identification algorithms.

7 Conclusion

In this paper we propose a class of problems called

two-manifold problems where two sets of correspond-

ing data points, generated by a single latent manifold,

lie on or near two different higher dimensional mani-

folds. We design algorithms by relating two-manifold

problems to cross-covariance operators in RKHS, and

show that these algorithms result in a significant im-

provement over standard manifold learning approaches

in the presence of noise. This is an appealing result:

manifold learning algorithms typically assume that ob-

servations are (close to) noiseless, an assumption that

is rarely satisfied in practice.

Furthermore, we demonstrate the utility of two-

manifold problems by extending a recent dynamical

system identification algorithm to learn a system with

a state space that lies on a manifold. The resulting al-

gorithm learns a model that outperforms the current

state-of-the-art in terms of predictive accuracy. To our

knowledge this is the first combination of system iden-

tification and manifold learning that accurately iden-

tifies a latent time series manifold and is competitive

with the best system identification algorithms at learn-

ing accurate models.
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structing a manifold, none of these papers compares

the predictive accuracy of its model to state-of-the-art

dynamical system identification algorithms.

7 Conclusion

In this paper we propose a class of problems called

two-manifold problems where two sets of correspond-

ing data points, generated by a single latent manifold,

lie on or near two different higher dimensional mani-

folds. We design algorithms by relating two-manifold

problems to cross-covariance operators in RKHS, and

show that these algorithms result in a significant im-

provement over standard manifold learning approaches

in the presence of noise. This is an appealing result:

manifold learning algorithms typically assume that ob-

servations are (close to) noiseless, an assumption that

is rarely satisfied in practice.

Furthermore, we demonstrate the utility of two-

manifold problems by extending a recent dynamical

system identification algorithm to learn a system with

a state space that lies on a manifold. The resulting al-

gorithm learns a model that outperforms the current

state-of-the-art in terms of predictive accuracy. To our

knowledge this is the first combination of system iden-

tification and manifold learning that accurately iden-

tifies a latent time series manifold and is competitive

with the best system identification algorithms at learn-

ing accurate models.
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Algorithm intuition

• Use separate one-manifold learners to estimate 
structure in past, future

‣ result: noisy Gram matrices GX, GY

‣ “signal” is correlated between GX, GY

‣ “noise” is independent

• Look at eigensystem of GXGY

‣ suppresses noise, leaves signal
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Summary

• General class of models for dynamical systems

• Fast, statistically consistent learning method

• Includes many well-known models & algorithms as 
special cases

‣ HMM, Kalman filter, n-gram, PSR, kernel versions

‣ SfM, subspace ID, Kalman video textures

• Also includes new models & algorithms that give 
state-of-the-art performance on interesting tasks

‣ range-only SLAM, PSR video textures, HSE-HMM
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