Spectral learning algorithms for dynamical systems

Geoff Gordon

http://www.cs.cmu.edu/~ggordon/ Machine Learning Department Carnegie Mellon University

joint work with Byron Boots, Sajid Siddiqi, Le Song, Alex Smola

What's out there?

What's out there?

A dynamical system

Predict future observations

A dynamical system

a partially observable system

Predict future observations

This talk

- General class of models for dynamical systems
- Fast, statistically consistent learning algorithm
 - no local optima
- Includes many well-known models & algorithms as special cases
- Also includes new models & algorithms that give state-of-the-art performance on interesting tasks

Includes models

- hidden Markov model
 - n-grams, regexes, k-order HMMs
- PSR, OOM, multiplicity automaton, RR-HMM
- LTI system
 - Kalman filter, AR, ARMA
- Kernel versions and manifold versions of above

Includes algorithms

- Subspace identification for LTI systems
 - recent extensions to HMMs, RR-HMMs
- Tomasi-Kanade structure from motion
- Principal components analysis (e.g., eigenfaces);
 Laplacian eigenmaps
- New algorithms for learning PSRs, OOMs, etc.
- A new way to reduce noise in manifold learning
- A new range-only SLAM algorithm

Interesting applications

- Structure from motion
- Simultaneous localization and mapping
 - Range-only SLAM
 - "SLAM" from inertial sensors
 - very simple vision-based SLAM (so far)
- Video textures
- Opponent modeling, option pricing, audio event classification, ...

Bayes filter (HMM, Kalman, etc.)

Belief $P_t(s_t) = P(s_t | o_{1:t})$

- Goal: given o_t , update $P_{t-1}(s_{t-1})$ to $P_t(s_t)$
- **Extend**: $P_{t-1}(s_{t-1}, o_t, s_t) = P_{t-1}(s_{t-1}) P(s_t | s_{t-1}) P(o_t | s_t)$
- Marginalize: $P_{t-1}(o_t, s_t) = \int P_{t-1}(s_{t-1}, o_t, s_t) ds_{t-1}$
- **Condition**: $P_t(s_t) = P_{t-1}(o_t, s_t) / P_{t-1}(o_t)$

Bayes filter (HMM, Kalman, etc.)

Belief $P_t(s_t) = P(s_t | o_{1:t})$

- Goal: given o_t , update $P_{t-1}(s_{t-1})$ to $P_t(s_t)$
- **Extend**: $P_{t-1}(s_{t-1}, o_t, s_t) = P_{t-1}(s_{t-1}) P(s_t | s_{t-1}) P(o_t | s_t)$
- Marginalize: $P_{t-1}(o_t, s_t) = \int P_{t-1}(s_{t-1}, o_t, s_t) ds_{t-1}$
- **Condition**: $P_t(s_t) = P_{t-1}(o_t, s_t) / P_{t-1}(o_t)$

A common form for Bayes filters

• Find covariances as (linear) fns of previous state

•
$$\Sigma_{o}(s_{t-1}) = E(\varphi(o_t) \varphi(o_t)^T | s_{t-1})$$

$$\Sigma_{so}(s_{t-1}) = E(s_t \varphi(o_t) \mid s_{t-1})$$

nb: uncentered covars; $s_t \& \varphi(o_t)$ include constant

• Linear regression to get current state

•
$$s_t = \sum_{so} \sum_{o}^{-1} \varphi(o_t)$$

- Exact if discrete (HMM, PSR), Gaussian (Kalman, AR), RKHS w/ characteristic kernel [Fukumizu et al.]
- Approximates many more

Why this form?

- If Bayes filter takes (approximately) the above form, can design a simple spectral algorithm to identify the system
- Intuitions:
 - predictive state
 - rank bottleneck
 - observable representation

Predictive state

- If Bayes filter takes above form, we can use a vector of predictions of observables as our state
 - $E(\varphi(o_{t+k}) | s_t) = \text{linear fn of } s_t$
 - for big enough k, E([φ(o_{t+1}) ... φ(o_{t+k})] | s_t) =
 invertible linear fn of s_t
 - so, take $E([\varphi(o_{t+1}) \dots \varphi(o_{t+k})] | s_t)$ as our state

Predictive state: minimal example

• For big enough k, $E([\varphi(o_{t+1}) \dots \varphi(o_{t+k})] | s_t) = Ws_t$ invertible linear fn (if system **observable**)

Predictive state: minimal example

• For big enough k, $E([\varphi(o_{t+1}) \dots \varphi(o_{t+k})] | s_t) = Ws_t$ invertible linear fn (if system observable)

Predictive state: minimal example

• For big enough k, $E([\varphi(o_{t+1}) \dots \varphi(o_{t+k})] | s_t) = Ws_t$ invertible linear fn (if system observable)

Predictive state: summary

- $E([\varphi(o_{t+1}) \dots \varphi(o_{t+k})] | s_t)$ is our state rep'n
 - interpretable
 - observable—a natural target for learning

Predictive state: summary

- $E([\varphi(o_{t+1}) \dots \varphi(o_{t+k})] | s_t)$ is our state rep'n
 - interpretable
 - observable—a natural target for learning

• To find s_t, predict $\varphi(o_{t+1}) \dots \varphi(o_{t+k})$ from $o_{1:t}$

Rank bottleneck

Can find best rank-k bottleneck via matrix factorization \Rightarrow *spectral* method

Y X \approx linear function predicts Y_t from X_t

Observable representation

- Now that we have a compact predictive state, need to estimate fns $\Sigma_o(s_t)$ and $\Sigma_{so}(s_t)$
- Insight: parameters are now **observable**: the problem is just to estimate some covariances from data
 - ► to get Σ_o , regress ($\varphi(o) \times \varphi(o)$) ← state
 - ► to get Σ_{so} , regress ($\varphi(o) \times future_+$) ← state

Algorithm

- Find compact predictive state: regress future ← past
 - use any features of past/future, or a kernel, or even a learned kernel (manifold case)
 - constrain rank of prediction weight matrix
- Extract model: regress
 - ▶ (o × future+) ← [predictive state]
 - (o × o) ← [predictive state]
 - future+: use same rank-constrained basis as for predictive state

Does it work?

Does it work?

Discussion

- Impossibility—learning DFA in poly time = breaking crypto primitives [Kearns & Valiant 89]
 - ▶ so, clearly, we can't always be statistically efficient
 - but, see McDonald [11], HKZ [09], us [09]: convergence depends on *mixing rate*
- **Nonlinearity**—Bayes filter update is highly nonlinear in state (matrix inverse), even though we use a *linear* regression to identify the model
 - nonlinearity is essential for expressiveness

Range-only SLAM

- Robot measures distance from current position to fixed beacons (e.g., time of flight or signal strength)
 - may also have odometry
- Goal: recover robot path, landmark locations

Typical solution: EKF

Geoff Gordon—UT Austin—Feb, 2012

Typical solution: EKF

Geoff Gordon—UT Austin—Feb, 2012

Spectral solution (simple version)

Spectral solution (simple version)

Experiments (full version)

Experiments (full version)

Structure from motion

[Tomasi & Kanade, 1992]

Video textures

- Kalman filter works for some video textures
 - steam grate example above
 - fountain:

observation = raw pixels (vector of reals over time)

Video textures, redux

Original

Kalman Filter

PSR

both models: 10 latent dimensions

Video textures, redux

Original

Kalman Filter

PSR

both models: 10 latent dimensions

Learning in the loop: option pricing

- Price a financial derivative: "psychic call"
 - holder gets to say "I bought call 100 days ago"
 - underlying stock follows Black Scholes (unknown parameters)

Option pricing

- Solution [Van Roy et al.]: use policy iteration
 - ► 16 hand-picked features (e.g., poly · history)
 - initialize policy arbitrarily
 - least-squares temporal differences (LSTD) to estimate value function
 - policy := greedy; repeat

Option pricing

- Better solution: spectral SSID inside policy iteration
 - ► 16 original features from Van Roy et al.
 - 204 additional "low-originality" features
 - e.g., linear fns of price history of underlying
 - SSID picks best 16-d dynamics to explain feature evolution
 - solve for value function in closed form

Policy iteration w/ spectral learning

Geoff Gordon—UT Austin—Feb, 2012

Slot-car IMU data

Kalman < HSE-HMM < manifold

Algorithm intuition

- Use separate one-manifold learners to estimate structure in past, future
 - ▶ result: noisy Gram matrices G_X, G_Y
 - "signal" is correlated between G_X, G_Y
 - "noise" is independent
- \bullet Look at eigensystem of G_XG_Y
 - suppresses noise, leaves signal

Summary

- General class of models for dynamical systems
 - Fast, statistically consistent learning method
 - Includes many well-known models & algorithms as special cases
 - HMM, Kalman filter, n-gram, PSR, kernel versions
 - SfM, subspace ID, Kalman video textures
 - Also includes new models & algorithms that give state-of-the-art performance on interesting tasks
 - range-only SLAM, PSR video textures, HSE-HMM

Papers

- B. Boots and G. An Online Spectral Learning Algorithm for Partially Observable Nonlinear Dynamical Systems. AAAI, 2011.
- B. Boots and G. Predictive state temporal difference learning. NIPS, 2010.
- B. Boots, S. M. Siddiqi, and G. Closing the learning-planning loop with predictive state representations. RSS, 2010.
- L. Song, B. Boots, S. M. Siddiqi, G., and A. J. Smola. Hilbert space embeddings of hidden Markov models. ICML, 2010. (Best paper)