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ABSTRACT

A classifier derived from labeled samples acquired over an ex-
tended area may not perform well for a specific sub-region if
the spectral signatures of classes vary across the image. How-
ever, characterizing the local effects are an ill-posed problem,
particularly for hyperspectral data, since an adequate number
of labeled samples is not typically available for every loca-
tion. This problem is addressed using semi-supervised learn-
ing and manifold learning, which both exploit the informa-
tion provided by unlabeled samples in the image. A spatially
adaptive classification method that uses Laplacian regulariza-
tion is proposed, with the updating scheme using a combina-
tion of labeled and unlabeled samples.

Index Terms— spatially adaptive, classification, hyper-
spectral, Laplacian regularization, SVM

1. INTRODUCTION

Remote sensing image data have spatial context within a 2-
dimensional array, which is different from classical machine
learning problems, where data typically have no spatial re-
lationships and are assumed to be statistically independent.
Local effects such as sun angle variation, bidirectional effects
and changes in soil condition can cause the spectral distri-
bution of samples of a given class to vary across the image.
Unfortunately, attempting to accommodate these local effects
in supervised classification is problematic as training samples
are often limited in number and not well distributed across
the image, and some classes may not occur in a given local
region. The problem of limited sample size is critical for suc-
cessful classification of hyperspectral data because of the well
known ”curse of dimensionality” [1], which is exacerbated if
the probability distributions of the class signatures vary across
the image.

Manifold learning can mitigate these problems by discov-
ering the inherent lower dimensionality from the input space.
Recent results also indicate that classification of hyperspectral
data may be more robust on the manifold space, particularly

when training data are limited and spectral signatures are non-
stationary across the image. Under the assumption that spatial
variation in signatures affects the spatially localized structure
of the manifold, classification on a spatially localized mani-
fold should yield improved classification results.

Even though the manifold coordinates can be used di-
rectly for classification, kernel based regression methods are
widely used for the inductive formulation of the classifier. Re-
cently, fully supervised classification was adapted to semi-
supervised learning to cope with the problem of insufficient
labeled samples in transductive SVM [2] and semi-supervised
SVM [3], and investigated for remote sensing applications
[4, 5]. However, many kernel based semi-supervised methods
are computationally intensive and are known to have prob-
lems with convergence to local optima. Belkin et al. regular-
ized the classifier based on the geometry of unlabeled samples
in the spectral domain [6]. Smoothness of a function is com-
puted, and an irregular regression function is penalized so that
the smoothly connected samples can be taken as a cluster. In
the remote sensing literature, Gomez-Chova et al. recently
investigated the Laplacian regularization approach for cloud
screening and image classification [7, 8].

In this paper, a novel methodology is proposed to handle
the spatial adaptation problem using the Laplacian regular-
ization method. A global classifier that is constructed from
the labeled samples is adapted to a local area using the un-
labeled samples in the area, as well as any locally available
labeled samples. While the initial labeled samples are un-
changed in most semi-supervised algorithms, here the labeled
samples are incrementally updated with randomly selected
unlabeled samples from the local region. Since the regulariza-
tion method involves unlabeled samples in the training stage,
importing appropriate unlabeled samples to the binary clas-
sification framework of the Laplacian regularization method
is an issue for multi-class classification problems. The selec-
tion scheme is investigated here for both one-against-one and
one-against-all strategies.



2. LAPLACIAN REGULARIZATION

The Laplace-Beltrami operator on a manifold provides a mea-
sure of the geometric smoothness of a function on the mani-
fold. In the discrete case, the operator is approximated by a
graph Laplacian. Once a kernel-based regression function for
any two classes is assumed, the best regression function that
fits the data is calculated by minimizing the functional

f∗ = argmin
f∈HK

1
l

l∑
i=1

V (xi, yi, f) + γA ‖f‖2
K + γI ‖f‖2

I ,

where V is a loss function such as squared loss or the hinge
loss function as in Support Vector Machines (SVMs).

The second term is the norm of the function in the corre-
sponding Reproducing Kernel Hilbert Space (RKHS) [9] for
a Mercer kernel K, and the last term measures the geomet-
ric smoothness of the intrinsic manifold structure through a
graph Laplacian. Penalizing the last two terms controls the
smoothness of the regression function in ambient space and
in intrinsic space, respectively. According to the Representer
Theorem [10], the solution to this minimization is given as

f∗(x) =
l∑

i=1

αiK(xi, x),

and the problem is reduced to finding optimal coefficients of
the kernel function.

3. SPATIAL ADAPTATION

Adaptation of the classifier is accomplished by updating the
existing labeled and unlabeled samples with local samples
which better represent the local distribution of samples. Al-
though the classifier is constrained by the smoothness factor
and seeks to find the class boundaries which are not smooth,
the boundaries between classes of remote sensing data are of-
ten difficult to differentiate only by clustering. Therefore, the
adaptation procedure gradually modifies the group of labeled
and unlabeled sets.

When data sets X1 and X2 are from two different distribu-
tions, the problem is to classify X2 based on X1 and its label
set, Y1. Each sample of the data, (X, Y ), can be expressed as
{xj , yj} where xj ∈ <N and yj ∈ {0, 1, ..., Nclass} . The
classification is performed iteratively by updating the labeled
set, which is set initially as L(0)(= Y1). The current classifier,
C(i) is applied to X2 and generates the classification result,
Y

(i)
2 . The current labeled set, L(i) is then updated in such a

way that Nexchange samples are randomly selected from X2

based on Y
(i)
2 , and those samples replace the same number

of samples in the labeled set, L(i), to produce the updated la-
beled set, L(i+1). The subsequent classifier, C(i+1), is devel-
oped based on both the labeled and unlabeled samples from
this second set of data. Although some anomalous samples

might be chosen for labeled samples, the smoothness term in
the regularization formulation forces the labeled sample set to
converge to the true values of the labels. The training phase
is terminated when the stopping criterion is satisfied. The it-
eration stops when the number of labels being changed is less
than threshold defined in terms of the ratio of the number be-
ing changed to the total number of pixels .

This binary classifier can be implemented for multi-class
problems using one-against one (OAO) and one-against-all
(OAA) strategies. The OAO strategy is known to main-
tain a more balanced and robust result compared to the OAA
method and is more conducive to incorporation of the smooth-
ness measure. However, in the semi-supervised setting, the
unlabeled samples for two specific classes required by the
OAO cannot be identified directly. In OAA, the metaclass
which is comprised of multiple classes has more discontinu-
ity than the single class branch of the classifier, which can
cause semi-supervised learning to converge to local optima,
particularly when the number of labeled samples near the
boundary is small. Both the modified OAO scheme and the
OAA method are investigated and compared in the current
study.

With the proposed adaptation scheme, the global classi-
fier is adapted to each local region which is a subset of the
whole image. The adaptation can be applied recursively into
smaller regions, as long as the number of pixels is adequate to
construct the manifold structure. After updating, the locally
classified image patches are combined to produce a global
output.

4. EXPERIMENTS

Hyperion data acquired by the NASA EO-1 satellite over the
Okavango Delta, Botswana in May, 2001 are used for this
experiment. The image dimension for this experiment is 1476
x 256, and the land cover is classified into 9 classes with 145
bands.

The labeled samples are usually collected in spatially con-
tiguous patches over sites, often resulting in highly correlated
samples which can result in poor generalization of the clas-
sification results. For the experiments reported here, training
and test samples are extracted randomly from spatially dis-
joint patches scattered throughout the scene. The training rate
is varied from 25% to 75% of the candidate training samples
to investigate the impact of training sample size.

First, the classifier is developed and applied to the whole
image using all the labeled samples in the scene to determine
the base performance of the global classifier. K-nearest neigh-
bors (KNN), the Laplacian method with OAA and the Lapla-
cian method with OAO are all investigated for the global clas-
sifier. Since the manifold is constructed with only labeled
samples, each class is relatively well separated from other
classes compared to the case when unlabeled samples are in-
troduced to the classifier. However, because the labeled sam-



Fig. 1. Classification results on a subset image from (top left)
global-OAA, (top right) global-OAO, (bottom left) adaptive-
OAA and (bottom right) adaptive-OAO. The red circled area
(originally fire scar) is classified into several other classes in
the upper images. True labels are recovered by adapting the
classifiers in the lower images.

ples are not well distributed across the scene, the performance
of the global classifier is not guaranteed for local regions.

Through the spatial adaptation, the global classifier is ad-
justed to better reflect the distributions of the local samples.
In this experiment, the entire region is divided into four sub-
sections, each of dimension 369 x 256. Since the number of
available unlabeled samples is so large compared to the num-
ber of labeled samples, only the randomly selected samples
are used for the iterative training procedure. In case of the
OAA strategy, any unlabeled samples can be used for training
the Nclass classifiers since the output space of the classifier
exhausts all the classes. For the OAO scheme, only the un-
labeled samples that are related to the specific two classes
should be introduced to the classifier. However, it is impos-
sible to identify such samples precisely, as this requires ad-
vanced knowledge of the labels of unlabeled samples. Here,
samples that are classified during the initial global classifica-
tion into the two respective classes are selected for the un-
labeled samples to be imported to the binary classifier. The
final label of a pixel is determined by voting after pairwise
classification is completed.

The KNN global classifier yielded higher accuracies than
either the OAA or OAO binary strategies implemented glob-
ally in the Laplacian framework, with performance of the
Laplacian-based method deteriorating rapidly at lower sam-

Fig. 2. Classification accuracies for Botswana data over vary-
ing sampling rate

pling rates. For the localized regional implementation, the
adaptive classification methods performed nearly as well as
the global KNN. As the sampling rates decreased, the OAO
strategy eventually yielded the highest accuracies, indicating
that the semi-supervised learning compensated for the small
number of training samples through exploitation of local in-
formation. On a class basis, the localized Laplacian method
yielded the greatest improvement for the primary floodplain
and fire scar classes, which the KNN method often confused.
An example of improvement is illustrated in Fig.2. How-
ever, the proposed method yielded poor results on pairs of
classes whose spectra are highly overlapped such that the nat-
ural boundary is hard to identify, e.g. riparian vs. woodlands
which have similar vegetation components. The smoothness
regularization may actually impact the results negatively for
these cases.

5. CONCLUSIONS

A new spatially adaptive classification method which exploits
unlabeled samples when proper labeled samples are not avail-
able was developed. Although spatial drift in spectral signa-
tures is often difficult to determine in multi-class problems, it
becomes critical to consider the bias when the number of la-
beled samples is limited and not well distributed over the im-
age. The novelty of this paper is the ability to handle changes
in the distribution of class spectra when labeled samples are
regionally localized and limited in number.

Future work will include application of the proposed
method to hyperspectral data from alternative locations and



Fig. 3. Class dependent classification accuracies of the adap-
tive method are presented and compared to KNN results. The
accuracies of adaptive methods are averaged from the two
multi-class scheme, OAA and OAO.

Class Number of Samples
1 Water 158
2 Primary Floodplain 228
3 Riparian 237
4 Firescar 178
5 Island Interior 183
6 Woodlands 199
7 Savanna 162
8 Short Mopane 124
9 Exposed Soils 111

Table 1. Land cover types in the Botswana scene and corre-
sponding numbers of samples per class.

higher resolution sensors. More promising results are ex-
pected for the high resolution images since Laplacian smooth-
ness regularization is more beneficial for data with few mixed
samples. Also the adaptation approach will be applied to
lower levels of the quadtree hierarchy which represent smaller
areas. The use of alternative binary decomposition methods,
such as the Binary Hierarchical Classifier (BHC) [11], will
be also investigated.
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